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K -Nearest Neighbors Directed Noise Injection in Multilayer Perceptron Training

M. Skurichina,S. Raudys, and R. P. W. Duin

Abstract—The relation between classifier complexity and not determined by the dimensionality of the feature speloat
learning set size is very important in discriminant analysis. One py the intrinsic dimensionality.
of the ways to overcome the complexity control problemisto add = 5 well-known technigue to solve the small training sample

noise to the training objects, increasing in this way the size of the _. bl invol th fi f traini biect
training set. Both the amount and the directions of noise injection S'#€ ProbIEM INVOIVES In€ generation of more training Objects

are important factors which determine the effectiveness for classi- Py noise injection(NI) to the training data [3], [9]. Usually,
fier training. In this paper the effect is studied of the injection of spherical Gaussian distributed noise is generated around each
Gaussian spherical noise andc-nearest neighbors directed noise training object. In case of high-dimensional data, however, it
on the performance of multilayer perceptrons. As it is impossible 1,5y happen that the intrinsic data dimensionality is smaller than
to provide an analytical investigation for multilayer perceptrons, . . . . ;
a theoretical analysis is made for statistical classifiers. The goal the dimensionality of the feature space, in Wh'Ch the data are
is to get a better understanding of the effect of noise injection on represented. The data are thereby located in a subspace of the
the accuracy of sample-based classifiers. By both empirical as feature space. Moreover, different measurements (features) may
well as theoretical studies, it is shown that thé:-nearest neighbors  have large differences in scale due to their different nature. In
directed noise injection is preferable over the Gaussian spherical this case. besides the variance of the added noise. also the di-
noise injection for data with low intrinsic dimensionality. . ' . . T .
rections of the noise become important. When spherical noise
Index Terms—intrinsic data dimensionality, k-nearest neigh- s injected to the data with low intrinsic dimensionality, noise is
bors directed noise injection, multilayer perceptrons, noise 5154 added in the directions where no data are located. By this
injection, Parzen window classifier. . . L . !
spherical NI can distort the distribution of the training sample set
and destroy the low intrinsic dimensionality of the data. Conse-
|. INTRODUCTION quently, the small sample properties of the classifier will be de-

N DISCRIMINANT analysis one often has to face tbrmall tefriﬁra]zed. Thetinje_ctir:)& of Gf“SS‘%U n;)ise inbonly the d]ic;ec;c_ion
training sample size problerthis arises when the data fea ! tN€~-NEATESt NEIGhLOTS Of an object may be more Efective,

ture space dimensionality is large compared with the num §_the local distribution of the training set is taken into account.

of available training objects. Sometimes large difficulties ap—h'f 30'3? will E_ehc‘;‘”eq tEéc—n.ear_e st qelgshbollr%;\ll\lNgbdh
pear in constructing a discriminant function on small trainin FCted NoIse, which basic idea IS given in [5]- abbre-

sample sets, resulting in discriminant functions having a b fftion should not be confused with tteNN classifier which

performance [1], [2]. In order to make a good choice for the PO;[hS_tUd'ed or usetd(;n:r:lls r;fap(:,_r. QFussi L
classification rule or to judge the training sample size it is im- N this paper we study the eflectivenessdaussian noise in-

portant to be familiar with the small sample properties of tHgetion (GNI). gnd k-NN directed noise injectiogk-NN DNI)

sample-based classification rules. These properties can be cﬂgr}he. C|aSSIfI€'.I’ perfprmance. We also study the e.ffect of the
acterized by the difference and/or by the ratio of the gen@;ralii@ttrms"C datg_ dimensionality on th_e small sample size broper-
tion error and the asymptotic probability of misclassification. ties of classifiers and on the effectiveness of NI. Our theoretical

Small sample properties of statistical classifiers depend SWO'V and simulations show that, both, the direction and the vari-

their complexity and on the data dimensionality [10], [12], [18]‘.an|(t:e. of EO'Se (tar:e verty mpo.rtagt mt.NI. Il for th f st
For a data model with multivariate Gaussian distributed pattetr.nt, ISI SI oqu (Eore 'Cf Y, mh (ter?bIONnN D 'S“r € csse ot sta-
classes having a common covariance matrix witkignificant IStical classilication rules, why thie- may be more

nonzero eigenvalues, it was shown that the generalization errB_?gfer?ble than Gaussian Nl in t_he case of low intrinsic d““?”‘
of the nearest mean classifier [11], the Parzen window cIas%ﬁQnal't'es' For the case of multilayer perceptrons a theoretical

fier [13], and the zero empirical error classifier [14] depend O%nalyss involves nonlinearities f':md Iegds toavery comple>§ al-
r gebra. Therefore we perform a simulation study on the effective-

Dfss of NI in perceptron training. The results of this simulation
sample properties of the nonlinear single layer perceptron ?ﬁgggc?iz)enplr\(/asented in Section llI. Conclusions are summarized

Il. NOISEINJECTION AND STATISTICAL CLASSIFIERS
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In order to understand the noise effect upon an accuraajinity & — oo, the sample estimate of the covariance matrix
of sample-based classification rules we consider a coupleaffnoise vector£§j? tends to the diagonal matri&,; — A\’I.
statistical classification rules where the investigation can fAéerefore we have
performed analytically. At first, in Sections II-A and II-B on s u
the examples of thd-isher linear discriminant(FLD) [22] " 1 D D =)
and the Parzen window(PW) classifier [23], we compareS T oM =2 Z Z (XJ(') -X )) (XJO - X )) + AT
classifiers with built-in “analytical noise” and classifiers using ) ==
NI. This shows the importance of the number of generated = S+ AT

noise vectors on the classification performance. Under certain

conditions the histogram classifier [16] using NI is similar t§/NiCch is used in the requIanzeq discriminant function (RDF)
the PW density estimate. In Section 1I-C we compare thekd [24]- HoweverSy, 3 A°I forfinite k. Consequently, when
two classifiers in order to analyze the influence of the intrinsig. 'S finite, we have another classification rule, different from the
data dimensionality on the effectiveness of NI. The latter studjP- Obviously, for smallz a random nature of the matrf,
gives the theoretical basis for possible benefits: N DNI will deteriorate the estimat§™ and increase the generalization

compared with Gaussian NI for the data with low intrinsi€"o" _ _ o
dimensionality. In the analysis ofultilayer perceptron§MLP’s) it is impor-

tant to notice that adding a supplementary weight decay term

A?w'w [21] to the cost function of the lineaingle layer per-

] i . i .ceptron (SLP) is equivalent to the RDF [4], [15] (in regres-
The standard Fisher linear discriminant function [8], [22] i§jon, similar results were obtained in [20] and [25]). This means

defined as that asymptotically NI in the linear SLP design is equivalent

to weight decay regularization and/or to the RDF. For fitfite

A. Linear Discriminant Analysis

~ _ 1~ F
gr(w) = z'w" +wo @ the matrix$; is random, and, wheR is small, most probably
w P e—lw(l) _ %@ _ (1) a worse classifier is obtained. Although this equivalence holds
%EQ) )T,U@F wrfere(X X2 andwo (1/2)(X + only for the linear SLP case, our simulation study [4] has shown
' that for the nonlinear SLP and MLP weight decay and NI per-
LM ‘ form similarly as for the linear SLP. Our simulation experiments
X® = — Z X](") (i=1,2) [4] have also confirmed that NI in the case of finids less ef-
M j=1 fective than weight decay—"analytical noise,” and that with an
and increase inR the effectiveness of “analytical noise” and NI to
1 2 M 6w G oY the training vectors becomes similar.
S:2M—2ZZ(XJ -X )(Xﬂ' -X ) _ g
i=1 j=1 B. Parzen Window Classifier
are the sample estimates of thie class mean and the common The standard version of the nonparamefarzen window
covariance matrix, respectively. (PW) classifier [8], [23] is based on sample estimates of the class

Considering the noise injection model described above, wenditional densities of the following form:
can design the FLD from@ MR “noisy” training vectorsUg»”,,)

M
with the sample estimate of thth class mean 2 1 i
P frw(z|m;) = i >N (:c, X§ ), )\21) 2)
1 M R @ j=1
oo — 70 S
t MR ; 122:1 U, (i=1,2) where

and obtain the following estimate of the covariance matrix: v (iﬂ, X§Z)7 AQI)

1 1 N .
2 M _ () ()
o1 O _ g\ (g —goY - P eXp(‘ﬁ (‘”‘Xﬂ' ) (‘”‘Xﬂ' )) ’
S _2M_2ZZ(U].,,—U (Ul -T9) (VZr)" aw
i=1 j=1
=S+Sy A2 is called a smoothing parameter, gnis the dimensionality
of the feature spac@.
where At a fixed pointz the value of the PW density estimate
s v & Fpw(z|m;) depends o/ random training vectorx(”, X,
1 & O\ (70 _Z®Y -, X\). Considering all possible training sets consisting of
g — 70 7Y (70 _ 7 , X7 galp g sets consisting o
MT2MR -2 Z ; 7,_1( 7 ! >( 7 ! ) M observations, this density can be analyzed as a random

variable. According to the central limit theorem the sum (2) of
is an additional random term which arises due to the randam random contribution termsv (z, X]@, A2I) tends to the
nature of noise vectorZ](»j,). HereZ]@ = (1/R) Zle ZE? is  Gaussian distribution, when the training sample gize— oc.
the mean of noise vectors generated around each training vedtious, the conditional probability of misclassification at one
XE’). Asymptotically, as the number of noise vectors tends fmarticular pointz can be approximated by the meatisnd by
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the variance$” of the sample estimates of the class conditiondimensionalityof the data for the MGCC model. For this data

densitiesfpw (z|m;), i = 1, 2
P(misclassificatiofe, z € ;)
E(f(z|m)) - E(J(=|rs)) |,

~ (I) — — \_1)i )
VYV alm)+V ()

model we have instead of (5)
24 r/2
M= <1 + )\2> . (6)

It means thasmall training set properties of the PW density
estimatg(2) are not determined by the formal data dimension-

(3) ality p, but by the true—the intrinsic dimensionality. Thus the
number of training vectora/ required to design this classifier
where®{u} = (1/v2r) [* ¢ ~(*/2) 4t is the standard func- should increase exponentially with
tion of the Gaussian distrlbu'uoN(O 1). With an increase in\ the bias of the PW density estimate
Let us consider the model of Gaussian data with a commiitreases, however the variance decreases. Therefore in order
covariance matrix (MGCC) with parameters and 2. The to minimize the classification error one needs to find an optimal
conditional mean and the variance of the PW density estimatgiue of the smoothing parametgr
[8] (conditioned at a fixed point) with respect to all possible  The PW estimate is a generalization of Rozenblatt’s gener-
training setswhich consist of\/ observations, are alized histogram approach [16]. In this approach one calculates
. a numberm; () of training vectors from théth class, which
(fpw(iﬂ|7fz‘)) can be found in a nearest neighborhdag) of the vectorz.
@) @ o @) Let us define the nearest neighborhde@c) by a hypercube
= Z/N X s His ) N(% X7 A I) dX; with width /2 and volumeh?, and let us analyze the generalized
histogram classifier trained MR “noisy” training vectors

= N (&, i, T+ X°1) UE? Then the density estimate jg (z|m;) = (m;(z)/MRh?),
and and the classification will be performed according to the
; ‘ numbersm;(x) and mo(z) of the training vectors from
(fow(z|m:)) | Lo
5 11/2 classesr; andM7rQ, falling into the cellQ2(z). The number
_ |2+ X1 (N (2, i, 2E+)\21))2 m;(x) = Ejzlmij(:c), where m;,;(x) is the number of
M AP “noisy” vectorsU](»ﬁ,) (r = 1, R) generated around the training
N ) vectorX]@, falling into the cell2(z). The probability of a
— (E(fow(z|mi))"| - “noisy” vector to fall into the cell2(«) with volume h? is

Pij(h, p) = N(=, X]@, A2I)hP?. Numbersn; ;(x) are random
Let T be ap x p orthonormal matrix such th&> 7’ = p  ©Ones. For very small values df the numbersm,;(z) are

(D is a diagonal matrix of eigenvalues with elemefitsds, - - -, independent binomial random variables with méay(h, p)
d,). Then and with varianceP;;(h, p)(1 — F;;(h, p))R ~ F;;(h, p)R
Thus we get
V fow(@|m:)

B (f (a0, X, X))

1|4 2d,; 2
== [] Y1+ 52 (N (=, i, 25+ A1) | M "
M A == ; N (e, X, 321)
— (Efrw(z|m))? (4) = fow(z|m:)
and

For A2 — 0 the variance of the PW density estimate is de- (fR (I L 2 My ))
termined primarily by the ternl /M) [T%_, /1 + (2d,;/A?). 1 X

This term decreases when the value of the smoothing parameter ~ M2RhP Z N(‘”v Xg(' )v )‘21)
A2 or/and the training sample siZd increases. Let the eigen- J=1

values of the covariance matrix be equald; = dy = --- = _ 1 Fow(@|m).

d, = d and assume that the number of featyrés increased. MRRP

Then in order to keep the variance (4) constant, the trainige see that forkR — oo, h — 0, and M2Rh? — oo, the
sample size\! should increase exponentially with histogram approach with NI results in a density estimate, which
is equivalent to the PW estimate. Thus, for the PW estimate we

»/2
M= <1 v 2—d> . (5) have

Let us assume now that several eigenvalues of the covarianc Bl fow(|mi)) =~ | Rh Z N( Xj(»i)v )\21)
matrix ¥ are very smaltly = dy = - = d, = d, dpq1 = V{( pvv(.’l,'|7rz))
dry2 = -+ = dp, = € — 0. We call the number the intrinsic 7

1/2
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When R is finite, there is an additional random factor whichrollowing (3), in the analysis of the conditional generalization
increases the variance of the class conditional density estimateor P(misclassificationz, x € =;) we are interested in the
This can deteriorate the small sample properties of the classifi@tio

C. Noise Injection

Now let us consider the effect of the intrinsic dimensionality
on the effectiveness of NI. Suppose the intrinsic dimensiop-
ality is small in the nearest neighborho@dx), i.e., the nearest
training vectorX]@ of the vectorz is in a subspacé(z) with
dimensionality-. The neighborhoo€ () of the vectoe is de-
fined as a region, wher¥ (z, ng), A1) > e with sufficiently
small value ofe. The intrinsic dimensionality: is defined by

assuming that the = p — » last components of vectors

Y](»i) =T(x) (z - X(Z))

= (v v

L)

E(fR(-’"W))

N

Under the subspace assumption we obtain

. M 1/2
M ~ | RSN (yl, Y, AQI) (8)
VfR(I|7TZ‘) j=1
where R* = (h/v/27))*R. The parameteRR* is called the
effectivenumber of noise injections. Comparing (8) with (7)
indicates that forh < X the factor(h/v/27))* reduces the
influence of the number of noise injectioi&d Consequently,
the generalization error of the histogram classifier with NI in-
creases in comparison with the PW classifier. In order to reduce

are equal or very close to zetB(«) is an orthonormal transfor- the generalization errave need to increas&. An alternative

mation matrix.

way is to use instead of spherical noise the “directed” (“sin-

Under the subspace assumption the vegtty be classified gular”) noise with a small or zero value dfin directions of
is located in the subspa&x), where the last components of zero eigenvalues of the conditional covariance mafifix(x) in
the vectory = T'(x)x are equal or very close to zero. Let ughe nearest neighborhood of the vectoiSmall values of in

denote
0 _ (y®, y® @\
Y (le,ng,"',YjT>
@) _ (v® @Y
Y, = (Yﬂ v Y )
Y :(y17 Y2, ", yr)/
Y, = (yr-l-lv T yp)/
Then

Py(h, p) =N(:c x, )\21) hP

:N(yl, Y, )\21) (yQ, Y%, )\21) he.

Under the subspace assumptign— Y](é) ~ 0. Thus,

o\, ;
Fi(h, p) = <m) h N(ylv Y§1)7 )\21)

and
5 (fR (x\xgw, X9, X))
() Entri
and

V (fu (2] X0 X9, x§) m))
s M

1 1 § i
N TR <—\/ﬂ>\> Z N(yl, Y, )\21)

=1

s = p—r directions increasg:/+/27\)* and do not destroy the
intrinsic dimensionality of the data. One of the possibilities is to
estimate the covariance matit,(x) and to use its eigenvec-
tors to determine the directions of NI. This approach has been
used in a prediction algorithm ZET [17]. An alternative is to use
k-NN DNI as suggested by Duin [5].

The approach of-NN DNI consists in generating noise only
in the direction of thé-nearest neighbors from the same pattern
class of the object under consideration. Iléf’ be an object

under consideration am\?ﬁ), Q@ Q(Z) be its K-nearest

j2 JK
neighbors from the same pattern class. We determink-tii

directed noise vectors as

Z(Z)_)\X—ZS(X(Z )

where&, ~ N(0, 1), K is the number of the nearest neighbors
used, and\ is a scaling parameter.

The idea of using:-NN directed noise is based on the as-
sumption that in generating noise around a training object, it is
useful to take into consideration the distribution of theearest
neighbors of this object, especially in the case of a low intrinsic
data dimensionality, when data objects lie in the subspace of the
feature space. TheeNN DNI makes the training data set more
complete in a somewhat different way than bootstrapping [19]
does (no data copies are made). It does not destroy the low in-
trinsic data dimensionality, as the new objects are generated in
the subspace determined by thaearest neighbors. Therefore,
in comparison with spherical Gaussian Nl itis less likely that the
k-NN DNI deteriorates the training set. In addition, thédN
DNI is more “economical”: one adds noise only in useful direc-
tions, saving computer time and memory. Another advantage of
the £-NN directed noise in comparison with ZET and similar
algorithms, based on the normal data distribution assumption,
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is that it does not depend on knowledge of the data distribution. O _ XfQ) _ { p2 cos(y2) +&3
Therefore, thet-NN DNI could be successfully applied to the - <p2 cos(y2) + §4>
data of any distribution (e.g., not normally distributed or clus-
tered data) if it is known that intrinsic data dimensionality ig,here
much smaller than the feature size.

Thus the conclusion followsthe number of noise injections e
R as well as the directions of noise injection are very importafit =6.2, p2 =10, & ~ N(0, 1), 7y ~ U(—g, 5) <,
factors which determine an effectiveness of the noise injection i=T1,4 k=1,2
technique in the training of the statistical classifiers discussed

above
The other six features have the same spherical Gaussian distri-

bution with zero mean and variance 0.1 for both classes. We will
call these datafanana-shaped dat4dBSD).

Noise injection, when noise vectors are normally distributed The second data set consists also of two eight-dimensional
N(0, A1), is equivalent to the ridge-estimate of the covariandganana-shaped classes. The first two features of the data classes
matrix in the standard FLD [4], as well to weight decay in lineagire the same as in the data described above. But the last six fea-
SLP training [3], [26], [27] and is similar to the smoothing in theures have been generatedras= #3+0.001-&;,&; ~ N(0, 1),

PW classifier. NI helps to fill in gaps between training objects, = 3, 8 in order to make the local intrinsic dimensionality of
smoothing the generalization error and stabilizing the trainingis data set equal to two.
procedure [4], [6], [7], [28]. In the previous section it was shown The third data set consists of two three-dimensional classes.

that the intrinsic data dimensionality influences the effectiven the first two features both data classes have the same Gaussian

ness of NI for statistical classifiers. When the intrinsic data ddﬁstributionN(O, [38 _i] ) The third feature has been gener-

mensionality is small, more noise injections are required in ated as a function of the first featurg = sin(z;/7) and
order to reduce the generalization error. One of the ways to rg; = sin(z, /7) + 0.1 for the first and second data class, re-
duceltis to add noise only in useful directions (theNN DNI),  spectively. This data set will be calledihusoidal dat&(SD).
ignoring the directions where no data are located. It is reason-The fourth data set consists of two 12-dimensional classes.
able to suppose that similar effects are also valid for MLP'$ectors in each pattern class, : = 1, 2, are uniformly dis-

As theoretical analysis for MLP’s requires multiple approximaributed in the first two features space across the line=
tions and leads to tedious algebra, a simulation is used in ordey,/2)z, 4+ 0.01 - (—1)*. Another ten data features are gener-
to confirm for MLP’s the conclusions made for statistical clasated as; = 23 + 0.001 - &;, &; ~ N(0, 1), j = 3, 12. By this
sifiers. the local intrinsic dimensionality of this data set is equal to two.

In all our simulations we have used the perceptron with thrgge will call these datatiniformly distributed data(UDD).
hidden units which was trained by the Levenberg—Marquardt

learning rule [9]. All results were averaged over ten independent he Eff f th o . ionali
training sets and five different initializations (50 independerﬁ' ,T e E e_ct of the Intrinsic Data Dimensionality on
experiments in total) with an exception for a three-dimensiondP!S€ Injection

sinusoidal dataset. For these data ten independent training sefst us consider the performance of the perceptron without
and ten different initializations were used (100 independent &1, with Gaussian NI and wittk-NN DNI for all four data sets
periments in total). NI on the training set was performed in sugfascribed above. Simulation results are presented in Table |.
a way that in each training sweep the training data set was eXBy considering two sets of eight-dimensional BSD, one
changed byt noise vectors generated from the original trainingjith high and another one with low intrinsic dimensionality
set vectors. In our experiments we chdse= 100, for each it can be seen that the intrinsic data dimensionality influ-
training set size. The variance for Gaussian NI and the scaliggces, both, the classifier performance and the effectiveness
parameten for £-NN DNI were optimized separately on eachys N|. When the data training set is small and situated in a
training data set with respect to the smallest apparent error. subspace of the feature space, the perceptron tries to build
the discriminant function in the feature space without taking

I1l. NOISEINJECTION INMULTILAYER PERCEPTRONTRAINING

A. Data into account the intrinsic data dimensionality. By this reason
Four artificial data sets, concentrated in a subspace of the fé number of local minima of the pattern cost function arises
ture space, are used in our experimental investigations. ~ together with the chance to be trapped into the bad local

The first data set consists of two eight-dimensional classédinima (with a high generalization error). Therefore, the low
The first two features of the data classes are uniformly digirinsic dimensionality of the data can cause a worse per-
tributed with unit variance spherical Gaussian noise along tf@fmance of the perceptron. As NI smooths the surface of

2 /3 concentric arcs with radii 6.2 and 10.0 for the first and th€ perceptron cost function, one gets less deep local minima
second class, respectively and a more stable classifier. The small sample size properties

of such a classifier depend on the intrinsic data dimension-

1) ality. The perceptron with NI has a better performance for

X = X <p1 COS(’Vl)+51> the data with the smaller intrinsic dimensionality. In other
XQ(I) p1 cos(y1) + &2 words, when the data intrinsic dimensionality is smaller, a
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TABLE |

509

THE MEAN GENERALIZATION ERRORS OF THEPERCEPTRON WITHOUTNI, WITH GAUSSIAN NI AND %-NN DIRECTED NOISE INJECTION(k = 2, 3, 4, 5)AND THEIR
STANDARD DEVIATIONS VERSUS THENUMBER OF THE TRAINING SAMPLES PER CLASS

for 8-dimensional banana-shaped data with high intrinsic dimensionality
method M=6 M=10 M=20 M=50 M=100 M=150
without NI | 0.42 (0.009) | 0.36 (0.015) | 0.26(0.015) | 0.163 (0.012)| 0.107 (0.005) 0.078 (0.002)
GNI 0.23(0.012) | 0.18 (0.008) | 0.18 (0.008) | 0.133 (0.006)| 0.107 (0.005) 0.096 (0.003)
2-NNDNI | 0.37 (0.011) | 0.27 (0.009) | 0.21 (0.007) | 0.136 (0.004)| 0.097 (0.003) 0.09 (0.003)
3-NN DNI | 0.35(0.010) | 0.28 (0.009) | 0.20 (0.007) | 0.13 (0.005) | 0.094 (0.002) 0.086 (0.004)
4-NN DNI | 0.35(0.009) | 0.28 (0.007) | 0.19 (0.006) | 0.14 (0.004) { 0.094 (0.003) 0.087 (0.003)
5-NN DNI | 0.37(0.009) | 0.28 (0.008) | 0.20 (0.007) | 0.13 (0.004) { 0.092 (0.003) 0.088 (0.005)
for 8-dimensional banana-shaped data with low intrinsic dimensionality
method M=6 M=10 M=20 M=50 M=100 M=150
without NI § 0.45(0.011) | 0.43(0.015) | 0.30(0.027) | 0.17 (0.026) | 0.09 (0.014) 0.064 (0.009)
GNI 0.23 (0.021) | 0.12 (0.015) | 0.064 (0.010)| 0.051 (0.002)| 0.05 (0.001) 0.047 (0.001)
2-NN DNI{ 0.14 (0.017) | 0.093 (0.005) | 0.075 (0.009)| 0.054 (0.002)| 0.052 (0.001) 0.049 (0.001)
3-NN DNI | 0.12 (0.013) [ 0.077 (0.006) | 0.07 (0.003) | 0.057 (0.001)| 0.052 (0.002) 0.049 (0.001)
4-NNDNI{ 0.11(0.010) | 0.077 (0.005)] 0.078 (0.008)] 0.054 (0.001)| 0.052 (0.001) 0.050 (0.001)
5-NNDNI { 0.10(0.013) | 0.095 (0.011)] 0.068 (0.004)} 0.056 (0.001)| 0.052 (0.002) 0.049 (0.001)
for 3-dimensional sinusoidal data with low intrinsic dimensionality
method M=10 M=20 M=50 M=100 M=300 M=1000
without NI | 0.39 (0.008) | 0.30(0.011) | 0.18 (0.016) | 0.14 (0.017) 0.14 (0.014) 0.10(0.011)
GNI 0.39 (0.008) | 0.30(0.013) | 0.20(0.015) | 0.18 (0.016) | 0.15(0.013) 0.16 (0.016)
2-NN DNI | 0.35(0.010) | 0.2]1 (0.013) | 0.14(0.015) | 0.096 (0.011)|{ 0.11(0.013) 0.12 (0.012)
3-NN DNI | 0.36(0.014) | 0.23 (0.013) [ 0.14(0.013) | 0.10(0.013) | 0.12(0.013) 0.13 (0.015)
4-NN DNI'| 0.35(0.008) | 0.23(0.013) | 0.12(0.012) | 0.096 (0.012)| 0.11 (0.014) 0.12 (0.013)
5-NN DNI | 0.35(0.009) | 0.23(0.012) [ 0.14 (0.014) | 0.087 (0.0t 1) 0.11(0.013) 0.10(0.012)
for 12-dimensional uniform distributed data with low intrinsic dimensionality
method M=6 M=10 M=20 M=50 M=100 M=150
without NI' | 0.40 (0.02) | 0.14 (0.02) |0.037 (0.015)| 0.003 (0.003)| 0.0005 (0.0003) | 0.0003 (0.0003)
GNI 0.38 (0.02) | 0.10(0.02) |0.036(0.011){0.001 (0.001)| 0.0007 (0.0004) | 0.0006 (0.0002)
2-NN DNI | 0.20 (0.025) | 0.08 (0.015) | 0.029 (0.006) | 0.002 (0.001)| 0.0005 (0.0003) | 0.0008 (0.0003)
3-NNDNI | 0.18(0.023) | 0.08 (0.013) | 0.026 (0.006) | 0.002 (0.001)]{ 0.0005 (0.0001)| 0.0002 (0.0001)
4-NN DNI | 0.23 (0.023) | 0.077 (0.012)] 0.027 (0.006) | 0.002 (0.001)| 0.0005 (0.0001) | 0.0005 (0.0001)
5-NN DNI | 0.19 (0.026) | 0.095 (0.012)| 0.03 (0.006) } 0.002 (0.001)| 0.0005 (0.0001) | 0.0015 (0.0007)

smaller training set size is required to achieve by noise in- Surprisingly the results obtained for different numbers=

jection the same results as for the data with high intrinsi2, 3, 4, 5) of nearest neighborsiaNN DNI are similar. When
dimensionality the training set is small, rather often it misrepresents the distri-
Also it can be observed that the perceptron witNN bution of the entire data set. Any training object could be mis-
DNI outperforms the perceptron with Gaussian NI for théeading, giving wrong directions for Gaussian NI. Appending an
data with low intrinsic dimensionality for the small trainingadditional nearest neighbor could worsen the situation. On the
sample sizes. This does not happen for the data with higther hand, large training sets represent the distribution of the
intrinsic dimensionality. We see, thdhe directions of NI entire data set more accurately. Thereby, two nearest neighbors
become important for small sample sizes when the intring€ the object are as informative as three or more nearest neigh-
dimensionality of the data is small bors. In any case the directions for Gaussian NI are defined cor-
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TABLE I
THE MEAN GENERALIZATION ERRORS OF THEPERCEPTRON WITHGAUSSIAN AND A-NN DIRECTED NOISE INJECTION AND THEIR STANDARD DEVIATIONS VERSUS
THE NUMBER OF NOISE INJECTIONS

for 8-dimensional banana-shaped data with low intrinsic dimensionality and
with the training sample size per class equal to 50

method R=10 R=15 R=25 R=50 R=100
GNI 0.299 (0.028) | 0.233 (0.027) | 0.141 (0.02) | 0.071 (0.007) | 0.05 (0.001)
2-NN DNI } 0.306 (0.026) | 0.203 (0.025) | 0.114 (0.02) { 0.054 (0.001) | 0.055 (0.001)

for 12-dimensional uniformly distributed data with low intrinsic dimensionality

and with the training sample size per class equal to 20

method R=10 R=15 R=25 R=50 R=100
GNI 0.20 (0.026) | 0.10(0.023) | 0.04 (0.014) | 0.005(0.002) | 0.03 (0.011)
2-NN DNI 0.06 (0.015) | 0.025 (0.006) | 0.01 (0.004) | 0.017 (0.006) | 0.019 (0.005)

rectly. Thereforethe effectiveness of tiieNN DNI does not de-
pend on the numbér of nearest neighbordHowever, it should
be realized that our method contains a built-in optimization of
the variance of the noise, which may compensate a possible
fluence ofk.

As the effectiveness of the NN DNI does not depend on the
numberk of nearest neighbors, we have chogen 2 for k-NN
DNI in all other experiments.

1n-

IV. CONCLUSIONS

Theoretical results obtained for one parametric and two non-
parametric statistical classifiers and simulation study carried out
for MLP’s show the following.

1) Noise injection acts as a regularization factor which helps

to reduce the generalization error.

2) There exists an optimal value of the noise variahce

3) The number of noise injection® should be sufficiently

C. The Effect of the Number of Noise Injections on the
Efficiency of Noise Injection

Let us compare the performance of the perceptron with
Gaussian spherical and 2-NN directed NI versus the number,
of noise injectionsRk for two data sets with low intrinsic
dimensionality: eight-dimensional BSD with an intrinsic
dimensionality of two and with the training sample size per
class equal to 50 and 12-dimensional UDD with an intrinsic
dimensionality of two and with the training sample size per
class equal to 20.

Simulation results (Table Il) show the following. [

1) Generalization error decreases with an increase in the
number of noise injection® and stops decreasing when

R — oo. It conforms the theoretical conclusions ob- [2]
tained for parametric and nonparametric statistical clas-
sifiers discussed in Section II. 3
The perceptron with 2-NN DNI has a better performance.
We see, that for small numbers of noise injectiois
the perceptron with 2-NN DNI outperforms the percep-
tron with Gaussian spherical NI, because in 2-NN DNI
Gaussian noise is generated only in useful directions, in
which the data are located. For large values of the numberls]
of noise injectionsRk the results for both NI methods

2)
[4]

become similar. For very large values &f the spher- (6]
ical Gaussian noise vectorZE? ~ N(0, X°I) (r = 7]
1, 2, ---, R) become symmetrically distributed in all di-
rections around a training vectKrE”. Therefore the neg- (8]
ative effect of a finite value oR? vanishes.

The considered examples demonstrate, ihaeffectiveness (9]

of Nlin perceptron training depends not only on the type of nois%O]
injection, but also on the number of noise injectidis

large. However, too large values Bfdo not diminish the
generalization error and increase computing time.

4) The necessary number of noise injectidiisdepends on

the data dimensionality.

5) If the intrinsic data dimensionality is small, * can be

reduced by avoiding adding noise to “unnecessary” direc-
tions. Thek-NN directed NI is one of possible effective
means to do this.
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