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Abstract Quantification of airborne pollen is an

important tool in scientific research and patient

care in allergy. The currently available method

relies on microscopic examination of pollen

slides, performed by qualified researchers.

Although highly reliable, the method is labor

intensive and requires extensive training of the

researchers involved. In an approach to develop

alternative detection methods, we performed a

feasibility study on the automated recognition of

the allergenic relevant pollen, grass, birch, and

mugwort, by utilizing digital image analysis and

pattern recognition tools. Of a total of 254 pollen

samples (including 79 of grass, 79 of birch and

96 of mugwort), 97.2% were recognized correctly.

This encouraging result provides a promising

prospect for future developments.
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Abbreviations

KNNC K nearest neighbor classifier

LNC Linear normal classifier

NMC Nearest mean classifier

QNC Quadratic normal classifier

1 Introduction

Pollen grains that are produced by higher plants

(angiosperms) contain proteins that may provoke

allergic reactions in patients with hay fever or

asthma who have been sensitized by previous

exposure to these so-called allergens. For diag-

nostic purposes and adequate treatment, it is

relevant to know when the allergenic pollen grains

are present in the air. Therefore, a large number of

pollen-counting stations has been established

across Europe. Currently, pollen recognition and
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counting is performed by qualified researchers

through microscopic examination of pollen slides.

Although highly reliable, this method is labor

intensive and requires extensive training of the

researchers involved. As a result, it is not per-

formed daily. An automated pollen recognition

system would make this procedure less labor

intensive and enable us to present patients with

a prompt daily report.

So far, different systems have been proposed in

the literature, some of which require advanced

microscope equipment, such as confocal laser

scanning microscopes (Ronneberger, Schultz, &

Burkhardt, 2002). Unfortunately, such advanced

requirement hampers a common application in

daily practice. Other projects aimed at pollen

identification use standard optical microscopes. Li

and Flenley (1999) applied neural networks to

identify four pollen types that were relevant in

paleopalynology, based on texture analysis. How-

ever, their method is not applicable to airborne

pollen types. Boucher et al. (Bonton et al., 2001;

Boucher et al., 2002) developed a semi-automatic

recognition system for Cupressaceae, Olea,

Poaceae and Urticaceae pollen types. They used

a set of global shape and specific pollen features

(e.g., cytoplasm, pore, reticulum), which were

extracted from a sequence of 100 two-dimensional

(2D) pollen images. Such a sequence of 2D images

gives an effective way of representing three-

dimensional (3D) pollen grains. However, the

algorithms used for detecting pores are not appli-

cable to all possible orientations of a pollen grain.

Cernadas, Formella, & Rodrı́guez-Damiá (2004)

described a method combining statistical gray-

level and shape features to recognize the Urtica-

ceae family. Since they did not use 3D or a

sequence of 2D images as pollen representation,

specific and structure oriented features were

missing.

In this study, we performed a feasibility study

on the automated recognition of pollen by using a

conventional optical microscope to be used for

daily counting. Therefore, we aimed to develop

an automated feature extraction and classification

process, which would operate on a sequence of

2D pollen images. Methods were developed to

automatically extract shape and statistical gray-

level and specific pore/colpus features by utilizing

image processing and pattern recognition soft-

ware tools. Similar approaches have been used by

Boucher et al. (2002) and Cernadas et al. (2004)

However, we focused in more detail on the pore/

colpus structures of the pollen. Besides shape and

statistical gray-level features, the structure of

pores and colpi typically reflect the palynological

knowledge that is used by biologists during pollen

recognition (Weber, 1998). To investigate the

feasibility of such a system, we focused on three

purified pollen types: Dactylis glomerata (grass),

Betula verrucosa (birch) and Artemisia vulgaris

(mugwort), which are the most important aller-

genic pollen with overlapping flowering seasons in

The Netherlands.

2 Materials and methods

Purified pollen of grass, birch and mugwort were

obtained from HAL Allergy (Haarlem, The

Netherlands). The pollen were dispersed in

phosphate-buffered saline pH 7.4 on a micro-

scope slide and stained with safranin (2 lg/100 ml

of coloring medium). To mimic the aerobiological

sampling procedure using a Burkard pollen sam-

pler, we inserted a cellulose strip, covered with

Vaseline, into the slide. Following this sampling

procedure, we prepared two types of slides. One

contained each pollen type separately (single-type

slides); the other contained a mixture of the three

pollen types (mixed-type slides).

Pollen images were acquired with a digital

camera (C-3030 Olympus, Japan) connected to a

microscope (BX 41 Olympus, amplification 40·,

set-up with Köhler illumination). The resolution of

the image was set at 1,536 · 2,048 pixels, in order

to capture the detailed structures inside the pollen.

A sequence of five images with an interval of

approximately 8 lm was taken at successive focal

planes for each microscopic field, among which

the central image revealed the most information

(e.g., shape, texture and pore/colpus). Therefore,

mainly this central image was used for segmen-

tation and feature extraction. It was found auto-

matically, by selecting the image with the highest

variance.
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The images were analyzed with a computer

program developed in Matlab 7.0. (The Math-

works, USA) and toolboxes for image processing

and pattern recognition, developed at the Delft

University of Technology. The analysis consists of

five steps, described in the next sections: (1)

image preprocessing; (2) automatic pollen seg-

mentation; (3) feature extraction; (4) classifica-

tion and (5) validation.

2.1 Image preprocessing

Images were restored from shading effects, which

were caused by the digital camera and micro-

scope. This restoration was based on two test

images taken without any objects under the

microscope; one with the microscope lamp turned

off and the other with the lamp turned on.

Subsequently, the image was restored through

linear transformation of both test images, accord-

ing to Young, Gerbrands, and Van Vliet (1998a).

2.2 Automatic pollen segmentation

Since several pollen appear in one image, each

pollen was isolated and copied into smaller

images, and the RGB color images were con-

verted into gray level (green band) images. The

segmentation method was applied only to the

central image of the sequence. Afterwards, the

position of each pollen grain in the image was

recorded. This position helped us to locate the

same pollen in the four remaining images of the

sequence.

Images were segmented by a thresholding

method, with the combination of two automatic

threshold selection criteria: the ‘triangle’ and the

‘isodata’ criteria (Young, Gerbrands, & Van

Vliet, 1998b). The ‘triangle’ algorithm was ap-

plied first to achieve a coarse segmentation, and

then the ‘isodata’ algorithm was applied to obtain

a refined segmentation. In some cases the texture

inside the pollen, which contained gray level

comparable to the background, was excluded

erroneously. Therefore a hole-filling technique

was applied afterwards.

From a total of 135 and 80 images taken from

single-type and mixed-type slides, respectively,

we obtained 254 isolated pollen grain images,

including 79 grass, 79 birch and 96 mugwort

pollen.

2.3 Feature extraction

The features used in this study can be divided into

three categories: shape features, statistical gray-

level features and pore/colpus features, which are

discussed in the next sections.

2.3.1 Shape features

Shape features represent the basic characteristics

of a pollen grain. From the palynological litera-

ture (Weber, 1998) it is known that grass pollen

grains (diameter varying between 30 lm and

40 lm) are usually larger than those of birch

(diameter varying between 18 lm and 28 lm) and

mugwort (diameter varying between 18 lm and

24 lm). Furthermore, grass pollen are more

circular, while birch and mugwort pollen can

have a triangular shape, depending on their

orientation. Using this knowledge, we chose 19

shape features (Table 1) and extracted them from

the binary central image (Costa and Cesar 2001a).

2.3.2 Statistical gray-level features

Statistical gray-level features (Young, Gerbrands,

& Van Vliet 1998c) (Table 2) were chosen, based

on the fact that grass pollen grains contain much

more texture than birch and mugwort pollen

grains, and that birch pollen grains are more red

than grass and mugwort pollen grains, if the same

staining method is used. Features were extracted

from the central image, for this image reveals the

most significant pollen texture in comparison with

that in the remaining images of the sequence.

Since statistical gray-level features are sensitive to

environmental brightness, we first normalized the

gray-level images by setting the mean gray value

of the background to a fixed value.

2.3.3 Pore and colpus features

The number and shape of pores or colpi are very

informative during visual interpretation of the

images in daily practice. Consequently, our goal

was to automatically detect these different types
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of pores and colpi in the monoporate grass pollen,

the triporate birch pollen and the tricolporate

mugwort pollen. However, the appearance of

pore and colpus structures varies with the orien-

tation of the pollen grain in a slide, which

complicates the automatic recognition of these

structures. Therefore, we discriminated six differ-

ent appearances of pores and colpi (Fig. 1): (1)

pores appearing as circles within the pollen, as

seen in grass and birch (Fig. 1a and d, respec-

tively); (2) pores appearing as ellipses close to the

boundary of grass and birch (Fig. 1b and e,

respectively); (3) pores completely on the bound-

ary, as seen in grass (Fig. 1c); (4) pores with an

oncus, as seen in birch in polar view (Fig. 1f); (5)

mugwort colpi in equatorial view (Fig. 1g) and (6)

mugwort colpi in polar view (Fig. 1h). Based on

these pore/colpus appearances, three pore/colpus

detectors were designed to detect the following

situations: (i) circular pore detector—pores ap-

pear as a circle inside the pollen boundary

(Fig. 1a, d), (ii) birch pore detector—birch pores

appearing on the pollen boundary (Fig. 1f); and

(iii) mugwort colpi detector—mugwort colpi in

polar view (Fig. 1h). These three detectors are

described in more detail in the following three

sections.

As these detectors may repeatedly detect the

same pore/colpus at the different depths of focus

in an image sequence, the detected pore/colpus

positions from all five depths of focus were

clustered to obtain the ultimate pore/colpi posi-

tions, using a distance-based clustering algorithm

(Webb, 2002a). In this manner the number of

pores/colpi according to a certain detector was

calculated and used as a separate feature

(Table 3). In order to obtain the total number

of pores/colpi of a pollen grain, as a human

observer uses to distinguish pollen types, we

combined the results of the separate detectors

into a single estimate of this total number.

2.3.3.1 Circular pore detector Since pores

inside the boundary of grass and birch pollen

have a circular appearance, these pores can be

detected with the Hough transformation, based on

gradient direction with a range of radii (Costa &

Cesar, 2001b; Hough, 1962; Illingworth & Kittler,

1988). The gradient direction indicates the likely

direction where the circle center is expected to be,

which considerably reduces computation time,

and the range of radii makes the detector

adaptable to the pore size. Subsequently, the

position where most lines coincide indicates the

circle center; in our case it refers to the pore

position. Figure 2 shows the original pollen image

and the corresponding Hough-transformed image.

The position of the pore is determined by applying

a threshold to the Hough-transformed image.

We optimized the circular pore detector by

varying its thresholds and evaluating the resulting

success rate of the detection in a free-response

Table 1 Shape features

Shape features Descriptions

Area (A) Number of pixels representing pollen
size

Perimeter (P) Number of pixels of pollen boundary
Diameter Largest distance between any two points

of pollen boundary
Circularity P2/4pA
Skeleton length Number of pixels after skeletonization
Dmax Maximum distance between center

point and boundary points
Dmin Minimum distance between center point

and boundary points
Dmean Mean distance between center point and

boundary points
Radius

dispersion
(RD)

Standard deviation of distances between
center point and boundary points

Dmax/Dmin Ratio of Dmax and Dmin

Dmax/Dmean Ratio of Dmax and Dmean

Dmin/Dmean Ratio of Dmin and Dmean

Moments Seven binary Hu’s moments

Table 2 Statistical gray-level features

Statistical gray-level features and descriptions

a. Mean square difference of the histogram between a
given pollen image and the mean grass pollen image

b. Mean square difference of the histogram between a
given pollen image and the mean birch pollen image

c. Mean square difference of the histogram between a
given pollen image and the mean mugwort pollen
image

d. Mean and standard deviation of gray value (green and
red component, respectively)

e. Mean and standard deviation of gradient intensity
f. Standard deviation of Laplace image
g. Minimum gray value of cell wall
h. Seven gray Hu’s moments
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receiver operating characteristics (FROC) curve

(Egan, 1975). Three sets of thresholds were

then selected with three criteria: (1) the highest

true-negative rate; (2) the highest true-positive

rate and (3) the best trade-off for both rates.

Detectors with these three sets of thresholds

were all included in the feature set (Table 3),

and the threshold that met the best detection

rate was chosen during the feature selection

step.

Additionally, the maximum value in the

Hough-transformed image was considered to be

a separate feature.
2.3.3.2 Birch pore detector Since birch pores,

which appear at the boundary of the pollen,

usually have a very specific oncus pattern and a

regular shape, these pores can be detected with a

template matching method (Pratt, 1978), as

illustrated in Fig. 3. First, the gray-level image is

transformed into polar coordinates with a 120�
overlap (Fig. 3a). This overlap avoids insufficient

matching of pores on the edge of the polar image.

A typical pore image is chosen as a template that

is matched along the polar image (Fig. 3a). At

each position of the image, the similarity to the

template is indicated by their cross-correlation

value. Figure 3b shows the original polar image

and the corresponding cross-correlation image

after template matching. Finally, the position of

the pores is determined by applying a threshold to

the cross-correlation image.

The threshold was optimized in the same way

as the circular pore detector described in the

previous section. As a separate feature for

classification, the maximum value in the cross-

correlation image was calculated (Table 3).
2.3.3.3 Mugwort colpi detector In polar view,

mugwort colpi are always uniformly distributed

Fig. 1 General appearances of pores/colpi of grass (a, b,
c), birch (d, e, f) and mugwort pollen (g, h). Grass and
birch pollen with pores appearing as a circle inside the
pollen grain (a and d); pores appearing as an ellipse close

to the edge (b and e); pores precisely on the pollen
boundary (c and f); mugwort with the colpi from
equatorial view (g); mugwort colpi in polar view (h)

Fig. 2 Principle of circular pore detector. a Example of an
original image for a grass pollen grain. b The correspond-
ing Hough-transformed image

Table 3 Pore/colpus features

Pore/colpus features and descriptions

a. Maximum value in Hough transformed image
b. Maximum value in cross-correlation image
c. Fourier descriptor (FD) component for mugwort colpi
d. Number of pores for circular pore detector,

threshold = 37, 41 and 43
e. Number of pores for birch pore detector,

threshold = 0.016, 0.019 and 0.022
f. Number of pores for mugwort colpi detector
g. Total number of pores
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along the pollen boundary. Therefore, we

developed an algorithm that examines the

regularity of the gray levels along the cell wall.

First, a polar image of the pollen wall is created

(Fig. 4a, b). Subsequently, the cell wall is aligned

(Fig. 4c) by adjusting the vertical position of each

column in the image, according to the cross-

correlation with consecutive columns. Finally, the

row located on the cell wall is identified by

selecting the row with minimum mean gray value

(Fig. 4d). The intensity profile (i.e., the gray levels

along the cell wall) then shows a pattern typical

for mugwort, with high gray-level intensities for

cell wall parts interrupted by very low intensity

parts where colpi are present (Fig. 4e). The

frequency spectrum of this intensity profile then

reveals high peaks at frequencies that are very

specific for mugwort in comparison with those for

grass and birch. Finally, the position of the colpi

can be detected by applying a gray intensity

threshold to the intensity profile.

Since it was easy to determine a threshold that

met both high true-positive rate and high true-

negative rate, the results from such threshold

were directly included in the feature set. Further-

more, the height of the peak in the frequency

spectrum is calculated as a separate feature in the

feature set (Table 3).

2.4 Classification

In total, 47 features were included in a feature

set. We applied pattern-recognition algorithms

to this feature set in order to obtain classifiers,

so as to recognize the three types of pollen

grains. First, we reduced the number of fea-

tures (by so-called forward selection), by select-

ing the smallest number of features that gave

the most discriminative power (Kittler, 1975).

Afterwards, we applied the following two types

of classifiers:

(i) Classifiers based on Gaussian density esti-

mation: quadratic normal classifier (QNC);

linear normal classifier (LNC); nearest mean

classifier (NMC) (McLachlan, 1992; Webb,

2002b)

Fig. 3 a Principle of birch pore detector. b An example of
an original birch pollen polar image and the image after
template matching, showing cross-correlation values of
each position

Fig. 4 Principle of
mugwort colpi detector.
a An example of an
original mugwort pollen
image. b The
corresponding polar
image. c Column-aligned
polar image. d Row of
interest (ROI), shown as
the white line. e Gray-
level intensity profile of
the ROI
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(ii) K nearest neighbor classifier (KNNC)

(Dasarathy, 1991).

2.5 Validation

In obtaining a gold standard for the validation of

the automatic classification, the mixed-type slides

were classified by one of the authors (L.dW.), a

biologist experienced in identifying pollen from

microscope images. All images from the single-

type slides were already classified, as they con-

tained by definition only the prescribed type of

pollen.

All images were processed by the image

analysis program, described above, and the

resulting (reduced) set of features for each

detected pollen grain was then used to classify

each individual grain. The classification error was

calculated through a cross-validation process, in

which the classification is carried out five times

with random division into training and test set.

Subsequently, the average error of these five

classification results is calculated (Lachenbruch &

Mickey, 1968; Stone, 1974). We determined the

best type of classifier by evaluating the perfor-

mance of each type of classifier.

To investigate the importance of the pore

related features, we performed the same experi-

ment to classify the pollen images, using two

feature sets; with and without pore features.

3 Results

The performances of the different classifiers on

the feature set, as obtained from cross-validation,

are shown in Fig. 5. The best type of classifier was

the LNC method (Fig. 5a), which resulted in the

smallest mean error.

The lowest mean error rate and smallest

standard deviation of the errors were obtained

when 12 features were used by the LNC classifier

(Fig. 5b), which means that 12 among the 47

features were most discriminative for recognition

(Table 4). Based on the above results, the LNC

classifier with 12 features was chosen as the

optimal model for pollen recognition.

On average, this model reached an overall

success rate of 97.2%. In all cases grass and birch

pollen were recognized correctly, whereas mug-

wort was recognized correctly in 93.8% of the

cases (Table 5). The six misclassified mugwort

pollen are shown in Fig. 6.

The comparison of classification results between

the feature sets with and without pore features

showed that a decrease in the classification error

from 5.1% to 2.8% was obtained by the inclusion of

pore features.

4 Discussion

In this pilot study, we investigated the feasibility

of automated recognition of grass, birch and

mugwort pollen grains. Pollen grains were col-

lected, sampled and recorded in sequences of 2D

images at different focus levels. Subsequently,

features were extracted from those sequences of

pollen images. In addition to some conventional

feature sets (binary shape features and statistical

gray-level features), we focused on the specific

pore/colpus structure of the pollen grains and

designed software to automatically detect these

structures. After feature extraction, 12 features

were chosen that gave the best discriminative

performance and the best classifier (LNC), with a

correct recognition score of 97.2%. All grass and

birch pollen were recognized correctly, while

6.2% of the mugwort pollen were misclassified

as birch pollen.

The segmentation of the pollen grains is a

process that provides standardized pollen images

for feature measurements. In this feasibility study,

a simple thresholding method was sufficient, since

we used purified pollen images without dirt or

fungal spores. In practice, however, where sam-

ples are collected from a pollen sampler, this

approach will not be adequate. Therefore, in

future research, one may either improve the

segmentation method using color images, or

maintain this simple thresholding method but

add an extra class of non-pollen objects to be

identified.

Detection of the pore/colpus structure was the

key issue in this study. We distinguished six

appearances of a pore (Fig. 1), for which we

designed three detectors for circular pore appear-

ances in grass and birch (Fig. 1a, d), for
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birch pores in polar view (Fig. 1f) and for

mugwort colpi in polar view (Fig. 1h). An ellip-

tical appearance of a pore, located close to the

boundary (Fig. 1b, e), could not, therefore, be

detected by our system. A more complex Hough

transformation would then be needed. Also, the

detection of pores that appear on the grass pollen

boundary (Fig. 1c) or the mugwort colpus in

equatorial view (Fig. 1g) needs further study.

Feature reduction is an important process in

reducing the complexity of the classification

system, and it provides the most powerful

features for discrimination. The 12 best features

were dominated by shape and pore/colpus

features rather than statistical gray-level features.

Features derived from the intermediate results

of pore detection (by the birch pore detector and

the mugwort colpi detector) were powerful ones.

The advantage of this type of feature is that they

are exclusively designed for certain types of

pollen. Since different pollen may show similar

pore appearances, i.e., the circular pore as seen in

some birch and grass pollen (Fig. 1a, d), pore

detection is not always discriminative. Therefore,

it is relevant to determine the number of pores/

colpi. However, in our case, the total number of

pores/colpi is not considered to be discriminative,

because birch and mugwort both have three

pores/colpi. This result suggests the use of the

number of pore/colpus of a specific type, rather

than the total number of pores/colpi.

Shape features, especially the series of features

with respect to the distance between the center

and the pollen boundary, provide a strong dis-

criminative power. This is because grass pollen

grains are usually larger than those of birch

and mugwort. Moreover, the special shape of

Fig. 5 Classification results. a Performance of different
classifiers on the feature set. The x-axis shows the number
of selected discriminative features and the y-axis shows the
average classification error from the fivefold cross-valida-

tion. b Performance of LNC on the feature set. The x-axis
shows the number of selected discriminative features and
the y-axis shows the average error and its standard
deviation from the fivefold cross-validation

Table 4 Twelve most discriminative features for pollen
recognition

Order Name

1 Dmin

2 Dmax/Dmin

3 Dmin/Dmean

4 Maximum value in cross-correlation image
5 Circularity
6 Dmax/Dmin

7 Skeleton length
8 Number of pores for birch pore detector,

threshold = 0.022
9 Radius dispersion
10 Mean of gradient intensity
11 Fourier descriptor (FD) component for mugwort

colpi
12 Number of pores for circular pore detector,

threshold = 43

Table 5 Confusion matrix in recognizing grass, birch and
mugwort pollen

Recognition Grass
(79)

Birch
(79)

Mugwort
(96)

Recognized as grass 79 0 0
Recognized as birch 0 79 6
Recognized as

mugwort
0 0 90
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mugwort pollen produces much fluctuation in

these distances; thus, this special shape also

improved the discriminative power of circularity

and of the number of pixels after skeletonization.

Statistical gray-level features showed limited

discriminative power in our study. Only the feature

‘‘mean of gradient intensity’’ is listed among the

top 12 features. The reason may lie in inefficient

normalization of gray-level images or the limited

number of pollen types. The introduction of a

better normalization method or more features

(e.g., Zhang & Wang, 2004) may lead to better

performance of statistical gray-level features.

Six mugwort pollen grains were misclassified as

birch pollen grains, five of which showed a colpus

in equatorial view (Fig. 6a–e). This colpus

appearance was not detected in our study. Two

possible methods may help to improve the clas-

sification performance. The first method is to

detect this colpus or to find more related features

with respect to this pollen appearance; the second

method is to introduce rejection in the classifica-

tion and classify these pollen with extra help from

the biologist. The reason why the mugwort pollen

grain in polar view (Fig. 6f) was misclassified may

be the relatively low light intensity in two of the

colpi. Therefore, the mugwort detector requires

better gray-level normalization.

The inclusion of pore features in the classifica-

tion method reduced the error rate by almost a

factor of 2. However, since the success rate was

already very high (97.2%), this does not provide

conclusive evidence that pore features are of vital

importance for automatic pollen recognition. The

reason for this lies in the fact that only a limited

number of types of pollen were included in this

pilot study. Therefore, we expect that pore features

will become more important for automatic recog-

nition when more types of pollen are included in a

study [for instance, plantain (Plantago) pollen,

which has a shape and texture similar to grass

pollen but differs in the number of pores].

The high success rate of our recognition

method provides a platform for further research.

Priority will be given to (i) the segmentation of

pollen images from slides obtained from daily

practice using a pollen sampler and (ii) the

expansion in the number of pollen types among

which the allergenic pollen types can be discrim-

inated. Finally, an automatic image acquisition

system is a key element in building such a system

in practice. These efforts may finally lead to a less

labor-intensive and prompt recording system for

allergenic pollen grains in the air.
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