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Automatic pattern recognition by similarity
representations

E. Pekalska and R.P.W.Duin

The automatic recognition of objects may benefit from using a
similarity representation instead of the traditional approach based
on features. It is shown that the common use of nearest neighbour
classifiers for similarity representations may be improved
significantly by other classification rules with respect to
recognition accuracy as well as computational complexity.

Introduction: Traditionally, objects in automatic pattern recogni-
tion systems are represented by characteristic features. Classifiers
are optimised on these using examples of objects for training. In
some applications, however, the definition of features is not
straightforward. Alternatively, similarities between new objects
and prototypes may be used directly on the raw or preprocessed
input measurements [1 — 4], e.g. based on template matching. For
some applications like two-dimensional-shape recognition, this is
much more feasible. The nearest neighbour (NN) rule is conven-
tionally applied to classify new objects on the basis of their simi-
larities to the set of training examples. This procedure is either
computationally expensive (the similarities to all training examples
have to be found) or it potentially loses accuracy when only a
small number of prototypes is selected.

We propose to overcome this problem of similarity representa-
tions by replacing the traditional NN method by a more global
classifier defined on the similarities to a small set of prototypes,
called the representation set. The classifier will be trained by the
larger training set. For its evaluation, however, just a small set of
similarities to the representation set objects has to be computed.
Our experiments clearly demonstrate that the trade-off between
the recognition accuracy and the computational effort is signifi-
cantly improved by using such classifiers (effectively a linear com-
bination of similarities) instead of using the nearest neighbour
rule.

Method: Having found a data representation of objects, a precise
goal is to learn a decision rule. To construct such a rule [2], the
training set T of size n (based on » objects) and the representation
set R of size r will be used. R is a set of prototypes covering all
categories present. We choose R to be a subset of T (R < 1),
although, in general, they might be disjunct. In this Letter we will
use dissimilarities (distances) instead of similarities. In the learning
process, a classifier is then built on the n x r distance matrix D(7,
R), relating all training objects to all prototypes. A set S of s new
objects is represented by their distances to R, i.e. as an § X r
matrix D(S, R).

A straightforward way of dealing with dissimilarity representa-
tions leads to the NN rule [5] or more generally to the instance-
based learning [6, 7). In its simplest form, the NN rule assigns a
new object to the class of its nearest neighbour in the representa-
tion set R by finding minima in the rows of D(S, R). In the NN
method, usually, R is equivalent to 7. However, condensed vari-
ants [8] exist which reduce the size of R.

In the dissimilarity space proposed by us, each dimension corre-
sponds with an object in the set R. The prototypes thereby consti-
tute an r-dimensional dissimilarity space. In general, D(x, R)
defines a vector of r distances between the object x and the mem-

ELECTRONICS LETTERS 1st February 2001

bers of R. Therefore, this function can be seen as a mapping which
embeds x in an r-dimensional space. The advantage of such a rep-
resentation is that any traditional classifier defined for feature
spaces may be used. Moreover, in contrast to the NN rule, it can
be based on training sets larger than the given representation set.
This does not complicate the decision rule, but increases its accu-
racy.

Many of the commonly used dissimilarity measures, e.g. the
Euclidean distance, the mean square error and the Hamming dis-
tance, are based on sums of differences between measurements.
For representation sets consisting of independent objects, the dis-
tribution of summation-based distances tends to be approximately
normally distributed according to the central limit theorem. Con-
sequently Bayesian classifiers [9] assuming normal distributions,
should perform well on such dissimilarity spaces. The RLNC (reg-
ularised linear normal densities based classifier) [5], assuming
equal class covariance matrices, is particularly interesting because
of its simplicity.

The NN rule generalises well for large training sets. Asymptoti-
cally, its error is bounded from above by twice the Bayes error
(the smallest error possible) [5]. In practice, however, the size of R
is often too small to reach such an accuracy. Other classifiers,
such as the RLNC mentioned above, might be more advantageous
on dissimilarity representations [3, 4]. It may perform much better
since they become less local in their decisions by operating on
larger training sets. Note that the NN rule as we use it here, oper-
ates directly on the individual dissimilarities, while the RLNC is
defined for the representation space, treating the dissimilarities as
its input features.

Experiments.: To compare the behaviour of the NN rule and the
RLNC built on distances, a number of experiments are conducted.
They are designed to observe and analyse two phenomena: a bet-
ter performance of the RLNC and the positive influence of train-
ing sets larger than representation sets used for its construction.
Three real world datasets are considered in our study: two ver-
sions of the subset of handwritten numerals (ten classes) of the
NIST digit sets [10] (one represented by pixel-based Euclidean dis-
tances and one on the modified Hausdorff distances [11] on the
contours), and a set chromosomes of 24 classes represented by dif-
ferences in their DNA band profiles. Since for digits and chromo-
some bands no natural features arise from the application,
constructing dissimilarities is an interesting possibility to tackle the
automatic recognition problem.

To obtain meaningful conclusions, the experiments are per-
formed 25 times for all datasets and the results are averaged. In a
single experiment, each dataset is first randomly split into two
equal-sized sets: the design set L and the test set S. L serves to
obtain both the representation set R and the training set 7. There
exist many ways to select R. As our goal here is not to find the
best R for the given problem, but to illustrate the usefulness of our
approach, we will restrict ourselves to random selection. Represen-
tation sets of different sizes are studied: the initial set is chosen as
a subset of L and is then gradually increased until it equals the
entire set L.

The error rates for the three datasets of the two classification
rules are shown in Figs. 1 — 3, relating the size # of the training
set T to the size r of the representation set R. The NN results are
presented (by *) on the diagonal as for this case 7 is identical to
R. For the RLNC, the lines of constant classification error show
how the same performance is reached by a larger training set rep-
resented by a smaller representation. The following observations
can be made:

(i) The starting points of the RLNC curves on the diagonals have
a smaller error than the equivalent NN rules. So the RLNC gener-
alises better.

(ii) In the horizontal direction, for increasing training set sizes,
classifiers have equal computational complexity for evaluation of
new objects. For larger training sets the RLNC shows perform-
ances up to almost two times as good as the NN rule for the same
computational complexity.

(iif) Following the curves of the RLNC, it can be observed that
for larger training sets much smaller sizes of the representation
sets are needed for the same performance. The RLNC sometimes
demands just half the computational complexity for evaluation
compared to the NN rule.
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The good performance of the RLNC can be understood as fol-
lows. It is in fact just a weighted linear combination of dissimilar-
ities between an object and the representation set. The training
process emphasises prototypes which play a crucial role during
discrimination, but it still allows other prototypes to influence the
decision. The importance of prototypes is reflected in the weights.
By combining the distance information with appropriate weights a
globally sensitive classifier is built, which cannot be achieved by
the NN rule.
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Conclusions: Dissimilarity representations, replacing the tradi-
tional feature-based description, open a new area for exploiting
expert knowledge. The experiments manifest the strong point of
our approach in contrast to the nearest neighbour method: addi-
tional objects may be used to enlarge the training set without
increasing the computational complexity, allowing us to build a
decision rule that generalises significantly better. In particular, we
show that a linear classifier constructed on dissimilarities mostly
outperforms the NN rule traditionally applied.

Our results encourage the exploration of meaningful dissimilar-
ity information in new, advantageous ways, of which our proposal
is an example. The use of other classifiers, e.g. quadratic (which
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by including product interactions between prototype dissimilarities
may have better generalisation capabilities) and the study of repre-
sentation set selection is an issue of further research.
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Efficient method for early detection of all-
zero DCT coefficients

Shi Jun and Songyu Yu

Based on the existing method, a more efficient algorithm for
detecting all-zero DCT coefficient blocks before implementation
of the discrete cosine transform and quantisation in very low bit
rate video coding is proposed. The problem of the existing
method is shown and an improved algorithm is provided.
Simulation shows that the new method improves the detecting
performance by ~10-20%.

Introduction: For very low bit rate coding, especially in video-
phone applications, it is quite common for the coefficients of the
whole block to be all-zero after motion estimation, motion com-
pensation, implementation of the discrete cosine transform (DCT)
and quantisation. A method that detected all-zero DCT coefficient
blocks before DCT and quantisation would greatly improve the
coding speed. An algorithm that uses the sum of absolute differ-
ence (SAD) of each motion compensation block as a criterion was
proposed in [1]. We believe that although the method proposed in
[1] greatly improves the coding speed, its efficiency can still be
improved upon. In this Letter, we analyse the limitations of the
existing method for the early detection of all-zero coefficients, and
propose an improved method using SAD criteria, with the effi-
ciency limit as a guideline. Finally, we propose an experimental
rule used in H.263 [2]. Compared with the existing method, the
new method improves the detecting efficiency by ~10-20%.

1st February 2001 Vol.37 No. 3



