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Abstract

Recently, a discrimination measure for feature extraction for two-class data, called the maximum discriminating (MDF) measure

(Talukder and Casasent [Neural Networks 14 (2001) 1201–1218]), was introduced.

In the present paper, it is shown that the MDF discrimination measure produces exactly the same results as the classical Fisher criterion, on

the condition that the two prior probabilities are chosen to be equal. The effect of unequal priors on the efficiency of the measures is also

discussed.
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1. Introduction

In their article “A closed-form neural network for

discriminatory feature extraction from high-dimensional

data” (Talukder & Casasent, 2001), Talukder and

Casasent develop a nonlinear maximum discriminating

feature (MDF) neural network that is capable of

extracting features from high-dimensional data. An

important ingredient in the approach is the MDF

discrimination measure they propose. Basically, max-

imizing this measure gives a subspace in which all pairs

of samples from two different classes are separated in a

certain optimal way.

Although the MDF measure is used for extracting

nonlinear features, it essentially provides a linear feature

subspace. Nonlinear features can be constructed by

transforming the original features nonlinearly1 before

and/or after the actual feature extraction. The nonlinear

pre- and postprocessing and the linear dimension

reducing transformation jointly provide a nonlinear

feature extraction method. Here, we focus on the linear

feature extraction technique, the basic building block of

the closed-form neural network.

Talukder and Casasent expect the MDF discrimination

measure to be a better measure of separation than, for

example, the well-known Fisher linear discriminant (FLD)2

which is based on the Fisher criterion (Fukunaga, 1990;

McLachlan, 1992). In this communication, however, we

demonstrate that features extracted by using MDF are

essentially equal to the solution produced by the Fisher

criterion. More specific, the features obtained are exactly

equal if equal prior probabilities are assumed.

We note that in Talukder (1999), Talukder already

proved that, for the two-class case, the MDF and FLD

approaches coincide if both classes are normally distributed

with equal covariance matrices. Our result is stronger and

shows that, given equal prior class probabilities, both

feature extraction techniques always coincide, independent

of the underlying class distributions.

1.1. Outline

Section 2 starts with a brief description of the MDF

discrimination measure and gives the solution to
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optimizing this measure. Furthermore, it presents the

Fisher criterion, whose maximization gives rise to the

FLD. Section 3.1 then establishes the equivalence of

MDF and FLD in the two-class case. While Section 3.1

merely deals with the case in which the prior

probabilities are taken to be equal, Section 3.2 discusses

the case in which classes do not necessarily have equal

priors. In both cases, however, no assumption on the

underlying distributions is made. It also presents an

illustration, based on an example coming from Talukder

and Casasent (2001), of the difference in feature spaces

obtained by MDF and Fisher. Section 4 provides the

conclusions and the final discussion. To keep the

communication readable, the central proof is given in

Appendix A.

In the following, we use the notation and

terminology similar to the one in Talukder and Casasent’s

article.

2. The MDF discrimination measure and FLD

The goal is to linearly reduce an H-dimensional feature

space, in which two-classes reside, to an M-dimensional

feature space. The linear mapping describing this linear

dimension reduction is denoted by FM ; which is an H £ M

matrix consisting of M H-dimensional vectors f1;…;fM ;

i.e. FM ¼ ½f1f2…fM�:

2.1. MDF discrimination measure

Following Talukder and Casasent, the best transform-

ation vectors fmðm [ {1;…;M}Þ are those that maximize

the MDF discrimination measures ED (Talukder & Casa-

sent, 2001)

ED ¼
XM

m¼1

fT
mR12fm

fT
mðC1 þ C2Þfm

; ð1Þ

where C1 :¼ E½x1xT
1 �2 E½x1�E½x1�

T and C2 :¼ E½x2xT
2 �2

E½x2�E½x2�
T are the covariance matrices of class 1 and 2,

respectively, R12 :¼ E½ðx1 2 x2Þðx1 2 x2Þ
T� is a vector-

outer-product difference matrix, and xk is a random (feature)

vector from class k:

The mapping FM that best separates the two-classes

according to the MDF criterion in Eq. (1) must satisfy the

generalized eigenvalue decomposition (Talukder & Casa-

sent, 2001)

½C1 þ C2�
21R12FM ¼ FML;

and so, the M best MDF basis functions fmðm [ {1;…;M}Þ

are the M dominant eigenvectors of

½C1 þ C2�
21R12: ð2Þ

2.2. FLD and the Fisher criterion

Another way of discriminatory feature extraction is to

determine the FLD through optimizing the so called Fisher

criterion3. This criterion equals (Fukunaga, 1990; McLa-

chlan, 1992)

traceððFT
Mðp1C1 þ p2C2ÞFMÞ

21ðFT
MBFMÞÞ;

where B :¼ E½mim
T
i �2 E½mi�E½mi�

T is the between-class

covariance matrix, mi is the mean of class i; and pi is the

prior probability of class i:

The matrix p1C1 þ p2C2 in the Fisher criterion equals the

average within-class covariance matrix, and so, in determin-

ing the FLD, one maximizes the ratio of the between-class

covariance over the average within-class covariance in the

lower-dimensional space. The solution to this optimization

problem is, as in the MDF case, obtained by solving a

generalized eigenvalue problem (see (Fukunaga, 1990))

½p1C1 þ p2C2�
21BFM ¼ FML:

The M basis functions Fm (m [ {1;…;M}) that maximize

this criterion are the M dominant eigenvectors of the matrix

½p1C1 þ p2C2�
21B: ð3Þ

3. The equivalence of MDF and FLD

Looking at the foregoing section, we see that the MDF

measure maximizes the mean squared separation between

all samples in class 1 and class 2, while the Fisher criterion

maximizes the mean squared separation between the two-

class means. These objectives, however, turn out to be the

same.

3.1. Establishing the equivalence

Establishing the equivalence of the FLD and MDF

approach to linear dimension reduction is based on the

following relation between the matrices B and R12:

B ¼ p1p2ðR12 2 C1 2 C2Þ: ð4Þ

We refer to Appendix A for a proof of Eq. (4). Now,

consider the matrix in Eq. (3), and take both prior

probabilities p1 and p2 to be equal, i.e. set p1 ¼ p2 ¼ 1
2
:

Then, using Eq. (4), we see that obtaining the dominant

eigenvectors of ½ð 1
2
ÞC1 þ ð 1

2
ÞC2�

21B is equivalent to

determining the dominant eigenvectors of ½ð 1
2
ÞC1 þ

ð 1
2
ÞC2�

211=4ðR12 2 C1 2 C2Þ; which in turn comes down

to determining the dominant eigenvectors of ½C1 þ

C2�
21R12: To see this, let f be an arbitrary eigenvector of

½C1 þ C2�
21R12 with associated eigenvalue l: For this

3 The Fisher criterion can be defined in several different ways, however,

they all lead to the same linear subspace as a solution. For specific examples

of different definitions we refer to Fukunaga (1990).
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vector, the following holds:

½ 1
2

C1 þ
1
2

C2�
21 1

4
ðR12 2C1 2C2Þf

¼ ½ 1
2

C1 þ
1
2

C2�
21 1

4
R12f2 ½ 1

2
C1 þ

1
2

C2�
21 1

4
ðC1 þC2Þf

¼ 1
2
½C1 þC2�

21R12f2 1
2

If¼ 1
2
lf2 1

2
f¼ ð 1

2
l2 1

2
Þf:

That is, the vector f is an eigenvector of ½ð 1
2
ÞC1 þ

ð 1
2
ÞC2�

21B with associated eigenvalue l if and only if f is

also an eigenvector of ½C1 þ C2�
21R12 with associated

eigenvalue ð 1
2
Þl2 ð 1

2
Þ: From this, it directly follows that

the FLD approach and the MDF approach give the same

eigenvectors with the same ordering based on the associated

eigenvalues.

This establishes the equivalence of the MDF discrimi-

nation measure and the Fisher criterion. Both matrices

provide the same dominant eigenvectors, and so the

optimization of these measures results in two equivalent

linear transformations FM mapping the feature vectors to

the same linear subspace.

3.2. Unequal priors

In Section 3.1, both class priors were taken to be equal.

For the general two-class case in which prior probabilities

may differ, the solutions to the MDF discrimination measure

and the Fisher criterion do not necessarily coincide. Because

of the result of Talukder (1999) mentioned in Section 1, and

the result presented in this communication, we expect that

the difference in performance of both approaches might be

appreciable only if the prior probabilities differ signifi-

cantly. However, even a large difference in prior probabil-

ities does not necessarily lead to an appreciable difference in

performance, as is illustrated in the following.

We present an example, taken from Talukder and

Casasent (2001), with a two-dimensional data configur-

ation. For this data, Fisher extracts a single feature that

is bad for discriminatory and classification purposes

(Fig. 1). Optimizing the Fisher criterion produces a one-

dimensional subspace that is close to vertical (the

dashed line in Fig. 1). Projecting the data to this single

dimension results in some overlap between the two-

classes. In addition, the single MDF feature is also

extracted. As our figure shows both approaches do not

differ visibly, although the priors are very different

(0.35 and 0.65, respectively). (See the caption to Fig. 1.

Compare this figure also to Figure 2 in Talukder and

Casasent (2001).)

4. Conclusion and discussion

Talukder and Casasent’s approach to nonlinear feature

extraction given in Talukder and Casasent (2001) is, as

a whole, interesting in its own respect. Furthermore,

the theoretical issues they additionally discussed con-

cerning their transformation and other nonlinear trans-

forms is valuable, and provides insight into the behavior

of the discussed transformations.

However, we noted and demonstrated that the MDF

discrimination measure they introduce is exactly equal to

the Fisher criterion, associated with the well-known FLD,

on the condition that both priors are chosen to be equal.

Hence both feature extraction techniques can provide the

same features. Apart from the equality of the prior

probabilities, no other assumptions were made and as

such our result generalizes the equivalence result in

Talukder (1999), Appendix A.

Although this exact equivalence is only shown to hold

when the prior probabilities of the classes are taken to be

equal, there is no reason to support the belief that the

MDF approach outperforms the FLD approach. On the

contrary, because the Fisher criterion can take differences

in priors into account, it is expected to perform better

than the MDF measure. Moreover, when using the Fisher

criterion, one can choose the priors to be equal in which

case FLD and MDF coincide. The extra degree of

freedom in the Fisher criterion, provided by the choice of

priors, gives one the opportunity to improve the

performance of the FLD, which is not possible with

the MDF discrimination measure. As such, the MDF

measure can be considered a specific instance of the

Fisher criterion.

Fig. 1. Comparison of feature extracted by means of the MDF measure

(solid line) and the Fisher criterion (dashed line) based on two-class data

taken from Talukder and Casasent (2001) (Figure 2). In this example the

priors differ. The circles have a prior probability of 0.35, while the crosses’

prior equals 0.65. The difference between the obtained subspaces by means

of the MDF method and FLD method is indiscernible. The difference

between the first eigenvectors is very close to the null vector: fMDF
1 2

fFisher
1 < ½20:0037; 0:0000�T:
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Appendix A. Proof of Eq. (4)

The basis for the observation that B equals p1p2ðR12 2

C1 2 C2Þ (Eq. (4)) comes from a reformulation of a theorem

from Loog (1999). This theorem gives an alternative view

on determining and representing covariance matrices based

on pairwise differences between feature vectors (see also

(Loog, Duin, & Haeb-Umbach, 2001)). The (re)formulation

is as follows: Let C :¼ E½xxT�2 E½x�E½x�T be the covari-

ance matrix for the random vector x; then C can be written

as half the expectation over all outer products of pairwise

differences between the independent identically distributed

(i.i.d.) random vectors x and y; i.e.

C ¼ 1
2

E½ðx 2 yÞðx 2 yÞT�: ð5Þ

The proof is straightforward (cf. (Loog, 1999; Loog

et al., 2001)). Expanding Eq. (5) gives ð 1
2
ÞE½ðx 2 yÞ

ðx 2 yÞT� ¼ ð 1
2
ÞE½xxT þ yyT 2 yxT 2 xyT�: Because x

and y are i.i.d., this equals 1
2
ðE½xxT� þ E½yyT� 2 E½x�

E½x�T 2 E½y�E½y�TÞ ¼ 1
2
ð2E½xxT� 2 2E½x�E½x�TÞ; which

in turn equals E½xxT� 2 E½x�E½x�T ¼: C:

Now, using that the sum of the between-class

covariance matrix B and the average within-class

covariance matrix p1C1 þ p2C2 equals the total covari-

ance matrix T (i.e. the covariance matrix over all data

points irrespective of their class), we see that the

following holds

B ¼ T 2 p1C1 2 p2C2

¼
1

2
E½ðx 2 yÞðx 2 yÞT�2

p1

2
E½ðx1 2 y1Þðx1 2 y1Þ

T�

2
p2

2
E½ðx2 2 y2Þðx2 2 y2Þ

T�

¼
1

2
ðE½ðx 2 yÞðx 2 yÞT�2 ðp1p1 þ p2p1ÞE½ðx1 2 y1Þ

£ ðx1 2 y1Þ
T�2 ðp1p2 þ p2p2ÞE½ðx2 2 y2Þðx2 2 y2Þ

T�Þ:

ð6Þ

Furthermore, the matrix E½ðx 2 yÞðx 2 yÞT�; in which the

random vectors x and y go over both classes, can be split

up in terms of random vectors x1; y1; x2; and y2 coming

from class 1 and class 2, respectively:

E½ðx 2 yÞðx 2 yÞT�

¼ p1p1E½ðx1 2 y1Þðx1 2 y1Þ
T� þ p2p2E½ðx2 2 y2Þ

£ ðx2 2 y2Þ
T� þ p1p2E½ðx1 2 y2Þðx1 2 y2Þ

T� þ p2p1

£ E½ðx2 2 y1Þðx2 2 y1Þ
T�: ð7Þ

Finally, substituting Eq. (7) into Eq. (6) and

rearranging terms gives the following

B ¼
1

2
ðp1p1E½ðx1 2 y1Þðx1 2 y1Þ

T�

þ p2p2E½ðx2 2 y2Þðx2 2 y2Þ
T�

þ p1p2E½ðx1 2 y2Þðx1 2 y2Þ
T�

þ p2p1E½ðx2 2 y1Þðx2 2 y1Þ
T�

2 ðp1p1 þ p2p1ÞE½ðx1 2 y1Þðx1 2 y1Þ
T�

2 ðp1p2 þ p2p2ÞE½ðx2 2 y2Þðx2 2 y2Þ
T�Þ

¼ p1p2E½ðx1 2 y2Þðx1 2 y2Þ
T�2

p1p2

2
E½ðx1 2 y1Þ

£ ðx1 2 y1Þ
T�2

p1p2

2
E½ðx2 2 y2Þðx2 2 y2Þ

T�

¼ p1p2ðR12 2 C1 2 C2Þ;

which proofs Eq. (4).
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