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Abstract

For the sake of classification, spectra are traditionally represented by points in a high-dimensional feature space, spanned by

spectral bands. An alternative approach is to represent spectra by dissimilarities to other spectra. This relational representation

enables one to treat spectra as connected entities and to emphasize characteristics such as shape, which are difficult to handle in the

traditional approach. Several classification methods for relational representations were developed and found to outperform the

nearest-neighbor rule. Existing studies focus only on the performance measured by the classification error. However, for real-time

spectral imaging applications, classification speed is of crucial importance. Therefore, in this paper, we focus on the computational

aspects of the on-line classification of spectra. We show, that classifiers built in dissimilarity spaces may also be applied significantly

faster than the nearest-neighbor rule.

r 2003 Elsevier Ltd. All rights reserved.
1. Introduction

For the sake of classification, spectra are usually
represented by points in a high-dimensional space,
spanned by spectral bands, see Fig. 1. The disadvantage
of this approach is that the spectral connectivity is lost.
It is difficult to handle characteristics, such as spectral
shape or peak positions in such a feature space. In cases
where such indications are important for the identifica-
tion of target classes, large labeled data sets and
statistical learning procedures are necessary to recover
these, originally known, clues.
Alternatively, spectra may be represented by their

dissimilarities to other spectra [1]. Pairs of spectra are
compared by a dissimilarity measure reflecting their
mutual resemblance. For a given training set, a square
matrix of pair-wise dissimilarities is produced forming
the dissimilarity representation of original spectra [2,3].
The advantage is that the dissimilarity measure may
treat the spectrum as a connected entity and may
emphasize its shape or other, application specific clues.
In this paper, we show how to classify spectral data
using this relative representation putting the emphasis
on the classification speed.
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Three different classification strategies may be fol-
lowed, starting from dissimilarities. The first method,
traditionally applied to dissimilarity data, is based on
the nearest-neighbor paradigm. According to the
compactness hypothesis [4,5], similar objects should
also be close in their representation. Previously unseen
examples are, therefore, assigned to the classes of their
most similar neighbors in the training set. Although the
nearest neighbor rule is usually applied in Euclidean
feature spaces, it may be successfully used also for other,
more specialized, types of dissimilarities computed from
spectral data.
The two remaining approaches convert the set of

dissimilarities into a feature space, where traditional
statistical classifiers may be built. The first one is based
on isometrical embedding of dissimilarity data into the
Euclidean space preserving the distances between
objects as good as possible. The second method views
the distance matrix directly as a new training data set.
The rows represent individual training examples and the
columns form the dimensions of a new, so-called
dissimilarity space [6]. Each dimension of this space
measures the dissimilarity to a particular training
prototype. In this way, the distances to prototypes
may be treated as features. The set of prototypes is
called the representation set.
An important difference exists between embeddeding

and the use of a dissimilarity space concerning the
implementation aspects. These methods are, in fact,
equivalent to feature extraction and feature selection
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Fig. 1. Feature-based and dissimilarity representations of spectral data.
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applied to a general dataset. In case of embedding,
dissimilarities to all training objects must be computed
to constitute a space where the classification can be
done. The same transformation is also required for all
new spectra to be classified which makes the embedding
approach too complex for real-time applications. On the
other hand, methods based on the dissimilarity space
consider dissimilarities to training examples (i.e. col-
umns of a distance matrix) as individual dimensions of
a feature space. Therefore, the number of dissimilarities,
computed for each new data sample, may be signifi-
cantly reduced by existing feature selection techniques.
Although dissimilarity-based classification methods

were examined and compared to other approaches
before from the performance point of view, little
attention has been paid to the classification speed of
these algorithms. Due to the sheer volumes of data
processed in spectral imaging, high-speed classification
is a basic pre-requisite for application of dissimilarity-
based methods.
In this paper, we show how to build classifiers for

hyperspectral data using dissimilarity-based representa-
tion with an emphasis on fast implementation. We focus
on the speed of classification (i.e. labeling new spectra by
a trained classification system). We use several dissim-
ilarity measures emphasizing different notions of spec-
tral similarity and having different computational
requirements.
In the first section, we discuss the classification system

built using the dissimilarity representation. Later, we
present four dissimilarity measures for spectral data and
discuss their computational complexity. In Section 4,
several experiments on real hyper-spectral data illustrate
the use of dissimilarity-based classifiers. Finally, we give
some conclusions in the last section.
2. Classification of spectra using dissimilarity

representation

In this section, we explain how dissimilarity-based
classification methods may be applied to spectral data
and discuss the computational complexity of the
classification of new data. We focus on the nearest
neighbor rule (NN), directly applied to the distance
matrix and on linear classifiers built in the dissimilarity
space. Computational complexity is often expressed in
terms of the order of an algorithm [7]. This measure is,
however, not ideal for judging the actual computational
requirements of classification algorithms [8]. Therefore,
we also consider the number of floating point operations
(FLOPS), performed for each new spectrum to be
labeled [9].
In order to build a relational representation for a

training set with N labeled spectra, the N � N distance
matrix is formed from all pair-wise dissimilarities (see
Fig. 1). Several types of dissimilarity measures, applic-
able to spectral data, are further discussed in Section 3.
In order to classify new spectral measurements by the

nearest-neighbor rule, the dissimilarities to all the
training examples must be evaluated. To label each of
M objects, N dissimilarities are computed and ranked to
find the closest prototype requiring:

tNN ¼ MNtD þ MN ð1Þ

operations. The symbol tD stands for the number of
operations needed to calculate a dissimilarity between
two spectra. The computational complexity of the
nearest-neighbor rule is therefore

OðMNDÞ; ð2Þ
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where D denotes the complexity of a single dissimilarity
evaluation. The performance of the nearest-neighbor
rule increases with growing number of training exam-
ples, being asymptotically bounded by twice the Bayes
error for an infinite sample size [7]. To reach low error
rates, the number of training examples N must be
usually quite high, especially in case of overlapping
classes.
Fig. 2 illustrates the different treatments of dissim-

ilarity data by the nearest-neighbor rule and by
classifiers built in the dissimilarity space. The nearest-
neighbor classifier ranks the values in the row of a
dissimilarity matrix searching for the closest training
example. For a new object, we compute all distances to
the training samples and assign the object into the class
of the nearest training example. Note, that the distances
between the training samples themselves are actually not
used in the process. A different approach is taken in the
middle image of Fig. 2 emphasising two randomly
chosen columns in the distance matrix (i.e. training
examples). We may observe that dissimilarities of the
training objects to these two prototypes convey a typical
class pattern. By using the distance to each of the two
prototypes as a separate axis, we form a dissimilarity
space (see the scatter plot in the rightmost image).
Classifiers trained in a dissimilarity space may be based
on all training objects and thereby utilise global rather
than local information which often leads to a better
performance [6].
In general, any classifier may be trained in a

dissimilarity space. Dissimilarities, computed by sum-
ming many small differences, tend to produce normally
distributed data as a consequence of the law of large
numbers. Linear classifiers, applied to dissimilarity data,
often lead to a very good performance [3]. In the
following, we focus on linear classifiers such as the
Fisher linear discriminant (FLD).
Let us assume, that a D-dimensional dissimilarity

space is based on computing distances to D training
prototypes, DpN: If a linear classifier, trained to
Fig. 2. Direct ranking of the dissimilarities and
distinguish C classes, is applied to M new samples, the
data is projected from the original D-dimensional space
to C dimensions, e.g. the confidences of each of the C

classes. The outcome is a M � C matrix which may be
ranked to find the most probable class for each data
sample. To perform this classification, Cð2D þ 1Þ
operations are needed. The total number of operations
required to construct the dissimilarity representation
and to classify M spectra by a linear discriminant is

tFLD ¼ MDtD þ 2CMD þ CM: ð3Þ

In order to judge the classification complexity of new
spectra using a linear classifier, built in a dissimilarity
space, we need to know the complexity of dissimilarity
computation. For the dissimilarity measures, used in
this study, the number of operations needed to compare
two spectra depends linearly on the number of bands K ;
as shown in Section 3. Because both the number of
spectral bands K and the number of training prototypes
D usually exceed the number of classes C; the first term
in Eq. (3) will dominate and the complexity becomes:

OðMDDÞ: ð4Þ

Comparing Eqs. (2) and (4), we can see that the
classification complexity of both methods grows linearly
with the number of evaluated dissimilarities (i.e. the
number of prototypes). In case of the nearest-neighbor
rule, all training examples are used as prototypes. The
time, spent on classifying new spectrum, grows with
each employed training example. For the classifiers built
in a dissimilarity space, on the other hand, the distances
to the selected prototypes define separate space dimen-
sions. The classification time, therefore, scales with the
number of these prototypes. Usually, only a subset of a
training set is included in a representation set. The rest
of the training examples is, however, exploited by the
classifier and improves its performance.
Objects in the representation set may be selected

either in a systematic or in a random way. It
was previously shown that the random selection of
the formation of the dissimilarity space.
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Fig. 3. An example scatter plot of a dissimilarity space with randomly

selected prototypes (i.e. dimensions) and 16 classes.
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prototypes yields classification results comparable to the
systematic selection [10]. This, at first counter-intuitive
result, becomes more clear when we investigate the
example scatter plot in Fig. 3 showing a two-dimen-
sional scatter plot of a dissimilarity space, computed
from a labeled set of spectra with 16 classes. Each axis
measures the derivative-based distance to a spectrum
from the representation set (see Section 3). Although
only two representation objects are used, we can visually
separate a number of classes. In our experiments, we use
the random prototype selection.
3. Dissimilarity measures for spectral data

The spectra X and Y are given by K samples xi; and
yi; i ¼ 1;y;K ; respectively. The Euclidean distance
between spectra X and Y is defined as

DEðX ;Y Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

i¼1
ðxi � yiÞ

2

r
: ð5Þ

This measure views the spectra as K-dimensional feature
vectors, neglects the connectivity of the spectra and
merely sums the band-to-band differences. Euclidean
dissimilarity between two spectra yields the same value if
all the bands are randomly permuted.
Another dissimilarity measure, developed specifically

for spectral data, is the Spectral Angle Mapper (SAM)
[11].

DSAM ðX ;Y Þ ¼ acos

PK
i¼1 xiyiPK

i¼1 x2
i

PK
i¼1 y2i

 !
: ð6Þ

The SAM dissimilarity measures the angle between two
vectors and is, therefore, insensitive to scaling. In order
to speed-up computation of the SAM measure for new
data, the norm of prototypes 1=
PK

i¼1 y2i may be pre-
computed and stored.
Spectra, normalized to a unit area, may be compared

using dissimilarity measures, developed for probability
distributions. An example is the Kolmogorov distance
which measures maximal difference between cumulative
histograms:

DK ðX ;Y Þ ¼ max
i

ðj #xi � #yi jÞ; ð7Þ

where #x and #y are cumulative distribution functions,
#xi ¼

P
jpi xj ; similarly for #y: This measure compares

areas under original distributions (i.e. spectra) and
therefore reflects the spectral shape. Instead of taking
the maximum, the match dissimilarity DM sums all the
differences under the cumulative histograms [12]:

DMðX ;Y Þ ¼
XK

i

j #xi � #yi j: ð8Þ

The match dissimilarity is a special case of the Earth
Mover’s Distance [13] which measures the effort needed
to transform one distribution into another. In case of
the Kolmogorov and the match distances, the speed of
computation may increased by pre-computing and
storing cumulative spectra for the training examples #y:
In order to reflect the shapes of spectra, the

differences between first Gaussian derivatives of spectra
may be integrated:

Xs ¼
d

di
Gði;sÞ�X ; ð9Þ

where � denotes convolution and s stands for a
smoothing parameter. Please note, that although i is
treated as a continuous variable in the last equation it is
actually a discrete, densely sampled, quantity. The shape
dissimilarity Ds is then a sum of absolute differences
between derivatives Xs and Ys [2].

DsðX ;Y Þ ¼
XK

i

ðjxs
i � ys

i jÞ: ð10Þ

Note, that also the derivatives of the training spectra Y s

may be stored to speed up the classification.
It may be seen, that the computational complexity of

all presented dissimilarity measures is OðKÞ: Actual
computational requirements of these dissimilarities are,
however, quite different. Table 1 summarizes the
number of operations required for computation of a
dissimilarity between two spectra with K bands.
Quantities that can be pre-computed for the training
data such as the derivatives or cumulative histograms
are not included. Note, that the number of operations of
the derivative-based dissimilarity depends on the
smoothing parameter s: For the smoothing s; a window
with 2sþ 1 bands is used. The normalization of spectra
to a unit area is included in case of the matching
distance.
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Table 1

Number of operations required for evaluation of a dissimilarity

between two spectra with K bands

Dissimilarity measures Number of

Add./sub. Mult. Div. Sqrt acos

Euclidean distance 2K K 1

Spectral angle mapper 2K 2K 1 1

Matching distance 4K K

Derivative-based dist. Kð2sþ 1Þ þ 3K Kð2sþ 1Þ
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4. Experiments

In this section, we present experiments with classifiers
based on dissimilarities, applied to hyperspectral data.
Our aim is to compare the performance and complexity
of the two investigated classification methods. We have
used NIR spectra of plastics acquired with InGaAs-
camera using spectral range between 1 and 1.6 mm
sampled into 120 bands. The dataset contains 16 classes
of plastics.
We have prepared independent training and test sets

with 1000 and 2000 samples, respectively. Four distance
measures, presented in Table 1, were applied to the
training data, producing the training dissimilarity
matrices. In case of the derivative-based distance, we
used two different settings of the smoothing parameter:
s ¼ 1:0 and 2.0.
We have investigated the performance of the Fisher

linear discriminant [7], applied to dissimilarity spaces of
different dimensionalities. The random selection method
was used to choose the representation set, i.e. the set of
training examples used as the dimensions of the
dissimilarity space. For each representation set, the
Fisher discriminant was trained. Its performance was
then estimated on the test set. This procedure was
repeated 30 times for dimensionalities ranging from 5 to
500. Averaged results are presented in Fig. 4 as a
function of the classification cost. The cost is estimated
as the total number of operations required to compute
the dissimilarity representation of a single spectrum and
to label it (see Table 1 and Eqs. (2) and (4)). The lines
with thick markers indicate the best overall performance
of the nearest-neighbor classifier built using the com-
plete training set with 1000 spectra. The endpoints for
the derivative-based distances with s ¼ 1:0 and 2.0 are
out of the plot at 10.8� 105 and 15.6� 105 operations,
respectively.
It follows from the results, that the Fisher discrimi-

nant outperforms the nearest-neighbor rule in all cases
except for the spectral angle mapper dissimilarity. The
improvement is especially significant for matching and
derivative-based distances and somewhat less in case of
the Euclidean dissimilarity. Both methods reach com-
parable results for the spectral angle mapper distance.
The best overall results were attained by the linear
discriminant built on derivative-based dissimilarities.
This suggests that it is, in this case, beneficial to treat
spectra as connected entities and emphasise the differ-
ences in their shapes. Which distance measure (i.e. data
representation) is the best in a particular situation
remains, of course, application dependent.
If the number of operations for classification of new

spectra is taken into account, all dissimilarity-based
classifiers show a significant improvement over the
nearest-neighbor rule. The Fisher classifier, trained on
Euclidean distances consumes only 40% of operations
to reach the performance of the nearest-neighbor rule.
For the matching distance this is 20% and for the
derivative-based dissimilarity with s ¼ 2:0 only 7% of
operations.
It is interesting to note, that for each measure, a

different number of prototypes is used for a fixed
amount of operations (see the vertical line in the graph).
A computationally complex approach may, therefore,
reach lower errors employing less prototypes than
simpler methods while spending the same time on the
labeling of a new spectrum. An example is the
derivative-based distance with s ¼ 2:0; outperforming
with 100 prototypes both the SAM and the Euclidean
dissimilarities using 300 and 400 prototypes, respec-
tively.
Low error rates, obtained in the first experiment,

suggest that classes are well separable. In the following
experiment, we study the performance of dissimilarity-
based classifiers in case of class overlap. We have used
two classes, almost completely overlapping in the
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spectral domain. The training set contains 120 and the
independent test set 250 examples. Fig. 5 shows the error
rate as a function of the number of operations spent on
the labeling of a single new spectrum. Each sub-figure
depicts the results for a different dissimilarity measure:
the spectral angle mapper is in the left and the
derivative-based distance with s ¼ 2:0 in the right pane.
The results were averaged over 30 experiments.
Dashed lines correspond to the results of the nearest-

neighbor rule, trained on a growing number of
examples. We can observe, that including more training
examples gradually improves the classification perfor-
mance. In case of the Fisher linear discriminant, four
curves are given, representing four training set sizes:
60, 80, 100, and 120 samples, respectively. Varying
dimensionalities of the dissimilarity space are denoted
by different markers. Please note the performance
deterioration in the right part of the curves. In this
area, the dimensionality of the dissimilarity space gets
close to the number of training examples. Inverting the
ill-conditioned covariance matrices becomes inaccurate
and the classification error increases.
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Table 2

Results of minimum distance classifiers in both discussed experiments: the 16-

are means and standard deviations computed from 30 repetitions

Dissimilarity measure Exp 1:16 classes

Mean error Std.

Euclidean distance 0.26 0.01

Spectral angle mapper 0.23 0.02

Matching distance 0.46 0.02

Derivative dist. s ¼ 1:0 0.10 0.02

Derivative dist. s ¼ 2:0 0.06 0.01
The vertical lines illustrate a situation when dissim-
ilarities to 40 training prototypes are computed for each
new spectrum to be labeled. For the nearest-neighbor
classifier, this representation set coincides with the
training set. In the case of the Fisher linear discriminant,
the representation set merely defines the problem
dimensionality. We can observe, how the classifier
benefits from larger training sets without altering the
classification time. This explains why the classifiers, built
in a dissimilarity space, are more attractive from the
implementation point of view, than the nearest neighbor
rule.
For the sake of comparison, Table 2 presents the

results of a minimum distance classifier, traditionally
used to classify hyperspectral data [1]. We have applied
the minimum distance classifier to each of the four
dissimilarity measures. A mean spectrum was computed
for each class using the whole training dataset. For each
spectrum from the test set, a dissimilarity was computed
to each class spectrum and a label was assigned based on
the minimum distance. Results in the table are the
means and standard deviations computed from 30
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dev. Mean error Std. dev.
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repetitions using independent training and test sets. The
sizes of the training and the test sets are identical with
the full sets used in the experiments above.
By comparing the results in the Table 2 with the

Figs. 4 and 5, we can observe that, as expected, the
minimum distance classifier gives significantly worse
results compared to the classifiers built using larger
numbers of prototypes. The best result of the minimum
distance classifier is 6% of error using the derivative-
based distance with s ¼ 2:0 on the first data set. By
building classifiers in a dissimilarity space the result may
be improved to about 4% of error using more than 100
prototypes. In case of overlapping classes, the minimum
distance classifier fails to find any solution comparable
to that of Fisher linear discriminant, built in the
dissimilarity space.
When spectral data are represented by dissimilarities,

the minimum distance classifier offers a fast solution if
classes are not overlapping. However, more training
prototypes need to be employed to reach low error rates
in case of class overlap. We show, that classifiers built in
a dissimilarity space provide better and more time
effective solutions than the traditionally applied nearest-
neighbor rule.
5. Conclusions

Spectra may be, for the sake of classification,
represented by dissimilarities to other spectra. The
advantage is that spectra may be treated as connected
entities and expert knowledge may be used to emphasize
application specific clues. The traditional way of
classifying dissimilarity data is based on the nearest-
neighbor classifier. It has been shown before, that the
nearest-neighbor rule is often outperformed by more
global classifiers built directly on dissimilarities. We
have found out that classifiers, built in dissimilarity
spaces, also provide a significantly faster way to label
new objects. The reason is that they exploit the
dissimilarity representation more effectively than the
nearest-neighbor rule.
Each prototype is viewed as a separate problem

dimension. The classifier may benefit from large training
sets without impact on classification speed. The nearest-
neighbor rule considers, on the other hand, each
distance to a prototype as the individual training
example. Using large training data sets slows down the
classification process but this is necessary to reach low
error rates.
In a dissimilarity approach, the spectrum is treated in

its entirety which may be a viable alternative in cases
when class characteristics cannot be easily handled in
the feature space (i.e. slight shape variations). General-
izing classifiers may be built directly on dissimilarities
leading to a low error classification. The computational
requirements of this approach are, however, consider-
ably higher than for the feature-based representation
operating only on a subset of bands in a single spectrum.
Please note, that the dissimilarity measures, used in

this study, considerably differ in the amount of
exploited apriori information. For example, the deriva-
tive-based dissimilarity is based on our knowledge that
the spectral shape is of importance and should be
emphasized when building the data representation. It
may be argued that differentiating spectra is, in fact, a
pre-processing step making the comparison of presented
dissimilarity measures unfair. We intentionally included
the derivative-based dissimilarities to illustrate our point
that the more sophisticated and computationally de-
manding measures may not only outperform the simpler
ones but, eventually, may also be more time efficient.
We believe that the very possibility to incorporate the
pre-processing stage in the dissimilarity measure and
hence into the representation is the most interesting
aspect of the dissimilarity-based classification methods.
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