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K-Nearest Neighbors Directed Noise Injection in Multilayer Perceptron Training

M. Skurichina,Š. Raudys, and R. P. W. Duin

Abstract—The relation between classifier complexity and
learning set size is very important in discriminant analysis. One
of the ways to overcome the complexity control problem is to add
noise to the training objects, increasing in this way the size of the
training set. Both the amount and the directions of noise injection
are important factors which determine the effectiveness for classi-
fier training. In this paper the effect is studied of the injection of
Gaussian spherical noise and -nearest neighbors directed noise
on the performance of multilayer perceptrons. As it is impossible
to provide an analytical investigation for multilayer perceptrons,
a theoretical analysis is made for statistical classifiers. The goal
is to get a better understanding of the effect of noise injection on
the accuracy of sample-based classifiers. By both empirical as
well as theoretical studies, it is shown that the -nearest neighbors
directed noise injection is preferable over the Gaussian spherical
noise injection for data with low intrinsic dimensionality.

Index Terms—Intrinsic data dimensionality, -nearest neigh-
bors directed noise injection, multilayer perceptrons, noise
injection, Parzen window classifier.

I. INTRODUCTION

I N DISCRIMINANT analysis one often has to face thesmall
training sample size problem. This arises when the data fea-

ture space dimensionality is large compared with the number
of available training objects. Sometimes large difficulties ap-
pear in constructing a discriminant function on small training
sample sets, resulting in discriminant functions having a bad
performance [1], [2]. In order to make a good choice for the
classification rule or to judge the training sample size it is im-
portant to be familiar with the small sample properties of the
sample-based classification rules. These properties can be char-
acterized by the difference and/or by the ratio of the generaliza-
tion error and the asymptotic probability of misclassification.

Small sample properties of statistical classifiers depend on
their complexity and on the data dimensionality [10], [12], [18].
For a data model with multivariate Gaussian distributed pattern
classes having a common covariance matrix withsignificant
nonzero eigenvalues, it was shown that the generalization errors
of the nearest mean classifier [11], the Parzen window classi-
fier [13], and the zero empirical error classifier [14] depend on
a true (intrinsic) data dimensionality. Our simulation exper-
iments have also confirmed that for this data model the small
sample properties of the nonlinear single layer perceptron are
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not determined by the dimensionality of the feature spacebut
by the intrinsic dimensionality.

A well-known technique to solve the small training sample
size problem involves the generation of more training objects
by noise injection(NI) to the training data [3], [9]. Usually,
spherical Gaussian distributed noise is generated around each
training object. In case of high-dimensional data, however, it
may happen that the intrinsic data dimensionality is smaller than
the dimensionality of the feature space, in which the data are
represented. The data are thereby located in a subspace of the
feature space. Moreover, different measurements (features) may
have large differences in scale due to their different nature. In
this case, besides the variance of the added noise, also the di-
rections of the noise become important. When spherical noise
is injected to the data with low intrinsic dimensionality, noise is
also added in the directions where no data are located. By this,
spherical NI can distort the distribution of the training sample set
and destroy the low intrinsic dimensionality of the data. Conse-
quently, the small sample properties of the classifier will be de-
teriorated. The injection of Gaussian noise in only the direction
of the -nearest neighbors of an object may be more effective,
as the local distribution of the training set is taken into account.
This noise will be called the -nearest neighbors( -NN) di-
rected noise, which basic idea is given in [5]. The-NN abbre-
viation should not be confused with the-NN classifier which
is not studied or used in this paper.

In this paper we study the effectiveness ofGaussian noise in-
jection (GNI) and -NN directed noise injection( -NN DNI)
on the classifier performance. We also study the effect of the
intrinsic data dimensionality on the small sample size proper-
ties of classifiers and on the effectiveness of NI. Our theoretical
study and simulations show that, both, the direction and the vari-
ance of noise are very important in NI.

It is shown theoretically, in Section II, for the case of sta-
tistical classification rules, why the-NN DNI may be more
preferable than Gaussian NI in the case of low intrinsic dimen-
sionalities. For the case of multilayer perceptrons a theoretical
analysis involves nonlinearities and leads to a very complex al-
gebra. Therefore we perform a simulation study on the effective-
ness of NI in perceptron training. The results of this simulation
study are presented in Section III. Conclusions are summarized
in Section IV.

II. NOISE INJECTION AND STATISTICAL CLASSIFIERS

Let us consider a noise injection model, in which
independent -variate random Gaussian noise vec-

tors ; ;
are added to each of -variate training

vectors from two pattern classes and . As a result,

“noisy” training vectors are obtained.
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In order to understand the noise effect upon an accuracy
of sample-based classification rules we consider a couple of
statistical classification rules where the investigation can be
performed analytically. At first, in Sections II-A and II-B on
the examples of theFisher linear discriminant(FLD) [22]
and the Parzen window(PW) classifier [23], we compare
classifiers with built-in “analytical noise” and classifiers using
NI. This shows the importance of the number of generated
noise vectors on the classification performance. Under certain
conditions the histogram classifier [16] using NI is similar to
the PW density estimate. In Section II-C we compare these
two classifiers in order to analyze the influence of the intrinsic
data dimensionality on the effectiveness of NI. The latter study
gives the theoretical basis for possible benefits of-NN DNI
compared with Gaussian NI for the data with low intrinsic
dimensionality.

A. Linear Discriminant Analysis

The standard Fisher linear discriminant function [8], [22] is
defined as

(1)

with and
, where

and

are the sample estimates of theth class mean and the common
covariance matrix, respectively.

Considering the noise injection model described above, we
can design the FLD from “noisy” training vectors
with the sample estimate of theth class mean

and obtain the following estimate of the covariance matrix:

where

is an additional random term which arises due to the random
nature of noise vectors . Here is
the mean of noise vectors generated around each training vector

. Asymptotically, as the number of noise vectors tends to

infinity , the sample estimate of the covariance matrix
of noise vectors tends to the diagonal matrix .
Therefore we have

which is used in the regularized discriminant function (RDF)
[9], [24]. However, for finite . Consequently, when

is finite, we have another classification rule, different from the
RDF. Obviously, for small a random nature of the matrix
will deteriorate the estimate and increase the generalization
error.

In the analysis ofmultilayer perceptrons(MLP’s) it is impor-
tant to notice that adding a supplementary weight decay term

[21] to the cost function of the linearsingle layer per-
ceptron (SLP) is equivalent to the RDF [4], [15] (in regres-
sion similar results were obtained in [20] and [25]). This means
that asymptotically NI in the linear SLP design is equivalent
to weight decay regularization and/or to the RDF. For finite
the matrix is random, and, when is small, most probably
a worse classifier is obtained. Although this equivalence holds
only for the linear SLP case, our simulation study [4] has shown
that for the nonlinear SLP and MLP weight decay and NI per-
form similarly as for the linear SLP. Our simulation experiments
[4] have also confirmed that NI in the case of finiteis less ef-
fective than weight decay—“analytical noise,” and that with an
increase in the effectiveness of “analytical noise” and NI to
the training vectors becomes similar.

B. Parzen Window Classifier

The standard version of the nonparametricParzen window
(PW) classifier [8], [23] is based on sample estimates of the class
conditional densities of the following form:

(2)

where

is called a smoothing parameter, andis the dimensionality
of the feature space.

At a fixed point the value of the PW density estimate
depends on random training vectors , ,

, . Considering all possible training sets consisting of
observations, this density can be analyzed as a random

variable. According to the central limit theorem the sum (2) of
random contribution terms tends to the

Gaussian distribution, when the training sample size .
Thus, the conditional probability of misclassification at one
particular point can be approximated by the meansand by
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the variances of the sample estimates of the class conditional
densities ,

misclassification

(3)

where is the standard func-
tion of the Gaussian distribution .

Let us consider the model of Gaussian data with a common
covariance matrix (MGCC) with parameters and . The
conditional mean and the variance of the PW density estimate
[8] (conditioned at a fixed point ) with respect to all possible
training sets,which consist of observations, are

and

Let be a orthonormal matrix such that
( is a diagonal matrix of eigenvalues with elements, , ,

). Then

(4)

For the variance of the PW density estimate is de-
termined primarily by the term .
This term decreases when the value of the smoothing parameter

or/and the training sample size increases. Let the eigen-
values of the covariance matrix be equal:

and assume that the number of featuresis increased.
Then in order to keep the variance (4) constant, the training
sample size should increase exponentially with

(5)

Let us assume now that several eigenvalues of the covariance
matrix are very small ,

. We call the number the intrinsic

dimensionalityof the data for the MGCC model. For this data
model we have instead of (5)

(6)

It means thatsmall training set properties of the PW density
estimate(2) are not determined by the formal data dimension-
ality , but by the true—the intrinsic dimensionality. Thus the
number of training vectors required to design this classifier
should increase exponentially with.

With an increase in the bias of the PW density estimate
increases, however the variance decreases. Therefore in order
to minimize the classification error one needs to find an optimal
value of the smoothing parameter.

The PW estimate is a generalization of Rozenblatt’s gener-
alized histogram approach [16]. In this approach one calculates
a number of training vectors from theth class, which
can be found in a nearest neighborhood of the vector .
Let us define the nearest neighborhood by a hypercube
with width and volume , and let us analyze the generalized
histogram classifier trained by “noisy” training vectors

. Then the density estimate is ,
and the classification will be performed according to the
numbers and of the training vectors from
classes and , falling into the cell . The number

, where is the number of

“noisy” vectors generated around the training

vector , falling into the cell . The probability of a
“noisy” vector to fall into the cell with volume is

, , . Numbers are random
ones. For very small values of the numbers are
independent binomial random variables with mean
and with variance .
Thus we get

and

We see that for , , and , the
histogram approach with NI results in a density estimate, which
is equivalent to the PW estimate. Thus, for the PW estimate we
have

(7)



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 2, MARCH 2000 507

When is finite, there is an additional random factor which
increases the variance of the class conditional density estimate.
This can deteriorate the small sample properties of the classifier.

C. Noise Injection

Now let us consider the effect of the intrinsic dimensionality
on the effectiveness of NI. Suppose the intrinsic dimension-
ality is small in the nearest neighborhood , i.e., the nearest
training vector of the vector is in a subspace with
dimensionality . The neighborhood of the vector is de-
fined as a region, where , , with sufficiently
small value of . The intrinsic dimensionality is defined by
assuming that the last components of vectors

are equal or very close to zero. is an orthonormal transfor-
mation matrix.

Under the subspace assumption the vectorto be classified
is located in the subspace , where the last components of
the vector are equal or very close to zero. Let us
denote

Then

Under the subspace assumption . Thus,

and

and

Following (3), in the analysis of the conditional generalization
error misclassification , we are interested in the
ratio

Under the subspace assumption we obtain

(8)

where . The parameter is called the
effectivenumber of noise injections. Comparing (8) with (7)
indicates that for the factor reduces the
influence of the number of noise injections. Consequently,
the generalization error of the histogram classifier with NI in-
creases in comparison with the PW classifier. In order to reduce
the generalization errorwe need to increase . An alternative
way is to use instead of spherical noise the “directed” (“sin-
gular”) noise with a small or zero value of in directions of
zero eigenvalues of the conditional covariance matrix in
the nearest neighborhood of the vector. Small values of in

directions increase and do not destroy the
intrinsic dimensionality of the data. One of the possibilities is to
estimate the covariance matrix and to use its eigenvec-
tors to determine the directions of NI. This approach has been
used in a prediction algorithm ZET [17]. An alternative is to use

-NN DNI as suggested by Duin [5].
The approach of -NN DNI consists in generating noise only

in the direction of the -nearest neighbors from the same pattern
class of the object under consideration. Let be an object

under consideration and , , , be its -nearest
neighbors from the same pattern class. We determine the-NN
directed noise vectors as

where , is the number of the nearest neighbors
used, and is a scaling parameter.

The idea of using -NN directed noise is based on the as-
sumption that in generating noise around a training object, it is
useful to take into consideration the distribution of the-nearest
neighbors of this object, especially in the case of a low intrinsic
data dimensionality, when data objects lie in the subspace of the
feature space. The-NN DNI makes the training data set more
complete in a somewhat different way than bootstrapping [19]
does (no data copies are made). It does not destroy the low in-
trinsic data dimensionality, as the new objects are generated in
the subspace determined by the-nearest neighbors. Therefore,
in comparison with spherical Gaussian NI it is less likely that the

-NN DNI deteriorates the training set. In addition, the-NN
DNI is more “economical”: one adds noise only in useful direc-
tions, saving computer time and memory. Another advantage of
the -NN directed noise in comparison with ZET and similar
algorithms, based on the normal data distribution assumption,
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is that it does not depend on knowledge of the data distribution.
Therefore, the -NN DNI could be successfully applied to the
data of any distribution (e.g., not normally distributed or clus-
tered data) if it is known that intrinsic data dimensionality is
much smaller than the feature size.

Thus the conclusion follows:The number of noise injections
as well as the directions of noise injection are very important

factors which determine an effectiveness of the noise injection
technique in the training of the statistical classifiers discussed
above.

III. N OISEINJECTION INMULTILAYER PERCEPTRONTRAINING

Noise injection, when noise vectors are normally distributed
, is equivalent to the ridge-estimate of the covariance

matrix in the standard FLD [4], as well to weight decay in linear
SLP training [3], [26], [27] and is similar to the smoothing in the
PW classifier. NI helps to fill in gaps between training objects,
smoothing the generalization error and stabilizing the training
procedure [4], [6], [7], [28]. In the previous section it was shown
that the intrinsic data dimensionality influences the effective-
ness of NI for statistical classifiers. When the intrinsic data di-
mensionality is small, more noise injections are required in
order to reduce the generalization error. One of the ways to re-
duce is to add noise only in useful directions (the-NN DNI),
ignoring the directions where no data are located. It is reason-
able to suppose that similar effects are also valid for MLP’s.
As theoretical analysis for MLP’s requires multiple approxima-
tions and leads to tedious algebra, a simulation is used in order
to confirm for MLP’s the conclusions made for statistical clas-
sifiers.

In all our simulations we have used the perceptron with three
hidden units which was trained by the Levenberg–Marquardt
learning rule [9]. All results were averaged over ten independent
training sets and five different initializations (50 independent
experiments in total) with an exception for a three-dimensional
sinusoidal dataset. For these data ten independent training sets
and ten different initializations were used (100 independent ex-
periments in total). NI on the training set was performed in such
a way that in each training sweep the training data set was ex-
changed by noise vectors generated from the original training
set vectors. In our experiments we chose , for each
training set size. The variance for Gaussian NI and the scaling
parameter for -NN DNI were optimized separately on each
training data set with respect to the smallest apparent error.

A. Data

Four artificial data sets, concentrated in a subspace of the fea-
ture space, are used in our experimental investigations.

The first data set consists of two eight-dimensional classes.
The first two features of the data classes are uniformly dis-
tributed with unit variance spherical Gaussian noise along two

concentric arcs with radii 6.2 and 10.0 for the first and the
second class, respectively

where

The other six features have the same spherical Gaussian distri-
bution with zero mean and variance 0.1 for both classes. We will
call these data “banana-shaped data” (BSD).

The second data set consists also of two eight-dimensional
banana-shaped classes. The first two features of the data classes
are the same as in the data described above. But the last six fea-
tures have been generated as , ,

in order to make the local intrinsic dimensionality of
this data set equal to two.

The third data set consists of two three-dimensional classes.
In the first two features both data classes have the same Gaussian
distribution . The third feature has been gener-
ated as a function of the first feature and

for the first and second data class, re-
spectively. This data set will be called “sinusoidal data” (SD).

The fourth data set consists of two 12-dimensional classes.
Vectors in each pattern class, , are uniformly dis-
tributed in the first two features space across the line

. Another ten data features are gener-
ated as , , . By this
the local intrinsic dimensionality of this data set is equal to two.
We will call these data “uniformly distributed data” (UDD).

B. The Effect of the Intrinsic Data Dimensionality on
Noise Injection

Let us consider the performance of the perceptron without
NI, with Gaussian NI and with-NN DNI for all four data sets
described above. Simulation results are presented in Table I.

By considering two sets of eight-dimensional BSD, one
with high and another one with low intrinsic dimensionality
it can be seen that the intrinsic data dimensionality influ-
ences, both, the classifier performance and the effectiveness
of NI. When the data training set is small and situated in a
subspace of the feature space, the perceptron tries to build
the discriminant function in the feature space without taking
into account the intrinsic data dimensionality. By this reason
the number of local minima of the pattern cost function arises
together with the chance to be trapped into the bad local
minima (with a high generalization error). Therefore, the low
intrinsic dimensionality of the data can cause a worse per-
formance of the perceptron. As NI smooths the surface of
the perceptron cost function, one gets less deep local minima
and a more stable classifier. The small sample size properties
of such a classifier depend on the intrinsic data dimension-
ality. The perceptron with NI has a better performance for
the data with the smaller intrinsic dimensionality. In other
words, when the data intrinsic dimensionality is smaller, a
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TABLE I
THE MEAN GENERALIZATION ERRORS OF THEPERCEPTRON WITHOUTNI, WITH GAUSSIAN NI AND k-NN DIRECTEDNOISEINJECTION(k = 2, 3, 4, 5)AND THEIR

STANDARD DEVIATIONS VERSUS THENUMBER OF THETRAINING SAMPLES PER CLASS

smaller training set size is required to achieve by noise in-
jection the same results as for the data with high intrinsic
dimensionality.

Also it can be observed that the perceptron with-NN
DNI outperforms the perceptron with Gaussian NI for the
data with low intrinsic dimensionality for the small training
sample sizes. This does not happen for the data with high
intrinsic dimensionality. We see, thatthe directions of NI
become important for small sample sizes when the intrinsic
dimensionality of the data is small.

Surprisingly the results obtained for different numbers (
2, 3, 4, 5) of nearest neighbors in-NN DNI are similar. When
the training set is small, rather often it misrepresents the distri-
bution of the entire data set. Any training object could be mis-
leading, giving wrong directions for Gaussian NI. Appending an
additional nearest neighbor could worsen the situation. On the
other hand, large training sets represent the distribution of the
entire data set more accurately. Thereby, two nearest neighbors
of the object are as informative as three or more nearest neigh-
bors. In any case the directions for Gaussian NI are defined cor-
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TABLE II
THE MEAN GENERALIZATION ERRORS OF THEPERCEPTRON WITHGAUSSIAN AND k-NN DIRECTEDNOISEINJECTION ANDTHEIR STANDARD DEVIATIONS VERSUS

THE NUMBER OF NOISE INJECTIONS

rectly. Therefore,the effectiveness of the-NN DNI does not de-
pend on the number of nearest neighbors. However, it should
be realized that our method contains a built-in optimization of
the variance of the noise, which may compensate a possible in-
fluence of .

As the effectiveness of the-NN DNI does not depend on the
number of nearest neighbors, we have chosen for -NN
DNI in all other experiments.

C. The Effect of the Number of Noise Injections on the
Efficiency of Noise Injection

Let us compare the performance of the perceptron with
Gaussian spherical and 2-NN directed NI versus the number
of noise injections for two data sets with low intrinsic
dimensionality: eight-dimensional BSD with an intrinsic
dimensionality of two and with the training sample size per
class equal to 50 and 12-dimensional UDD with an intrinsic
dimensionality of two and with the training sample size per
class equal to 20.

Simulation results (Table II) show the following.

1) Generalization error decreases with an increase in the
number of noise injections and stops decreasing when

. It conforms the theoretical conclusions ob-
tained for parametric and nonparametric statistical clas-
sifiers discussed in Section II.

2) The perceptron with 2-NN DNI has a better performance.
We see, that for small numbers of noise injections
the perceptron with 2-NN DNI outperforms the percep-
tron with Gaussian spherical NI, because in 2-NN DNI
Gaussian noise is generated only in useful directions, in
which the data are located. For large values of the number
of noise injections the results for both NI methods
become similar. For very large values of the spher-
ical Gaussian noise vectors

become symmetrically distributed in all di-
rections around a training vector . Therefore the neg-
ative effect of a finite value of vanishes.

The considered examples demonstrate, thatthe effectiveness
of NI in perceptron training depends not only on the type of noise
injection, but also on the number of noise injections.

IV. CONCLUSIONS

Theoretical results obtained for one parametric and two non-
parametric statistical classifiers and simulation study carried out
for MLP’s show the following.

1) Noise injection acts as a regularization factor which helps
to reduce the generalization error.

2) There exists an optimal value of the noise variance.
3) The number of noise injections should be sufficiently

large. However, too large values ofdo not diminish the
generalization error and increase computing time.

4) The necessary number of noise injectionsdepends on
the data dimensionality.

5) If the intrinsic data dimensionality is small, can be
reduced by avoiding adding noise to “unnecessary” direc-
tions. The -NN directed NI is one of possible effective
means to do this.
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