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Abstract

Artificial neural networks (ANNs) are very general function approxima-
tors which can be trained based on a set of examples. Given their general
nature, ANNs would seem useful tools for nonlinear image processing.
This paper tries to answer the question whether image processing opera-
tions can sucessfully be learned by ANNs; and, if so, how prior knowledge
can be used in their design and what can be learned about the problem at
hand from trained networks. After an introduction to ANN types and a
brief literature review, the paper focuses on two cases: supervised classifi-
cation ANNs for object recognition and feature extraction; and supervised
regression ANNs for image pre-processing. A range of experimental re-
sults lead to the conclusion that ANNs are mainly applicable to problems
requiring a nonlinear solution, for which there is a clear, unequivocal per-
formance criterion, i.e. high-level tasks in the image processing chain
(such as object recognition) rather than low-level tasks. The drawbacks
are that prior knowledge cannot easily be used, and that interpretation of
trained ANNs is hard.

1 Introduction

1.1 Image processing

Image processing is the field of research concerned with the develop-
ment of computer algorithms working on digitised images (e.g. Pratt, 1991;
Gonzalez and Woods, 1992). The range of problems studied in image processing
is large, encompassing everything from low-level signal enhancement to high-
level image understanding. In general, image processing problems are solved by
a chain of tasks. This chain, shown in figure 1, outlines the possible processing
needed from the initial sensor data to the outcome (e.g. a classification or a
scene description). The pipeline consists of the steps of pre-processing, data
reduction, segmentation, object recognition and image understanding. In each
step, the input and output data can either be images (pixels), measurements
in images (features), decisions made in previous stages of the chain (labels) or
even object relation information (graphs).

There are many problems in image processing for which good, theoretically
justifiable solutions exists, especially for problems for which linear solutions
suffice. For example, for pre-processing operations such as image restoration,
methods from signal processing such as the Wiener filter can be shown to be
the optimal linear approach. However, these solutions often only work under
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Figure 1: The image processing chain.

ideal circumstances; they may be highly computationally intensive (e.g. when
large numbers of linear models have to be applied to approximate a nonlinear
model); or they may require careful tuning of parameters. Where linear models
are no longer sufficient, nonlinear models will have to be used. This is still an
area of active research, as each problem will require specific nonlinearities to be
introduced. That is, a designer of an algorithm will have to weigh the different
criteria and come to a good choice, based partly on experience. Furthermore,
many algorithms quickly become intractable when nonlinearities are introduced.
Problems further in the image processing chain, such object recognition and im-
age understanding, cannot even (yet) be solved using standard techniques. For
example, the task of recognising any of a number of objects against an arbi-
trary background calls for human capabilities such as the ability to generalise,
associate etc.

All this leads to the idea that nonlinear algorithms that can be trained, rather
than designed, might be valuable tools for image processing. To explain why, a
brief introduction into artificial neural networks will be given first.

1.2 Artificial neural networks (ANNs)

In the 1940s, psychologists became interested in modelling the human brain.
This led to the development of the a model of the neuron as a thresholded
summation unit (McCulloch and Pitts, 1943). They were able to prove that
(possibly large) collections of interconnected neuron models, neural networks,
could in principle perform any computation, if the strengths of the interconnec-
tions (or weights) were set to proper values. In the 1950s neural networks were
picked up by the growing artificial intelligence community.

In 1962, a method was proposed to train a subset of a specific class of
networks, called perceptrons, based on examples (Rosenblatt, 1962). Percep-
trons are networks having neurons grouped in layers, with only connections
between neurons in subsequent layers. However, Rosenblatt could only prove
convergence for single-layer perceptrons. Although some training algorithms for
larger neural networks with hard threshold units were proposed (Nilsson, 1965),
enthusiasm waned after it was shown that many seemingly simple prob-
lems were in fact nonlinear and that perceptrons were incapable of solving
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these (Minsky and Papert, 1969).
Interest in artificial neural networks (henceforth “ANNs”) increased again

in the 1980s, after a learning algorithm for multi-layer perceptrons was
proposed, the back-propagation rule (Rumelhart et al., 1986). This allowed
nonlinear multi-layer perceptrons to be trained as well. However, feed-
forward networks were not the only type of ANN under research. In
the 1970s and 1980s a number of different biologically inspired learning
systems were proposed. Among the most influential were the Hopfield
network (Hopfield, 1982; Hopfield and Tank, 1985), Kohonen’s self-organising
map (Kohonen, 1995), the Boltzmann machine (Hinton et al., 1984) and the
Neocognitron (Fukushima and Miyake, 1982).

The definition of what exactly constitutes an ANN is rather vague. In general
it would at least require a system to

• consist of (a large number of) identical, simple processing units;

• have interconnections between these units;

• posess tunable parameters (weights) which define the system’s function
and

• lack a supervisor which tunes each individual weight.

However, not all systems that are called neural networks fit this description.
There are many possible taxonomies of ANNs. Here, we concentrate on learn-

ing and functionality rather than on biological plausibility, topology etc. Fig-
ure 2 shows the main subdivision of interest: supervised versus unsupervised
learning. Although much interesting work has been done in unsupervised learn-
ing for image processing (see e.g. Egmont-Petersen et al., 2002), we will restrict
ourselves to supervised learning in this paper. In supervised learning, there is a
data set L containing samples in x ∈ Rd, where d is the number of dimensions
of the data set. For each x a dependent variable y ∈ Rm has to be supplied as
well. The goal of a regression method is then to predict this dependent variable
based on x. Classification can be seen as a special case of regression, in which
only a single variable t ∈ N is to be predicted, the label of the class to which
the sample x belongs.

In section 2, the application of ANNs to these tasks will be discussed in more
detail.
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1.3 ANNs for image processing

As was discussed above, dealing with nonlinearity is still a major problem in
image processing. ANNs might be very useful tools for nonlinear image process-
ing:

• instead of designing an algorithm, one could construct an example data
set and an error criterion, and train ANNs to perform the desired input-
output mapping;

• the network input can consist of pixels or measurements in images; the
output can contain pixels, decisions, labels, etc., as long as these can
be coded numerically – no assumptions are made. This means adaptive
methods can perform several steps in the image processing chain at once;

• ANNs can be highly nonlinear; the amount of nonlinearity can be influ-
enced by design, but also depends on the training data (Raudys, 1998a;
Raudys, 1998b);

• some types of ANN have been shown to be universal classification or re-
gression techniques (Funahashi, 1989; Hornik et al., 1989).

However, it is not to be expected that application of any ANN to any given
problem will give satisfactory results. This paper therefore studies the possi-
bilities and limitations of the ANN approach to image processing. The main
questions it tries to answer are:

• Can image processing operations be learned by ANNs? To what extent can
ANNs solve problems that are hard to solve using standard techniques?
Is nonlinearity really a bonus?

• How can prior knowledge be used, if available? Can, for example, the fact
that neighbouring pixels are highly correlated be used in ANN design or
training?

• What can be learned from ANNs trained to solve image processing prob-
lems? If one finds an ANN to solve a certain problem, can one learn how
the problem should be approached using standard techniques? Can one
extract knowledge from the solution?

Especially the last question is intriguing. One of the main drawbacks of many
ANNs is their black-box character, which seriously impedes their application in
systems in which insight in the solution is an important factor, e.g. medical
systems. If a developer can learn how to solve a problem by analysing the
solution found by an ANN, this solution may be made more explicit.

It is to be expected that for different ANN types, the answers to these ques-
tions will be different. This paper is therefore laid out as follows:

• first, in section 2, a brief literature overview of applications of ANNs to
image processing is given;

• in sections 3 and 4, classification ANNs are applied to object recognition
and feature extraction;
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Figure 3: A feed-forward ANN for a three-class classification problem. The
center layer is called the hidden layer.

• in sections 5 and 6, regression ANNs are investigated as nonlinear image
filters.

These methods are not only applied to real-life problems, but also studied to
answer the questions outlined above. In none of the applications the goal is to
obtain better performance than using traditional methods; instead, the goal is
to find the conditions under which ANNs could be applied.

2 Applications of ANNs in image processing

This section will first discuss the most widely used type of ANN, the feed-
forward ANN, and its use as a classifier or regressor. Afterwards, a brief review
of applications of ANNs to image processing problems will be given.

2.1 Feed-forward ANNs

This paper will deal mostly with feed-forward ANNs (Hertz et al., 1991;
Haykin, 1994) (or multi-layer perceptrons, MLPs). They consist of intercon-
nected layers of processing units or neurons, see figure 3. In this figure, the
notation of weights and biases follows (Hertz et al., 1991): weights of connec-
tions between layer p and layer q are indicated by wqp; the bias, input and
output vectors of layer p are indicated by bp, Ip and Op, respectively. Basically,
a feed-forward ANN is a (highly) parameterised, adaptable vector function,
which may be trained to perform classification or regression tasks. A classifica-
tion feed-forward ANN performs the mapping

N : Rd → 〈rmin, rmax〉m, (1)

with d the dimension of the input (feature) space, m the number of classes
to distinguish and 〈rmin, rmax〉 the range of each output unit. The following
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feed-forward ANN with one hidden layer can realise such a mapping:

N(x; W,B) = f(w32T
f(w21T

x− b2)− b3). (2)

W is the weight set, containing the weight matrix connecting the input layer
with the hidden layer (w21) and the vector connecting the hidden layer with
the output layer (w32); B (b2 and b3) contains the bias terms of the hidden
and output nodes, respectively. The function f(a) is the nonlinear activation
function with range 〈rmin, rmax〉, operating on each element of its input vector.
Usually, one uses either the sigmoid function, f(a) = 1

1+e−a , with the range
〈rmin = 0, rmax = 1〉; the double sigmoid function f(a) = 2

1+e−a − 1; or the hy-
perbolic tangent function f(a) = tanh(a), both with range 〈rmin = −1, rmax =
1〉.

2.1.1 Classification

To perform classification, an ANN should compute the posterior probabilities
of given vectors x, P (ωj |x), where ωj is the label of class j, j = 1, . . . ,m. Clas-
sification is then performed by assigning an incoming sample x to that class
for which this probability is highest. A feed-forward ANN can be trained in
a supervised way to perform classification, when presented with a number of
training samples L = {(x, t)}, with tl high (e.g. 0.9) indicating the correct
class membership and tk low (e.g. 0.1), ∀k 6= l. The training algorithm, for
example back-propagation (Rumelhart et al., 1986) or conjugate gradient de-
scent (Shewchuk, 1994), tries to minimise the mean squared error (MSE) func-
tion:

E(W,B) =
1

2|L|
∑

(xi,ti)∈L

c∑
k=1

(N(xi; W,B)k − tik)2, (3)

by adjusting the weights and bias terms. For more details on
training feed-forward ANNs, see e.g. (Hertz et al., 1991; Haykin, 1994).
(Richard and Lippmann, 1991) showed that feed-forward ANNs, when provided
with enough nodes in the hidden layer, an infinitely large training set and 0-1
training targets, approximate the Bayes posterior probabilities

P (ωj |x) =
P (ωj)p(x|ωj)

p(x)
, j = 1, . . . ,m, (4)

with P (ωj) the prior probability of class j, p(x|ωj) the class-conditional proba-
bility density function of class j and p(x) the probability of observing x.

2.1.2 Regression

Feed-forward ANNs can also be trained to perform nonlinear multivariate re-
gression, where a vector of real numbers should be predicted:

R : Rd → Rm, (5)

with m the dimensionality of the output vector. The following feed-forward
ANN with one hidden layer can realise such a mapping:

R(x; W,B) = w32T
f(w21T

x− b2)− b3. (6)
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The only difference between classification and regression ANNs is that in the
latter application of the activation function is omitted in the last layer, allowing
the prediction of values in Rm. However, this last layer activation function can
be applied when the desired output range is limited. The desired output of a
regression ANN is the conditional mean (assuming continuous input x):

E(y|x) =
∫

Rm

yp(y|x)dy. (7)

A training set L containing known pairs of input and output values (x,y), is
used to adjust the weights and bias terms such that the mean squared error
between the predicted value and the desired value,

E(W,B) =
1

2|L|
∑

(xi,yi)∈L

m∑
k=1

(R(xi; W,B)k − yi
k)2, (8)

(or the prediction error) is minimised.
Several authors showed that, under some assumptions, regression feed-forward

ANNs are universal approximators. If the number of hidden nodes is allowed
to increase towards infinity, they can approximate any continuous function with
arbitrary precision (Funahashi, 1989; Hornik et al., 1989). When a feed-forward
ANN is trained to approximate a discontinuous function, two hidden layers are
sufficient for obtaining an arbitrary precision (Sontag, 1992).

However, this does not make feed-forward ANNs perfect classification or re-
gression machines. There are a number of problems:

• there is no theoretically sound way of choosing the optimal ANN ar-
chitecture or number of parameters. This is called the bias-variance
dilemma (Geman et al., 1992): for a given data set size, the more pa-
rameters an ANN has, the better it can approximate the function to be
learned; at the same time, the ANN becomes more and more susceptible
to overtraining, i.e. adapting itself completely to the available data and
losing generalisation;

• for a given architecture, learning algorithms often end up in a local mini-
mum of the error measure E instead of a global minimum1;

• they are non-parametric, i.e. they do not specify a model and are less open
to explanation. This is sometimes referred to as the black box problem.
Although some work has been done in trying to extract rules from trained
ANNs (Tickle et al., 1998), in general it is still impossible to specify ex-
actly how an ANN performs its function. For a rather polemic discussion
on this topic, see the excellent paper by Green (Green, 1998)).

2.2 Other ANN types

Two other major ANN types are:
1Although current evidence suggests this is actually one of the features that makes feed-

forward ANNs powerful: the limitations the learning algorithm imposes actually manage the
bias-variance problem (Raudys, 1998a; Raudys, 1998b).
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• the self-organising map (SOM, Kohonen, 1995; also called topological
map) is a kind of vector quantisation method. SOMs are trained in an un-
supervised manner with the goal of projecting similar d-dimensional input
vectors to neighbouring positions (nodes) on an m-dimensional discrete
lattice. Training is called competitive: at each time step, one winning
node gets updated, along with some nodes in its neighbourhood. After
training, the input space is subdivided into q regions, corresponding to
the q nodes in the map. An important application of SOMs in image pro-
cessing is therefore unsupervised cluster analysis, e.g. for segmentation.

• the Hopfield ANN (HNN, Hopfield, 1982) consists of a number of fully
interconnected binary nodes, which at each given time represent a certain
state. Connected to a state is an energy level, the output of the HNN’s
energy function given the state. The HNN maps binary input sets on
binary output sets; it is initialised with a binary pattern and by iterating
an update equation, it changes its state until the energy level is minimised.
HNNs are not thus trained in the same way that feed-forward ANNs and
SOMs are: the weights are usually set manually. Instead, the power of
the HNN lies in running it.

Given a rule for setting the weights based on a training set of binary pat-
terns, the HNN can serve as an auto-associative memory (given a partially
completed pattern, it will find the nearest matching pattern in the train-
ing set). Another application of HNNs, which is quite interesting in an
image processing setting (Poggio and Koch, 1985), is finding the solution
to nonlinear optimisation problems. This entails mapping a function to
be minimised on the HNN’s energy function. However, the application of
this approach is limited in the sense that the HNN minimises just one en-
ergy function, whereas most problems are more complex in the sense that
the minimisation is subject to a number of constraints. Encoding these
constraints into the energy function takes away much of the power of the
method, by calling for a manual setting of various parameters which again
influence the outcome.

2.3 Applications of ANNs

Image processing literature contains numerous applications of the above types of
ANNs and various other, more specialised models. Below, we will give a broad
overview of these applications, without going into specific ones. Furthermore, we
will only discuss application of ANNs directly to pixel data (i.e. not to derived
features). For a more detailed overview, see e.g. Egmont-Petersen et al., 2002.

2.3.1 Pre-processing

Pre-processing an image can consist of image reconstruction (building up an
image from a number of indirect sensor measurements) and/or image restoration
(removing abberations introduced by the sensor, including noise). To perform
pre-processing, ANNs have been applied in the following ways:

• optimisation of an objective function specified by a traditional pre-
processing approach;

9



• approximation of a mathematical transformation used in reconstruction,
by regression;

• general regression/classification, usually directly on pixel data (neighbour-
hood input, pixel output).

To solve the first type of problem, HNNs can be used for the optimisation
involved in traditional methods. However, mapping the actual problem to the
energy function of the HNN can be difficult. Occasionally, the original problem
will have to be modified. Having managed to map the problem appropriately,
the HNN can be a useful tool in image pre-processing, although convergence to
a good result is not guaranteed.

For image reconstruction, regression (feed-forward) ANNs can be applied. Al-
though some succesful applications are reported in literature, it would seem that
these applications call for more traditional mathematical techniques, because a
guaranteed performance of the reconstruction algorithm is essential.

Regression or classification ANNs can also be trained to perform image
restoration directly on pixel data. In literature, for a large number of appli-
cations, non-adaptive ANNs were used. Where ANNs are adaptive, their archi-
tectures usually differ much from those of the standard ANNs: prior knowledge
about the problem is used to design them (e.g. in cellular neural networks,
CNNs). This indicates that the fast, parallel operation of ANNs, and the ease
with which they can be embedded in hardware, can be important factors in
choosing for a neural implementation of a certain pre-processing operation.
However, their ability to learn from data is apparently of less importance. We
will return to this in sections 5 and 6.

2.3.2 Enhancement and feature extraction

After pre-processing, the next step in the image processing chain is extraction
of information relevant to later stages (e.g. subsequent segmentation or object
recognition). In its most generic form, this step can extract low-level informa-
tion such as edges, texture characteristics etc. This kind of extraction is also
called image enhancement, as certain general (perceptual) features are enhanced.
As enhancement algorithms operate without a specific application in mind, the
goal of using ANNs is to outperform traditional methods either in accuracy or
computational speed. The most well-known enhancement problem is edge de-
tection, which can be approached using classification feed-forward ANNs. Some
modular approaches, including estimation of edge strength or denoising, have
been proposed. Morphological operations have also been implemented on ANNs,
which were equipped with shunting mechanisms (neurons acting as switches).
Again, as in pre-processing, prior knowledge is often used to restrict the ANNs.

Feature extraction entails finding more application-specific geometric or per-
ceptual features, such as corners, junctions and object boundaries. For partic-
ular applications, even more high-level features may have to be extracted, e.g.
eyes and lips for face recognition. Feature extraction is usually tightly coupled
with classification or regression; what variables are informative depends on the
application, e.g. object recognition. Some ANN approaches therefore consist of
two stages, possibly coupled, in which features are extracted by the first ANN
and object recognition is performed by the second ANN. If the two are com-
pletely integrated, it can be hard to label a specific part as a feature extractor
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(see also section 4).
Feed-forward ANNs with bottlenecks (auto-associative ANNs) and SOMs

are useful for nonlinear feature extraction. They can be used to map high-
dimensional image data onto a lower number of dimensions, preserving as well
as possible the information contained. A disadvantage of using ANNs for fea-
ture extraction is that they are not by default invariant to translation, rotation
or scale, so if such invariances are desired they will have to be built in by the
ANN designer.

2.3.3 Segmentation

Segmentation is partitioning an image into parts that are coherent according to
some criterion: texture, colour or shape. When considered as a classification
task, the purpose of segmentation is to assign labels to individual pixels or
voxels. Classification feed-forward ANNs and variants can perform segmentation
directly on pixels, when pixels are represented by windows extracted around
their position. More complicated modular approaches are possible as well, with
modules specialising in certain subclasses or invariances. Hierarchical models
are sometimes used, even built of different ANN types, e.g. using a SOM to map
the image data to a smaller number of dimensions and then using a feed-forward
ANN to classify the pixel.

Again, a problem here is that ANNs are not naturally invariant to transfor-
mations of the image. Either these transformations will have to be removed
beforehand, the training set will have to contain all possible transformations, or
invariant features will have to be extracted from the image first. For a more de-
tailed overview of ANNs applied to image segmentation, see (Pal and Pal, 1993).

2.3.4 Object recognition

Object recognition consists of locating the positions and possibly orientations
and scales of instances of classes of objects in an image (object detection) and
classifying them (object classification). Problems that fall into this category are
e.g. optical character recognition, automatic target recognition and industrial
inspection. Object recognition is potentially the most fruitful application area
of pixel-based ANNs, as using an ANN approach makes it possible to roll several
of the preceding stages (feature extraction, segmentation) into one and train it
as a single system.

Many feed-forward-like ANNs have been proposed to solve problems. Again,
invariance is a problem, leading to the proposal of several ANN architectures
in which connections were restricted or shared corresponding to desired invari-
ances (e.g. Fukushima and Miyake, 1982; Le Cun et al., 1989a). More involved
ANN approaches include hierarchical ANNs, to tackle the problem of rapidly
increasing ANN complexity with increasing image size; and multi-resolution
ANNs which include context information.

2.3.5 Image understanding

Image understanding is the final step in the image processing chain, in which
the goal is to interpret the image content. Therefore, it couples techniques
from segmentation or object recognition with the use of prior knowledge of the
expected image content (such as image semantics). As a consequence, there are
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only few applications of ANNs on pixel data. These are usually complicated,
modular approaches.

A major problem when applying ANNs for high level image understanding is
their black-box character. Although there are proposals for explanation facil-
ities (Egmont-Petersen et al., 1998a) and rule extraction (Tickle et al., 1998),
it is usually hard to explain why a particular image interpretation is the most
likely one, Another problem in image understanding relates to the amount of
input data. When, e.g., seldomly occurring images are provided as input to a
neural classifier, a large number of images are required to establish statistically
representative training and test sets.

2.3.6 Optimisation

Some image processing (sub)tasks such as stereo matching can best be formu-
lated as optimisation problems, which may be solved by HNNs. HNNs have
been applied to optimisation problems in reconstruction and restoration, seg-
mentation, (stereo) matching and recognition. Mainly, HNNs have been applied
for tasks that are too difficult to realise with other neural classifiers because the
solutions entail partial graph matching or recognition of 3D objects. A dis-
advantage of HNNs is that training and use are both of high computational
complexity.

2.4 Discussion

One of the major advantages of ANNs is that they are applicable to a wide
variety of problems. There are, however, still caveats and fundamental prob-
lems that require attention. Some problems are caused by using a statistical,
data-oriented technique to solve image processing problems; other problems are
fundamental to the way ANNs work.

Problems with data-oriented approaches A problem in the applica-
tion of data-oriented techniques to images is how to incorporate context in-
formation and prior knowledge about the expected image content. Prior
knowledge could be knowledge about the typical shape of objects one wants
to detect, knowledge of the spatial arrangement of textures or objects or
of a good approximate solution to an optimisation problem. According
to (Perlovsky, 1998), the key to restraining the highly flexible learning algo-
rithms ANNs are, lies in the very combination with prior knowledge. How-
ever, most ANN approaches do not even use the prior information that neigh-
bouring pixel values are highly correlated. The latter problem can be cir-
cumvented by extracting features from images first, by using distance or er-
ror measures on pixel data which do take spatial coherency into account
(e.g. Hinton et al., 1997; Simard et al., 1993), or by designing an ANN with
spatial coherency (e.g. Le Cun et al., 1989a; Fukushima and Miyake, 1982) or
contextual relations beween objects in mind. On a higher level, some methods,
such as hierarchical object recognition ANNs can provide context information.

In image processing, classification and regression problems quickly involve
a very large number of input dimensions, especially when the algorithms are
applied directly on pixel data. This is problematic, as ANNs to solve these
problems will also grow, which makes them harder to train. However, the most
interesting future applications (e.g. volume imaging) promise to deliver even
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more input. One way to cope with this problem is to develop feature-based
pattern recognition approaches; another way would be to design an architecture
that quickly adaptively downsamples the original image.

Finally, there is a clear need for thorough validation of the developed image
processing algorithms (Haralick, 1994; De Boer and Smeulders, 1996). Unfor-
tunately, only few of the publications about ANN applications ask the question
whether an ANN really is the best way of solving the problem. Often, compar-
ison with traditional methods is neglected.

Problems with ANNs Several theoretical results regarding the approxi-
mation capabilities of ANNs have been proven. Although feed-forward ANNs
with two hidden layers can approximate any (even discontinuous) function to
an arbitrary precision, theoretical results on, e.g., convergence are lacking. The
combination of initial parameters, topology and learning algorithm determines
the performance of an ANN after its training has been completed. Further-
more, there is always a danger of overtraining an ANN, as minimising the error
measure occasionally does not correspond to finding a well-generalising ANN.

Another problem is how to choose the best ANN architecture. Although
there is some work on model selection (Fogel, 1991; Murata et al., 1994), no
general guidelines exist which guarantee the best trade-off between model bias
and variance (see page 8) for a particular size of the training set. Training
unconstrained ANNs using standard performance measures such as the mean
squared error might even give very unsatisfying results. This, we assume, is
the reason why in a number of applications, ANNs were not adaptive at all or
heavily constrained by their architecture.

ANNs suffer from what is known as the black-box problem: the ANN, once
trained, might perform well but offers no explanation on how it works. That
is, given any input a corresponding output is produced, but it cannot be easily
explained why this decision was reached, how reliable it is, etc. In some im-
age processing applications, e.g., monitoring of (industrial) processes, electronic
surveillance, biometrics, etc. a measure of the reliability is highly necessary to
prevent costly false alarms. In such areas, it might be preferable to use other,
less well performing methods that do give a statistically profound measure of
reliability.

As was mentioned in section 1, this paper will focus both on actual applica-
tions of ANNs to image processing tasks and the problems discussed above:

• the choice of ANN architecture;

• the use of prior knowledge about the problem in constructing both ANNs
and training sets;

• the black-box character of ANNs.

In the next section, an ANN architecture developed specifically to address these
problems, the shared weight ANN, will be investigated.

3 Shared weight networks for object recognition

In this section, some applications of shared weight neural networks will be
discussed. These networks are more commonly known in the literature as
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Figure 4: The operation of the ANN used in Sejnowski’s NETtalk experiment.
The letters (and three punctuation marks) were coded by 29 input units using
place coding: that is, the ANN input vector contained all zeroes with one el-
ement set to one, giving 7 × 29 = 203 input units in total. The hidden layer
contained 80 units and the output layer 26 units, coding the phoneme.

TDNNs, Time Delay Neural Networks (Bengio, 1996), since the first appli-
cations of this type of network were in the field of speech recognition2.
(Sejnowski and Rosenberg, 1987) used a slightly modified feed-forward ANN in
their NETtalk speech synthesis experiment. Its input consisted of an alpha nu-
merical representation of a text; its training target was a representation of the
phonetic features necessary to pronounce the text. Sejnowski took the input
of the ANN from the “stream” of text with varying time delays, each neuron
effectively implementing a convolution function; see figure 4. The window was 7
frames wide and static. The higher layers of the ANN were just of the standard
feed-forward type. Two-dimensional TDNNs later developed for image analysis
really are a generalisation of Sejnowski’s approach: they used the weight-sharing
technique not only after the input layer, but for two or three layers. To avoid
confusion, the general term “shared weight ANNs” will be used.

This section will focus on just one implementation of shared weight ANNs,
developed by Le Cun et al. (Le Cun et al., 1989a). This ANN architecture is
interesting, in that it incorporates prior knowledge of the problem to be solved
– object recognition in images – into the structure of the ANN itself. The first
few layers act as convolution filters on the image, and the entire ANN can be
seen as a nonlinear filter. This also allows us to try to interpret the weights of
a trained ANN in terms of image processing operations.

First, the basic shared weight architecture will be introduced, as well as some
variations. Next an application to handwritten digit recognition will be shown.
The section ends with a discussion on shared weight ANNs and the results
obtained.

3.1 Shared weight networks

The ANN architectures introduced by Le Cun et al. (Le Cun et al., 1989a) use
the concept of sharing weights, that is, a set of neurons in one layer using the

2The basic mechanisms employed in TDNNs, however, were known long before. In
1962, (Hubel and Wiesel, 1962) introduced the notion of receptive fields in mammalian brains.
(Rumelhart et al., 1986) proposed the idea of sharing weights for solving the T-C problem, in
which the goal is to classify a 3 × 3 pixel letter T and a 3 × 2 pixel letter C, independent of
translation and rotation (Minsky and Papert, 1969).
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L5 Output layer
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10 x (30 + 1)
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Hidden layerL4
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1256
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192

12 x (4 x 4) x (1) + 12 x (8 x (5 x 5))
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12 x (8 x 8) x (1) + 12 x (5 x 5) 

256
12 x (8 x 8) x (5 x 5 + 1)

Input layer
16 x 16

L1

# Neurons

# Connections

# Weights

1068
19968

38592
2592

57905790

310310

976064660

Figure 5: The LeCun shared weight ANN.

same incoming weight (see figure 5). The use of shared weights leads to all these
neurons detecting the same feature, though at different positions in the input
image (receptive fields); i.e. the image is convolved with a kernel defined by the
weights. The detected features are – at a higher level – combined, to obtain shift-
invariant feature detection. This is combined with layers implementing a sub-
sampling operation to decrease resolution and sensitivity to distortions. Le Cun
et al. actually describe several different architectures (Le Cun et al., 1989b),
though all of these use the same basic techniques.

Shared weight ANNs have been applied to a number of other
recognition problems, such as word recognition (Bengio et al., 1994),
cursive script recognition (Schenkel et al., 1995), face recogni-
tion (Lawrence et al., 1997; Fogelman Soulie et al., 1993; Viennet, 1993),
automatic target recognition (Gader et al., 1995) and hand track-
ing (Nowlan and Platt, 1995). Other architectures employing the same
ideas can be found as well. In (Fukushima and Miyake, 1982), an ANN archi-
tecture specifically suited to object recognition is proposed; the Neocognitron.
It is based on the workings of the visual nervous system, and uses the technique
of receptive fields and of combining local features at a higher level to more global
features (see also 22.3.4). The ANN can handle positional shifts and geometric
distortion of the input image. Others have applied standard feed-forward
ANNs in a convolution-like way to large images. Spreeuwers (Spreeuwers, 1992)
and Greenhill and Davies (Greenhil and Davies, 1994) trained ANNs to act as
filters, using pairs of input-output images.

3.1.1 Architecture

The LeCun ANN, shown in figure 5, comprises at least 5 layers, including input
and output layers:
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Figure 6: A feature map and a subsampling map.

• The input layer consists of a grey-level image of 16× 16 pixels.

• The second layer contains the so-called feature maps; see figure 6. Each
neuron in such a feature map has the same 5× 5 set of incoming weights,
but is connected to a square at a unique position in the input image. This
set can be viewed as a convolution filter, or template; that is, if a neuron
in a feature map has high output, this corresponds to a match with the
template. The place of the match in the input image corresponds to the
place of the neuron in the feature map. The image is under-sampled, as
the receptive field for two neighbouring neurons is shifted two pixels in the
input image. The rationale behind this is that, while high resolution is
important for detecting a feature, it is not necessary to know its position
in the image with the same precision.

Note that the number of connections between the input and feature map
layer is far greater than the number of weights, due to the weight-sharing.
However, neurons do not share their bias. Figure 5 shows the number of
neurons, connections and weights for each layer.

• The third layer consists of sub-sampling maps (figure 6). This layer is
included mainly to reduce the number of free parameters. The principle
is the same as for the feature maps: each neuron in a sub-sampling map is
connected to a 5×5 square and all neurons in one sub-sampling map share
the same set of 25 weights. Here, too, the feature map is under-sampled,
again losing some of the information about the place of detected features.

The main difference however, is that each neuron in a sub-sampling map
is connected to more than one feature map. This mapping of feature
maps onto sub-sampling maps is not trivial; Le Cun et al. use different
approaches in their articles. In (Le Cun et al., 1989a), only the number
of feature maps connected to each sub-sampling map, 8, is mentioned; it
is not clear which feature maps are linked to which sub-sampling maps.
In (Le Cun et al., 1989b) however, table 1 is given. Again, due to the
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Subsampling map
1 2 3 4 5 6 7 8 9 10 11 12

1 • • • • • •
2 • • • • • •
3 • • • • • •
4 • • • • • •
5 • • • • • •
6 • • • • • •
7 • • • • • •
8 • • • • • •
9 • • • • • • • • • • • •

10 • • • • • • • • • • • •
11 • • • • • • • • • • • •

F
ea

tu
re

m
a
p

12 • • • • • • • • • • • •

Table 1: Connections between the feature map layer and subsampling map layer
in the LeCun architecture.

use of shared weights, there are significantly less weights than connections
(although biases are not shared). See figure 5 for an overview.

• The output of the sub-sampling map is propagated to a hidden layer.
This layer is fully connected to the sub-sampling layer. The number of
neurons is 30.

• The output layer is fully connected to the hidden layer. It contains 10
neurons, and uses place coding for classification; the neurons are numbered
0 . . . 9, and the neuron with the highest activation is chosen. The digit
recognised is equal to the neuron number.

The total number of neurons in the ANN is 1256. Without weight sharing, the
total number of parameters would be 64660, equal to the number of connections.
However, the total number of unique parameters (weights and biases) is only
9760.

Shared weight ANNs can be trained by any standard training algorithm for
feed-forward ANNs (Hertz et al., 1991; Haykin, 1994), provided that the deriva-
tive of the cost function with respect to a shared weight is defined as the sum
of the derivatives with respect to the non-shared weights (Viennet, 1993). The
individual weight updates are used to update the bias for each neuron, since
biases are not shared.

Clearly, the architecture presented uses prior knowledge (recognising local
features, combining them at a higher level) about the task to solve (i.e.,
object recognition), thus addressing the problem discussed in section 22.4
In (Solla and Le Cun, 1991), the authors show that this approach indeed gives
better performance. They compare three simple architectures: a standard back-
propagation ANN, an ANN with one feature map and one sub-sampling map
and an ANN with two feature maps, each mapped onto one sub-sampling map.
It is shown that the more prior knowledge is put into the ANN, the higher its
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generalisation ability3.

3.1.2 Other implementations

Although the basics of other ANN architectures proposed by Le Cun
et al. and others are the same, there are some differences to the one
discussed above (Le Cun et al., 1989a). In (Le Cun et al., 1990), an ex-
tension of the architecture is proposed with a larger number of con-
nections, but a number of unique parameters even lower than that of
the LeCun ANN. The “LeNotre” architecture is a proposal by Fogelman
Soulie et al. in (Fogelman Soulie et al., 1993) and, under the name Quick,
in (Viennet, 1993). It was used to show that the ideas that resulted in the
construction of the ANNs described above can be used to make very small
ANNs that still perform reasonably well. In this architecture, there are only
two feature map layers of two maps each; the first layer contains two differently
sized feature maps.

3.2 Handwritten digit recognition

This section describes some experiments using the LeCun ANNs in a
handwritten digit recognition problem. For a more extensive treatment,
see (de Ridder, 2001). The ANNs are compared to various traditional classi-
fiers, and their effectiveness as feature extraction mechanisms is investigated.

3.2.1 The data set

The data set used in the experiments was taken from Special Database 3 dis-
tributed on CD-ROM by the U.S. National Institute for Standards and Technol-
ogy (NIST) (Wilson and Garris, 1992). Currently, this database is discontinued;
it is now distributed together with Database 7 as Database 19. Of each digit,
2,500 samples were used. After randomising the order per class, the set was split
into three parts: a training set of 1,000 images per class, a testing set of 1,000
images per class and a validation set of 500 images per class. The latter set was
used in the ANN experiments for early stopping: if the error on the validation
set increased for more than 50 cycles continuously, training was stopped and the
ANN with minimum error on the validation set was used. This early stopping
is known to prevent overtraining.

The binary digit images were then pre-processed in the following
steps (de Ridder, 1996):

• shearing, to put the digit upright;

• scaling of line width, to normalise the number of pixels present in the
image;

• segmenting the digit by finding the bounding box, preserving the aspect
ratio;

3Generalisation ability is defined as the probability that a trained ANN will correctly
classify an arbitrary sample, distinct from the training samples. It is therefore identical to the
test error for sufficiently large testing sets drawn from the same distribution as the training
set.
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(a) (b)

Figure 7: A digit before (a) and after (b) pre-processing.

• converting to floating point and scaling down to 16 × 16 using low-pass
filtering and linear interpolation.

Figure 7 shows an example.

3.2.2 Experiments

Instances of the LeCun ANN were trained on subsets of the training set
containing 10, 25, 50, 100, 250, 500 and 1000 samples per class. Follow-
ing (Le Cun et al., 1989a), weights and biases were initialised randomly using
a uniform distribution in the range

[
− 2.4

F , 2.4
F

]
, where F was the total fan-in of

a unit (i.e. the number of incoming weights). Back-propagation was used for
training, with a learning rate of 0.5 and no momentum. Training targets were
set to 0.9 for the output neuron coding the right digit class, and 0.1 for the
other output neurons. After training, the testing set was used to find the error.

For comparison, a number of traditional classifiers were trained as well: the
nearest mean linear classifier (which is denoted nm in the figures), the linear
and quadratic Bayes plug-in classifiers4 (lc and qc) and the 1-nearest neighbour
classifier (1nn) (see e.g. (Devijver and Kittler, 1982; Fukunaga, 1990) for a dis-
cussion on these statistical pattern classifiers). For the Bayes plug-in classifiers,
regularisation was used in calculating the 256× 256 element covariance matrix
C:

C′ = (1− r − s)C + r diag(C) +
s

256
tr(C)I (9)

where diag(C) is the matrix containing only the diagonal elements of C, tr(C) is
the trace of matrix C, and using r = s = 0.1. Furthermore, two standard feed-
forward ANNs were trained, containing one hidden layer of 256 and 512 hidden
units, respectively. Finally, support vector classifiers (SVMs, (Vapnik, 1995))
were trained with polynomial kernels of various degrees and with radial basis
kernels, for various values of σ.

4The Bayes classifier assumes models for each of the classes are known; that is, the models
can be “plugged in”. Plugging in normal densities with equal covariance matrices leads to a
linear classifier; plugging in normal densities with different covariance matrices per class leads
to a quadratic classifier.
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(b) Traditional classifiers
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(c) Polynomial SVMs
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(d) Radial basis SVMs

Figure 8: Classification errors on the testing set, for (a) the LeCun and standard
ANNs; (b) the nearest mean classifier (nm), linear and quadratic Bayes plug-
in rules (lc, qc) and the 1-nearest neighbour classifier (1nn); (c) SVMs with a
polynomial kernel function of degrees 1, 2, 4 and 6; (d) SVMs with a radial
basis kernel function, σ = 5, 10, 20.

Results are shown in figures 8 (a)-(d). The LeCun ANN performs well, better
than most traditional classifiers. For small sample sizes the LeCun ANN per-
forms better than the standard feed-forward ANNs. The 1-nearest neighbour
classifier and the standard feed-forward ANNs perform as well as the LeCun
ANN or slightly better, as do the SVMs.

In general, classifiers performing better also have many more parameters and
require more calculation in the testing phase. For example, when trained on
1,000 samples per class the LeCun ANN (2.3% error) performs slightly worse
than the 1-nearest neighbour classifier (1.8% error) and the best performing
SVMs (e.g. radial basis kernels, σ = 10: 1.4% error), but slightly better than
the 256 hidden unit feed-forward ANN (2.4% error). The LeCun ANN has
64,660 parameters, requiring as many FLOPs (floating point operations) to
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Figure 9: The LeCun ANN trained on the handwritten digit set, 1,000 sam-
ples/class. Note: for each map in the third layer, only the first set of weights
(the first filter) is depicted. Bias is not shown in the figure. In this representa-
tion, the bottom layer is the input layer.

test one sample. In contrast, the 1-nearest neighbour rule, trained on 1,000
samples per class, requires 10,000 distance calculations in 256 dimensions, i.e.
roughly 5,120,000 FLOPs. Similarly, the SVM uses a total of 8,076 support
vectors in its 10 classifiers, requiring 4,134,912 FLOPs. However, the fully
connected feed-forward ANN with 256 hidden units requires 256×256+256×10
= 68,096 FLOPs, a number comparable to the LeCun ANN. In conclusion, the
LeCun ANN seems to perform well given its limited number of parameters, but
a standard feed-forward ANN performs equally well using the same amount of
computation. This indicates that the restrictions placed on the shared weight
ANNs are not quite necessary to obtain a good performance. It also contradicts
the finding in (Solla and Le Cun, 1991) that the use of shared weights leads to
better performance.

3.2.3 Feature extraction

In figure 9, an image of the LeCun ANN trained on the entire training set
is shown. Some feature maps seem to perform operations similar to low-level
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Figure 10: Performance of various classifiers trained on data sets extracted from
the feature extraction parts of the LeCun ANN.

image processing operators such as edge detection. It is also noteworthy that the
extracted features, the outputs of the last subsampling layer, are nearly binary
(either high or low). However, visual inspection of the feature and subsampling
masks in the trained shared weight ANNs in general does not give much insight
into the features extracted. Gader et al. (Gader et al., 1995), in their work on
automatic target recognition, inspected trained feature maps and claimed they
were “... suggestive of a diagonal edge detector with a somewhat weak response”
and “... of a strong horizontal edge detector with some ability to detect corners
as well”; however, in our opinion these maps can be interpreted to perform any
of a number of image processing primitives. In the next section, a number of
simpler problems will be studied in order to learn about the feature extraction
process in shared weight ANNs.

Here, another approach is taken to investigate whether the shared weight
ANNs extract useful features: the features were used to train other classifiers.
First, the architecture was cut halfway, after the last layer of subsampling maps,
so that the first part could be viewed to perform feature extraction only. The
original training, testing and validation sets were then mapped onto the new
feature space by using each sample as input and finding the output of this first
part of the ANN. This reduced the number of features to 192. In experiments,
a number of classifiers were trained on this data set: the nearest mean linear
classifier (nm), the Bayes plug-in linear and quadratic classifier (lc and qc) and
the 1-nearest neighbour classifier (1nn). For the Bayes plug-in classifiers, the
estimate of the covariance matrix was regularised in the same way as before (9),
using r = s = 0.1. Figure 10 shows the results.

In all cases the 1-nearest neighbour classifier performed better than the clas-
sification parts of the ANNs themselves. The Bayes plug-in quadratic classifier
performed nearly as well as the ANN (compare figure 8 (a) to figure 10. Interest-
ingly, the LeCun ANN does not seem to use its 30 unit hidden layer to implement
a highly nonlinear classifier, as the difference between this ANN’s performance
and that of the Bayes plug-in quadratic classifier is very small. Clearly, for all
shared weight ANNs, most of the work is performed in the shared weight layers;
after the feature extraction stage, a quadratic classifier suffices to give good
classification performance.
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Most traditional classifiers trained on the features extracted by the shared
weight ANNs perform better than those trained on the original feature set (fig-
ure 8 (b)). This shows that the feature extraction process has been useful. In
all cases, the 1-nearest neighbour classifier performs best, even better than on
the original data set (1.7% vs. 1.8% error for 1,000 samples/class).

3.3 Discussion

A shared weight ANN architecture was implemented and applied to a handwrit-
ten digit recognition problem. Although some non-neural classifiers (such as the
1-nearest neighbour classifier and some support vector classifiers) perform bet-
ter, they do so at a larger computational cost. However, standard feed-forward
ANNs seem to perform as well as the shared weight ANNs and require the same
amount of computation. The LeCun ANN results obtained are comparable to
those found in the literature.

Unfortunately, it is very hard to judge visually what features the LeCun ANN
extracts. Therefore, it was tested on its feature extraction behaviour, by using
the output of the last subsampling map layer as a new data set in training a
number of traditional classifiers. The LeCun ANN indeed acts well as a feature
extractor, as these classifiers performed well; however, performance was in at
best only marginally better than that of the original ANN.

To gain a better understanding, either the problem will have to be simplified,
or the goal of classification will have to be changed. The first idea will be worked
out in the next section, in which simplified shared weight ANNs will be applied
to toy problems. The second idea will be discussed in sections 5 and 6, in which
feed-forward ANNs will be applied to image restoration (regression) instead of
feature extraction (classification).

4 Feature extraction in shared weight networks

This section investigates whether ANNs, in particular shared weight ANNs,
are capable of extracting “good” features from training data. In the previ-
ous section the criterion for deciding whether features were good was whether
traditional classifiers performed better on features extracted by ANNs. Here,
the question is whether sense can be made of the extracted features by in-
terpretation of the weight sets found. There is not much literature on this
subject, as authors tend to research the way in which ANNs work from their
own point of view, as tools to solve specific problems. Gorman and Se-
jnowski (Gorman and Sejnowski, 1988) inspect what kind of features are ex-
tracted in an ANN trained to recognise sonar profiles. Various other authors
have inspected the use of ANNs as feature extraction and selection tools,
e.g. (Egmont-Petersen et al., 1998b; Setiono and Liu, 1997), compared ANN
performance to known image processing techniques (Ciesielski et al., 1992) or
examined decision regions (Melnik and Pollack, 1998). Some effort has also
been invested in extracting (symbolic) rules from trained ANNs (Setiono, 1997;
Tickle et al., 1998) and in investigating the biological plausibility of ANNs
(e.g. Verschure, 1996).

An important subject in the experiments presented in this section will be the
influence of various design and training choices on the performance and feature
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Figure 11: (a) The edge samples in the edge data set. (b) The Laplacian edge
detector. (c) The magnitude of the frequency response of the Laplacian edge
detector.

extraction capabilities of shared weight ANNs. The handwritten digit exper-
iment showed that, although the LeCun ANN performed well, its complexity
and that of the data set made visual inspection of a trained ANN impossible.
For interpretation therefore it is necessary to bring both data set and ANN
complexity down to a bare minimum. Of course, many simple problems can be
created (de Ridder, 1996); here, two classification problems will be discussed:
edge recognition and simple two-class handwritten digit recognition.

4.1 Edge recognition

The problem of edge recognition is treated here as a classification problem: the
goal is to train an ANN to give high output for image samples containing edges
and low output for samples containing uniform regions. This makes it different
from edge detection, in which localisation of the edge in the sample is important
as well. A data set was constructed by drawing edges at 0◦, 15◦, . . . , 345◦ angles
in a 256× 256 pixel binary image. These images were rescaled to 16× 16 pixels
using bilinear interpolation. The pixel values were -1 for background and +1
for the foreground pixels; near the edges, intermediate values occurred due to
the interpolation. In total, 24 edge images were created. An equal number of
images just containing uniform regions of background (−1) or foreground (+1)
pixels were then added, giving a total of 48 samples. Figure 11 (a) shows the
edge samples in the data set.

The goal of this experiment is not to build an edge recogniser performing bet-
ter than traditional methods; it is to study how an ANN performs edge recog-
nition. Therefore, first a theoretically optimal ANN architecture and weight
set will be derived, based on a traditional image processing approach. Next,
starting from this architecture, a series of ANNs with an increasing number of
restrictions will be trained, based on experimental observations. In each trained
ANN, the weights will be inspected and compared to the calculated optimal set.
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Figure 12: A sufficient ANN architecture for edge recognition. Weights and
biases for hidden units are indicated by wpo and bp respectively. These are the
same for each unit. Each connection between the hidden layer and the output
layer has the same weight wqp and the output unit has a bias bq. Below the
ANN, the image processing operation is shown: convolution with the Laplacian
template fL, pixel-wise application of the sigmoid f(.), (weighted) summation
and another application of the sigmoid.

4.1.1 A sufficient network architecture

To implement edge recognition in a shared weight ANN, it should consist of at
least 3 layers (including the input layer). The input layer contains 16×16 units.
The 14×14 unit hidden layer will be connected to the input layer through a 3×3
weight receptive field, which should function as an edge recognition template.
The hidden layer should then, using bias, shift the high output of a detected
edge into the nonlinear part of the transfer function, as a means of thresholding.
Finally, a single output unit is needed to sum all outputs of the hidden layer
and rescale to the desired training targets. The architecture described here is
depicted in figure 12.

This approach consists of two different subtasks. First, the image is convolved
with a template (filter) which should give some high output values when an
edge is present and low output values overall for uniform regions. Second, the
output of this operation is (soft-)thresholded and summed, which is a nonlinear
neighbourhood operation. A simple summation of the convolved image (which
can easily be implemented in a feed-forward ANN) will not do. Since convolution
is a linear operation, for any template the sum of a convolved image will be equal
to the sum of the input image multiplied by the sum of the template. This means
that classification would be based on just the sum of the inputs, which (given
the presence of both uniform background and uniform foreground samples, with
sums smaller and larger than the sum of an edge image) is not possible. The
data set was constructed like this on purpose, to prevent the ANN from finding
trivial solutions.

As the goal is to detect edges irrespective of their orientation, a rotation-
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invariant edge detector template is needed. The first order edge detectors known
from image processing literature (Pratt, 1991; Young et al., 1998) cannot be
combined into one linear rotation-invariant detector. However, the second order
Laplacian edge detector can be. The continuous Laplacian,

fL(I) =
∂2I

∂x2
+

∂2I

∂y2
(10)

can be approximated by the discrete linear detector shown in figure 11 (b). It is
a high-pass filter with a frequency response as shown in figure 11 (c). Note that
in well-sampled images only frequencies between −π

2 and π
2 can be expected to

occur, so the filters behaviour outside this range is not critical. The resulting
image processing operation is shown below the ANN in figure 12.

Using the Laplacian template, it is possible to calculate an optimal set of
weights for this ANN. Suppose the architecture just described is used, with
double sigmoid transfer functions. Reasonable choices for the training targets
then are t = 0.5 for samples containing an edge and t = −0.5 for samples
containing uniform regions. Let the 3 × 3 weight matrix (wpo in figure 12)
be set to the values specified by the Laplacian filter in figure 11 (b). Each
element of the bias vector of the units in the hidden layer, bp, can be set to e.g.
bp
opt = 1.0.
Given these weight settings, optimal values for the remaining weights can be

calculated. Note that since the DC component5 of the Laplacian filter is zero,
the input to the hidden units for samples containing uniform regions will be just
the bias, 1.0. As there are 14 × 14 units in the hidden layer, each having an
output of f(1) ≈ 0.4621, the sum of all outputs Op will be approximately 196 ·
0.4621 = 90.5750. Here f(·) is the double sigmoid transfer function introduced
earlier.

For images that do contain edges, the input to the hidden layer will look like
this:

-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⊗
0 1 0
1 -4 1
0 1 0

=
0 0 0 0
2 2 2 2

-2 -2 -2 -2
0 0 0 0

(11)

There are 14 × 14 = 196 units in the hidden layer. Therefore, the sum of the
output Op of that layer for a horizontal edge will be:∑

i

Op
i = 14f(2 + bp

opt) + 14f(−2 + bp
opt) + 168f(bp

opt)

= 14f(3) + 14f(−1) + 168f(1)
≈ 14 · 0.9051 + 14 · (−0.4621) + 168 · 0.4621 = 82.0278 (12)

These values can be used to find the wqp
opt and bq

opt necessary to reach the targets.
Using the inverse of the transfer function,

f(x) =
2

1 + e−x
− 1 = a ⇒ f−1(a) = ln

(
1 + a

1− a

)
= x, a ∈ 〈−1, 1〉 (13)

5The response of the filter at frequency 0, or equivalently, the scaling in average pixel value
in the output image introduced by the filter.
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the input to the output unit, Iq =
∑

i Op
i wqp

i + bq =
∑

i Op
i wqp

opt + bq
opt = 0,

should be equal to f−1(t), i.e.:

edge: t = 0.5 ⇒ Iq = 1.0986
uniform: t = −0.5 ⇒ Iq = −1.0986 (14)

This gives:

edge: 82.0278 wqp
opt + bq

opt = 1.0986
uniform: 90.5750 wqp

opt + bq
opt = −1.0986 (15)

Solving these equations gives wqp
opt = −0.2571 and bq

opt = 22.1880.
Note that the bias needed for the output unit is quite high, i.e. far away from

the usual weight initialisation range. However, the values calculated here are all
interdependent. For example, choosing lower values for wpo and bp

opt will lead
to lower required values for wqp

opt and bq
opt. This means there is not one single

optimal weight set for this ANN architecture, but a range.

4.1.2 Training

Starting from the sufficient architecture described above, a number of ANNs
were trained on the edge data set. The weights and biases of each of these
ANNs can be compared to the optimal set of parameters calculated above.

An important observation in all experiments was that as more restric-
tions were placed on the architecture, it became harder to train. There-
fore, in all experiments the conjugate gradient descent (CGD, Shewchuk, 1994;
Hertz et al., 1991; Press et al., 1992) training algorithm was used. This algo-
rithm is less prone to finding local minima or diverging than back-propagation,
as it uses a line minimisation technique to find the optimal step size in each iter-
ation. The method has only one parameter, the number of iterations for which
the directions should be kept conjugate to the previous ones. In all experiments,
this was set to 10.

Note that the property that makes CGD a good algorithm for avoiding local
minima also makes it less fit for ANN interpretation. Standard gradient descent
algorithms, such as back-propagation, will take small steps through the error
landscape, updating each weight proportionally to its magnitude. CGD, due
to the line minimisation involved, can take much larger steps. In general, the
danger is overtraining: instead of finding templates or feature detectors that are
generally applicable, the weights are adapted too much to the training set at
hand. In principle, overtraining could be prevented by using a validation set, as
was done in section 3. However, here the interest is in what feature detectors
are derived from the training set rather than obtaining good generalisation. The
goal actually is to adapt to the training data as well as possible. Furthermore,
the artificial edge data set was constructed specifically to contain all possible
edge orientations, so overtraining cannot occur. Therefore, no validation set
was used.

All weights and biases were initialised by setting them to a fixed value of
0.01, except where indicated otherwise6. Although one could argue that random

6Fixed initialisation is possible here because units are not fully connected. In fully con-
nected ANNs, fixed value initialisation would result in all weights staying equal throughout
training.
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Figure 13: (a) The template and (b) the magnitude of its frequency response, (c)
hidden layer bias weights and (c) weights between the hidden layer and output
layer, as found in ANN1.

initialisation might lead to better results, for interpretation purposes it is best
to initialise the weights with small, equal values.

ANN1: The sufficient architecture The first ANN used the shared weight
mechanism to find wpo. The biases of the hidden layer, bp, and the weights
between hidden and output layer, wqp, were not shared. Note that this ANN
already is restricted, as receptive fields are used for the hidden layer instead
of full connectivity. However, interpreting weight sets of unrestricted, fully
connected ANNs is quite hard due to the excessive number of weights – there
would be a total of 50,569 weights and biases in such an ANN.

Training this first ANN did not present any problem; the MSE quickly
dropped, to 1 × 10−7 after 200 training cycles. However, the template weight
set found – shown in figures 13 (a) and (b) – does not correspond to a Laplacian
filter, but rather to a directed edge detector. The detector does have a zero
DC component. Noticeable is the information stored in the bias weights of the
hidden layer bp (figure 13 (c)) and the weights between the hidden layer and
the output layer, wqp (figure 13 (d)). Note that in figure 13 and other figures in
this section, individual weight values are plotted as grey values. This facilitates
interpretation of weight sets as feature detectors. Presentation using grey values
is similar to the use of Hinton diagrams (Hinton et al., 1984).

Inspection showed how this ANN solved the problem. In figure 14, the dif-
ferent processing steps in ANN classification are shown in detail for three input
samples (figure 14 (a)). First, the input sample is convolved with the template
(figure 14 (b)). This gives pixels on and around edges high values, i.e. highly
negative (-10.0) or highly positive (+10.0). After addition of the hidden layer
bias (figure 14 (c)), these values dominate the output. In contrast, for uniform
regions the bias itself is the only input of the hidden hidden layer units, with val-
ues approximately in the range [−1, 1]. The result of application of the transfer
function (figure 14 (d)) is that edges are widened, i.e. they become bars of pixels
with values +1.0 or -1.0. For uniform regions, the output contains just the two
pixels diagonally opposite at the centre, with significantly smaller values.

The most important region in these outputs is the centre. Multiplying this
region by the diagonal +/- weights in the centre and summing gives a very
small input to the output unit (figure 14 (e)); in other words, the weights cancel
the input. In contrast, as the diagonal -/+ pair of pixels obtained for uniform
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Figure 14: Stages in ANN1 processing, for three different input samples: (a)
the input sample; (b) the input convolved with the template; (c) the total input
to the hidden layer, including bias; (d) the output of the hidden layer and (e)
the output of the hidden layer multiplied by the weights between hidden and
output layer.

samples is multiplied by a diagonal pair of weights of the opposite sign, the
input to the output unit will be negative. Finally, the bias of the output unit
(not shown) shifts the input in order to obtain the desired target values t = 0.5
and t = −0.5.

This analysis shows that the weight set found is quite different from the
optimal one calculated in section 4.1.1. As all edges pass through the centre
of the image, the edge detector need not be translation-invariant: information
on where edges occur is coded in both the hidden layer bias and the weights
between the hidden layer and the output layer.

ANN2: Sharing more weights To prevent the ANN from coding place-
specific information in biases and weights, the architecture will have to be sim-
plified further. As a restriction, in the next ANN architecture the weights
between the hidden layer and output layer were shared. That is, there was one
single weight shared among all 196 connections between the hidden units and
the output unit. Training took more time, but converged to a 1 × 10−6 MSE
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Figure 15: (a) The template, (b) the magnitude of its frequency response and
(b) hidden layer bias weights as found in ANN2.

after 2,400 cycles. Still, the network does not find a Laplacian; however, the
template found (figure 15 (a) and (b)) has a more clear function than the one
found before. It is a strong detector for edges with slope −45◦, and a weak
detector for edges with slope 45◦.

In the bias weights of the hidden layer (figure 15 (c)), place-specific informa-
tion is now stored for edges which are not amplified well by this detector. Bias
weight values are also significantly higher than before (an average of -1.2144).
This allows the ANN to use the transfer function as a threshold operation, by
scaling large positive pixel values differently from large negative pixel values.
In conclusion, responsibility for edge recognition is now shared between the
template and the bias weights of the hidden layer.

ANN3: Sharing bias As the biases of hidden layer units are still used for
storing place-dependent information, in the next architecture these biases were
shared too7. Training became even harder; the ANN would not converge using
the initialisation used before, so weights were initialised to a fixed value of 0.1.
After 1,000 episodes, the MSE reached 8 × 10−4, just slightly higher than the
minimal error possible (at 3 × 10−4, larger than zero due to the interpolation
used in scaling the edge samples). The template found is shown in figures 16 (a)
and (b).

Note that the template now looks like a Laplacian edge detector; its frequency
response is similar to that of the Laplacian in the range

[
−π

2 , π
2

]
. However, there

are still small differences between various weights which are equal in the true
Laplacian. In fact, the filter seems to be slightly tilted, with the top left corner
containing weights with higher magnitude. Also, the frequency response shows
that the filter gives a bandpass response in diagonal directions. To obtain a
more Laplacian-like template, further restrictions will have to be placed on the
ANN.

ANN4: Enforcing symmetry In the last ANN, the prior knowledge that
the goal is to obtain a rotation-invariant filter was used as well, by sharing

7Sharing biases would have required a major rewrite of the simulation package used,
SPRLIB/ANNLIB (Hoekstra et al., 1996). Therefore, biases were shared by replacing all
biases by their average after each training cycle.
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Figure 16: (a) The template found in ANN3 and (b) the magnitude of its
frequency response. (c) The template found in ANN4 and (d) the magnitude of
its frequency response.

weights in the filter itself. The mask used for this purpose was:

A B A

B C B

A B A

(16)

i.e. connections with identical mask letters used shared weights. Note that in
this ANN there are only 6 free parameters left: the three weights in the mask,
a bias weight for both the hidden and output layer and one weight between the
hidden and output layer.

Training was again more cumbersome, but after initialising weights with a
fixed value of 0.1 the ANN converged after 1,000 episodes to an MSE of 3×10−4.
The filter found is shown in figures 16 (c) and (d). Finally, a solution similar to
the optimal one was found: its frequency response is like that of the Laplacian
in the range

[
−π

2 , π
2

]
and the weights are symmetric.

4.1.3 Discussion

The experiments described in this section show that ANNs can be used as
edge detectors. However, the presence of receptive fields in the architecture in
itself does not guarantee that shift-invariant feature detectors will be found,
as claimed by some (Le Cun et al., 1990; Le Cun et al., 1989b; Viennet, 1993).
Also, the mere fact that performance is good (i.e., the MSE is low) does not
imply that such a feature extraction process is used. An important observation
in ANN1 and ANN2 was that the ANN will use weights and biases in later
layers to store place-dependent information. In such a network, where edge
positions are stored, in principle any template will suffice. Obviously, this makes
interpretation of these templates dubious: different observers may find the ANN
has learned different templates. One reason for the ease with which ANNs store
place-dependent information might be the relative simplicity of the dataset: the
fact that edges all passed through the centre of the image makes this possible.
Therefore, in the next section similar ANNs will be trained on a real-world
dataset.

When the ANNs were further restricted by sharing biases and other weights
(ANN3), convergence became a problem. The explanation for this is that the
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Figure 17: The two-class handwritten digit data set.

optimal weight set is rather special in ANN terms, as the template has to have
a zero DC component (i.e., its weights have to add up to zero). Although
this seems to be a trivial demand, it has quite large consequences for ANN
training. Optimal solutions correspond to a range of interdependent weights,
which will result in long, narrow valleys in the MSE “landscape”. A small
perturbation in one of the template weights will have large consequences for the
MSE. Simple gradient descent algorithms such as back-propagation will fail to
find these valleys, so the line-optimisation step used by CGD becomes crucial.

The last ANN, ANN4, was able to find an edge detector very similar to the
Laplacian. However, this architecture was restricted to such an extent that it
can hardly be seen as representative for practical application of ANNs. This
indicates there is a trade-off between complexity and the extent to which ex-
periments are true-to-life on the one hand, and the possibility of interpretation
on the other. This effect might be referred to as a kind of ANN interpretability
trade-off 8. If an unrestricted ANN is trained on a real-world data set, the setup
most closely resembles the application of ANNs in everyday practice. However,
the subtleties of the data set and the many degrees of freedom in the ANN
prevent gaining a deeper insight into the operation of the ANN. On the other
side, once an ANN is restrained, e.g. by sharing or removing weights, lowering
the number of degrees of freedom or constructing architectures only specifically
applicable to the problem at hand, the situation is no longer a typical one. The
ANN may even become too constrained to learn the task at hand. The same
holds for editing a data set to influence its statistics or to enhance more prefer-
able features with regard to ANN training, which will be discussed in section 6.

4.2 Two-class handwritten digit classification

To construct a more real-life dataset while still maintaining the expectation
that weights can be interpreted, experiments with a small NIST subset were
performed. This subset consisted of 10 samples each of the classes “1” and “7”,
shown in figure 17. The 16× 16 pixel values were scaled linearly between −1.0
(background) and 1.0 (foreground). Training targets were set to t = 0.5 for
class “1” and t = −0.5 for class “7”.

For this problem, it is already impossible to find an architecture and weight
set by hand which will give minimal error. The receptive fields in the ANNs are

8Note that this is not precisely the same issue as addressed by the bias-variance trade-
off (see page 8), which is concerned with the relation between model complexity and error.
The concern here is with the specificity of the model with respect to interpretation which, in
principle, is unrelated to complexity: making a model more specific need not introduce a bias.
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expected to act as feature detectors, extracting characteristic shapes from the
data. Beforehand, it is quite hard to indicate by hand which weight sets will
detect the most salient features. However, as the width of the strokes in the
digit images lies in the range 3− 5 pixels, feature detectors should have widths
and heights roughly in the range 3− 7 pixels.

The starting point therefore will be the ANN used for edge recognition, shown
in figure 12. However, three different architectures will be used. The first has
a 3 × 3 pixel receptive field and 14 × 14 = 196 units in the hidden layer, the
second contains a 5× 5 pixel receptive field and 12× 12 = 144 hidden units and
the last contains a 7 × 7 pixel receptive field and 10 × 10 = 100 hidden units.
As for this data set it is to be expected that using more than one feature map
will increase performance, architectures using two feature maps were trained as
well. In this case, the number of hidden units doubles.

4.2.1 Training

Most ANNs were rather hard to train, again due to the restrictions placed on
the architecture. CGD was used with 10 steps during which directions were
kept conjugate. All ANN weights and biases were initialised using a fixed value
of 0.01, except where indicated otherwise. For most restricted architectures,
reaching an MSE of exactly 0 proved to be impossible. Therefore, training was
stopped when the MSE reached a sufficiently low value, 1.0× 10−6.

ANN1: Unrestricted The first ANNs were identical to the one shown in
figure 12, except for the fact that three different ANNs were trained with 3× 3
(ANN3×3

1 ), 5× 5 (ANN5×5
1 ) and 7× 7 (ANN7×7

1 ) pixel receptive fields, respec-
tively. These ANNs quickly converged to a nearly zero MSE: after 250 training
cycles, the MSE was in the order of 1 × 10−10. The feature detectors found,
shown in figure 18 (a), are not very clear however. The frequency responses
(figure 18 (b)) give more information. The filters most closely resemble horizon-
tal edge detectors: note the basic shape returning for the three sizes of feature
detector.

As was the case in the edge recognition ANNs, the weights between the hid-
den layer and the output unit have been used to store positions of the digits.
Figure 18 (c) illustrates this. Positive weights indicate pixel positions where
typically only class “7” samples have high values; negative weights indicate po-
sitions where class “1” is present. Although noisy, these same basic shapes are
present for each size of the receptive field.

In contrast to what was found for the edge recognition ANNs, the bias weights
in the second layer were not used heavily. Bias values fell roughly in the range[
−2× 10−2, 2× 10−2

]
, i.e. negligible in comparison to feature detector weight

values.
ANN2: Fully restricted In the next architecture, the number of weights

was restricted by sharing weights between hidden layer and output layer and by
sharing the bias weights in the second layer (i.e., the basic architecture was the
same as ANN3 for edge recognition, on page 30). As a consequence, there were
far fewer parameters left in the ANNs: the number of weights in the feature
detector plus two biases and one weight between hidden and output layer.

Training became quite a bit harder. It did not converge for the ANN with the
3× 3 pixel receptive field; the MSE oscillated around 1.5× 10−2. For the other
two ANNs, training was stopped when the MSE fell below 1×10−6, which took
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2000 cycles for the 5× 5 pixel receptive field ANN and 1450 cycles for the 7× 7
pixel receptive field ANN.

The feature detectors found are shown in figure 19. Note that since the 3× 3
receptive field ANN did not converge, the resulting filter cannot be interpreted.
Since the weights between hidden layer and output layer can no longer be used,
the feature detectors of the other two look rather different. The 5 × 5 pixel
feature detector is the most pronounced: it is a detector of 3-pixel wide bars
with a slope of 45◦. Evidence for this can also be found by inspecting the output
of the hidden layer for various inputs, as shown in figure 20. In the location of
the stem of the “7”s, output values are much higher than those in the location
of the stem of the “1”s. Finally, the function of the 7× 7 pixel feature detector
is unclear.

From these results, it is clear that a feature detector size of 3× 3 pixels is too
small. On the other hand, although the 7× 7 pixel feature detector gives good
performance, it cannot be interpreted well. The 5 × 5 pixel feature detector
seems to be optimal. Therefore, from here on only 5× 5 pixel feature detectors
will be considered.

ANN3: Two feature maps Although the frequency response of the 5 × 5
pixel feature detector is clearer than the others, the filter itself is still noisy, i.e.
neighbouring weights have quite different values. There is no clear global feature
(within a 5 × 5 pixel region) that corresponds to this detector. The reason
for this might be that in fact several features are detected (either amplified
or attenuated) using this one set of weights. Therefore, ANN3 contained two
feature maps instead of one. In all other respects, the ANN was the same as
ANN5×5

2 , as shown in figure 21.
If this ANN is initialised using a fixed value, the two feature detectors will

always remain identical, as each corresponding weight in the two detectors is
equally responsible for the error the ANN makes. Therefore, random initialisa-
tion is necessary. This frustrates interpretation, as different initialisations will
lead to different final weight sets. To illustrate this, four ANNs were trained in
which weights were initialised using values drawn from a uniform distribution
with range [−0.01, 0.01]. Figure 22 shows four resulting template pairs. The
feature detector found before in ANN5×5

2 (figure 19) often returns as one of the
two feature maps. The other feature detector however shows far more variation.
The instantiation in the second row of figure 22 (b) looks like the horizontal
edge detector found in ANN1 (figures 18 (a), (b)), especially when looking at its
frequency response (in the fourth column). However, in other ANNs this shape
does not return. The first and fourth ANN indicate that actually multiple fea-
ture detectors may be distributed over the two feature maps.

To allow inspection of weights, initialisation with fixed values seems to be a
prerequisite. To allow this, the training algorithm itself should allow initially
identical weights to take on different values during training. The next section
will introduce a training algorithm developed specifically for training ANNs with
the goal of weight interpretation.

4.2.2 Decorrelating conjugate gradient descent

The last experiment on the NIST subset showed that interpretation of ANNs
with multiple feature detectors is difficult. The main causes are the random
weight initialisation required and a tendency of the ANNs to distribute features
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to be detected in a non-obvious way over receptive fields. To address the latter
problem, hidden units learning identical functions, a modular approach has been
suggested (Jacobs et al., 1991). However, this is not applicable in cases in which
there is no clear decomposition of a task’s input space into several domains.

To allow fixed value weight initialisation and still obtain succinct feature
detectors, a new training algorithm will be proposed. The algorithm is based
on CGD, but has as a soft constraint the minimisation of the squared covariance
between receptive fields. In this way, the symmetry between feature detectors
due to fixed value initialisation can be broken, and receptive field weight sets
are forced to become orthogonal while still minimising the ANN’s MSE.

Decorrelation Note that, in trained ANNs, weight sets belonging to different
receptive fields need not be exactly the same for the feature maps to perform the
same function. This is because weights are interdependent, as was already noted
in section 4.1.1. As an example, consider the weight vectors wpo,A and wpo,B

(from here on, wA and wB) in ANN3 (figure 21). As long as wA = c1wB + c2,
biases in the hidden and output layer and the weights between these layers can
correct the differences between the two weight sets, and their functionality can
be approximately identical9. The conclusion is that to compare weight sets, one
has to look at their correlation.

Suppose that for a certain layer in an ANN (as in figure 21) there are two
incoming weight vectors wA and wB , both with K > 2 elements and var(wA) >
0 and var(wB) > 0. The correlation coefficient C between these vectors can be
calculated as:

C(wA,wB) =
cov(wA,wB)√
var(wA)var(wB)

(17)

The correlation coefficient C(wA,wB) is a number in the range [−1, 1]. For
C(wA,wB) = ±1, there is a strong correlation; for C(wA,wB) = 0 there is no
correlation. Therefore, the squared correlation C(wA,wB)2 can be minimised
to minimise the likeness of the two weight sets.

Although this seems a natural thing to do, a problem is that squared cor-
relation can be minimised either by minimising the squared covariance or by
maximising the variance of either weight vector. The latter is undesirable, as
for interpretation the variance of one of the weight vectors should not be un-
necessarily increased just to lower the squared correlation. Ideally, both weight
vectors should have comparable variance. Therefore, a better measure to min-
imise is just the squared covariance. To do this, the derivative of the covariance
w.r.t. a single weight wA

i has to be computed:

∂cov(wA,wB)2

∂wA
i

=
∂

∂wA
i

(
1
K

∑K
k=1(w

A
k −wA)(wB

k −wB)
)2

=
2
K

cov(wA,wB)(wB
i −wB) (18)

This derivative can then be used in combination with the derivative of the MSE
w.r.t. the weights to obtain a training algorithm minimising both MSE and
squared covariance (and therefore squared correlation, because the variance of

9Up to a point, naturally, due to the nonlinearity of the transfer functions in the hidden
and output layer. For this discussion it is assumed the network operates in that part of the
transfer function which is still reasonably linear.
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the weight vectors will remain bounded since the ANN still has to minimise the
MSE).

Correlation has been used before in neural network training. In the cascade
correlation algorithm (Fahlman and Lebiere, 1990), it is used as a tool to find
an optimal number of hidden units by taking the correlation between a hidden
unit’s output and the error criterion into account. However, it has not yet been
applied on weights themselves, to force hidden units to learn different functions
during training.

A decorrelating training algorithm Squared covariance minimisation was
incorporated into the CGD method used before. Basically, CGD iteratively
applies three stages:

• calculation of the derivative of the error w.r.t. the weights, dE = ∂
∂wE(w);

• deriving a direction h from dE which is conjugate to previously taken
directions;

• a line minimisation of E from w along h to find a new weight vector w′.

The squared covariance term was integrated into the derivative of the error
function as an additive criterion, as in weight regularisation (Bishop, 1995). A
problem is how the added term should be weighted (cf. choosing the regularisa-
tion parameter). The MSE can start very high but usually drops rapidly. The
squared covariance part also falls in the range [0,∞〉, but it may well be the
case that it cannot be completely brought down to zero, or only at a significant
cost to the error. The latter effect should be avoided: the main training goal is
to reach an optimal solution in the MSE sense. Therefore, the covariance infor-
mation is used in the derivative function only, not in the line minimisation. The
squared covariance gradient, dcov, is normalised to the length of the ordinary
gradient dE (just its direction is used) and weighed with a factor λ; i.e. d =
dE + λ ||dE ||

||dcov||d
cov, where dcov = 2

K(K−1)

∑K−1
k=1

∑K
l=k+1

∂
∂wcov(wk(0),wl(0))2.

Note that the derivative of the squared covariance is only calculated once for
each pair of weight sets and attributed to only one of the weight sets. This allows
one weight set to learn a globally optimal function, while the second set is trained
to both lower the error and avoid covariance with the first set. It also allows ini-
tialisation with fixed values, since the asymmetrical contribution of the squared
covariance term provides a symmetry breaking mechanism (which can even im-
prove performance in some classification problems, see de Ridder et al., 1999).
However, the outcome of the DCGD training process is still dependent on the
choice of a number of parameters. DCGD even introduces a new one (the weight
factor λ). If the parameters are chosen poorly, one will still not obtain under-
standable feature detectors. This is a problem of ANNs in general, which cannot
be solved easily: a certain amount of operator skill in training ANNs is a pre-
requisite for obtaining good results. Furthermore, experiments with DCGD are
reproducable due to the possibility of weight initialisation with fixed values.

The DCGD algorithm is computationally expensive, as it takes covariances
between all pairs of receptive fields into account. Due to this O(n2) complexity
in the number of receptive fields, application of this technique to large ANNs
is not feasible. A possible way to solve this problem would be to take only a
subset of covariances into account.
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4.2.3 Training ANN3 using DCGD

ANN3 was trained using DCGD. Weights and biases were initialised to a fixed
value of 0.01 (i.e. µ = 0.01, σ = 0.0) and N = 10 directions were kept conjugate
at a time. The only parameter varied was the weighting factor of the squared
covariance gradient, λ, which was set to 0.5, 1, 2 and 5. Training converged
but was slow. The MSE eventually reached the values obtained using CGD
(1.0 × 10−6, cf. section 4.2.1); however, DCGD training was stopped when
the MSE reached about 1.0 × 10−5, after about 500-1000 cycles, to prevent
overtraining. In all cases, classification was perfect.

Figure 23 shows the feature detectors found in ANN3 trained using DCGD.
Squared correlations C2 between them are very small, showing that the min-
imisation was succesful (the squared covariance was, in all cases, nearly 0). For
λ = 1 and λ = 2, the feature detectors are more clear than those found using
standard CGD, in section 44.24.2.1 Their frequency responses resemble those of
the feature detectors shown in figure 22 (b) and, due to the fixed weight initiali-
sation, are guaranteed to be found when training is repeated. However, λ should
be chosen with some care; if it is too small (λ = 0.5), the squared covariance
term will have too little effect; if it is too large (λ = 5), minimisation of the
squared covariance term becomes too important and the original functionality
of the network is no longer clearly visible.

The features detected seem to be diagonal bars, as seen before, and horizontal
edges. This is confirmed by inspecting the output of the two feature maps in
ANN3 trained with DCGD, λ = 1, for a number of input samples (see figure 24).
For samples of class “1”, these outputs are lower than for class “7”, i.e. features
specific for digits of class “7” have been found. Furthermore, the first feature
detector clearly enhances the stem of “7” digits, whereas the second detector
amplifies the top stroke.

Finally, versions of ANN3 with three and four feature maps were also trained
using DCGD. Besides the two feature detectors found before no clear new feature
detectors were found.

4.3 Discussion

The experiments in this section were performed to find whether training ANNs
with receptive field mechanisms leads to the ANN finding useful, shift-invariant
features and if a human observer could interpret these features. In general, it
was shown that the mere presence of receptive fields in an ANN and a good
performance do not mean that shift-invariant features are detected. Interpreta-
tion was only possible after severely restricting the ANN architecture, data set
complexity and training method.

One thing all experiments had in common was the use of ANNs as classifiers.
Classification is a “derived” goal, i.e. the task is assigning (in principle arbi-
trary) outputs, representing class labels, to input samples. The ANN is free to
choose which features to use (or not) to reach this goal. Therefore, to study the
way in which ANNs solve problems moving to regression problems might yield
results more fit for interpretation, especially when a regression problem can be
decomposed into a number of independent subproblems. The next sections will
study the use of ANNs as nonlinear filters for image enhancement.
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Figure 18: (a) Feature detectors found in the receptive fields of ANN3×3
1 ,

ANN5×5
1 and ANN7×7

1 . (b) The corresponding frequency response magnitudes.
(c) Weights between hidden layer and output layer.
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Figure 19: (a) The feature detectors found in the receptive fields of ANN3×3
2 ,

ANN5×5
2 and ANN7×7

2 . (b) The corresponding frequency response magnitudes.
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Figure 21: ANN3, with two 5 × 5 pixel feature detectors. Biases and weights
between the hidden layer and output layer have not been indicated.
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Figure 22: Feature detector pairs found in ANN3, for four different random
weight initialisations ((a)-(d)).
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(d) λ = 5: C2 = 4.0× 10−8

Figure 23: Feature detector pairs found in ANN3 using DCGD with various
values of weight factor λ ((a)-(d)). C2 is the squared correlation between the
feature detectors after training.
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Figure 24: The output of (a) the first and (b) the second feature map of ANN3

trained with DCGD (λ = 1), for two samples of class “1” (left) and two samples
of class “7” (right). The samples used were, for both digits, the leftmost two in
figure 17.
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5 Regression networks for image restoration

This section will study whether standard regression feed-forward ANNs can be
applied successfully to a nonlinear image filtering problem. If so, what are the
prerequisites for obtaining a well-functioning ANN? A second question (as in the
previous section) is whether these ANNs correspond to classic image processing
approaches to solve such a task. Note that again the goal here is not to simply
apply ANNs to an image processing problem, nor to construct an ANN that
will perform better at it than existing techniques. Instead, the question is to
what extent ANNs can learn the nonlinearities needed in some image processing
applications.

To investigate the possibilities of using feed-forward ANNs and the prob-
lems one might encounter, the research concentrates on a single exam-
ple of a nonlinear filter: the Kuwahara filter for edge-preserving smooth-
ing (Kuwahara et al., 1976). Since this filter is well-understood and the train-
ing goal is exactly known, it is possible to investigate to what extent ANNs
are capable of performing this task. The Kuwahara filter also is an excellent
object for this study because of its inherent modular structure, which allows
splitting the problem into smaller parts. This is known to be an advantage in
learning (Anand et al., 1995) and gives the opportunity to study subproblems
in isolation. (Pugmire et al., 1998) looked at the application of ANNs to edge
detection and found that structuring learning in this way can improve perfor-
mance; however, they did not investigate the precise role this structuring plays.

ANNs have previously been used as image filters, as discussed in sec-
tion 22.32.3.1 However, the conclusion was that in many applications the ANNs
were non-adaptive. Furthermore, where ANNs were adaptive, a lot of prior
knowledge of the problem to be solved was incorporated in the ANN’s architec-
tures. Therefore, in this section a number of modular ANNs will be constructed
and trained to emulate the Kuwahara filter, incorporating prior knowledge in
various degrees. Their performance will be compared to standard feed-forward
ANNs. Based on results obtained in these experiments, in section 6 it is shown
that several key factors influence ANN behaviour in this kind of task.

5.1 Kuwahara filtering

The Kuwahara filter is used to smooth an image while preserving the
edges (Kuwahara et al., 1976). Figure 25 (a) illustrates its operation. The input
of the filter is a (2k−1)×(2k−1) pixel neighbourhood around the central pixel.
This neighbourhood is divided into 4 overlapping subwindows Wi, i = 1, 2, 3, 4,
each of size k × k pixels. For each of these subwindows, the average µi and
the variance σ2

i of the k2 grey values is calculated. The output of the filter is
then found as the average µm of the subwindow Wm having the smallest grey
value variance (m = arg mini σ2

i ). This operation can be applied in a scan-wise
manner to filter an entire image. For an example of the effect of the filter, see
figure 26.

The filter is nonlinear. As the selection of the subwindow based on the vari-
ances is data-driven, edges are not blurred as in normal uniform filtering. Since
a straight edge will always lie in at most three subwindows, there will always
be at least one subwindow that does not contain an edge and therefore has low
variance. For neighbouring pixels in edge regions, different subwindows will be
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Figure 25: (a) The Kuwahara filter: k × k subwindows in a (2k − 1)× (2k − 1)
window; here k = 3. (b) Kuwahara filter operation as a sequence of operations.

selected (due to the minimum operation), resulting in sudden large differences
in grey value. Typically, application of the Kuwahara filter to natural images
will result in images which have an artificial look but which may be more easily
segmented or interpreted.

This filter was selected for this research since:

• It is nonlinear. If ANNs can be put to use in image processing, the most
rewarding application will be one to nonlinear rather than linear image
processing. ANNs are most often used for learning (seemingly) highly
complex, nonlinear tasks with many parameters using only a relatively
small number of samples.

• It is modular (figure 25 (b) illustrates this). This means the operation
can be split into subtasks which can perhaps be learned more easily than
the whole task at once. It will be interesting to see whether an ANN will
need this modularity and complexity in order to approximate the filter’s
operation. Also, it offers the opportunity to study an ANN’s operation in
terms of the individual modules.

5.2 Architectures and experiments

In the previous section, it was shown that when studying ANN properties, such
as internal operation (which functions are performed by which hidden units) or
generalisation capabilities, one often encounters a phenomenon which could be
described as an ANN interpretability trade-off (section 4.1.3). This trade-off,
controlled by restricting the architecture of an ANN, is between the possibility
of understanding how a trained ANN operates and the degree to which the
experiment is still true-to-life. In order to cover the spectrum of possibilities, a
number of modular ANNs with varying degrees of freedom was constructed. The
layout of such a modular ANN is shown in figure 27. Of the modular ANNs, four
types were created, ANNM

1 . . . ANNM
4 . These are discussed below in descending

order of artificiality; i.e., the first is completely hand-designed, with every weight
set to an optimal value, while the last consists of only standard feed-forward
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(a) Image A (b) Image B (c) Image C

Figure 26: Images used for (a) training and (b)-(c) testing purposes. The top
images are the originals; the bottom images are the Kuwahara filtered versions
(for image A, the training target). For presentation purposes, the contrast of
the images has been stretched (Young et al., 1998).

modules.

5.2.1 Modular networks

Each modular ANN consists of four modules. In the four types of modular
ANN, different modules are used. These types are:

• For ANNM
1 , the modules were hand-designed for the tasks they are to per-

form. In some cases, this meant using other than standard (i.e. sigmoid,
linear) transfer functions and very unusual weight settings. Figure 29 shows
the four module designs and the weights assigned to their connections:

– The average module (MODAvg, figure 29 (a)) uses only linear transfer
functions in units averaging the inputs. Four of these modules can be
used to calculate µ1, ..., µ4.

– The variance module (MODVar, figure 29 (b)) uses a submodule (on
the left) to calculate the average of the subwindow it is presented. The
other submodule (on the right) just transports the original data to lower
layers10. The calculated averages are then subtracted from the original
inputs, followed by a layer of units using a f(a) = tanh2(a) transfer
function to approximate the square of the input11 (see figure 28 (a)).
Four of these modules can be used to find σ2

1 , . . . , σ2
4 .

10This part is not strictly necessary, but was incorporated since links between non-adjacent
layers are difficult to implement in the software package used (Hoekstra et al., 1996).

11This function is chosen since it approximates a2 well on the interval it will be applied to,
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Figure 27: A modular ANN. MODAvg, MODVar, MODPos and MODSel denote
the ANN modules, corresponding to the operations shown in figure 25 (b). The
top layer is the input layer. In this figure, shaded boxes correspond to values
transported between modules, not units.

– The position-of-minimum module for selecting the position of the
minimum of four inputs (MODPos, figure 29 (c)) is the most complicated
one. Using the logarithm of the sigmoid as a transfer function,

f(a) = ln
1

1 + exp(−a)
(19)

(see figure 28 (b)), units in the first three hidden layers act as switches
comparing their two inputs. Alongside these switches, linear transfer
function units are used to transport the original values to deeper layers.
Weights wA and wB are very high to enable the units to act as switches.
If the input connected using weight wA (input IA) is greater than the
input connected using weight wB (input IB), the sum will be large and
negative, the output of the sigmoid will approach 0.0 and the output of
the unit will be −∞. If IB > IA, on the other hand, the sum will be

but is bounded: it asymptotically reaches 1 as the input grows to ±∞. The latter property is
important for training the ANN, as unbounded transfer functions will hamper convergence.
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Figure 28: The non-standard transfer functions used in (a) MODVar and (b)
MODPos.

large and positive, the output of the sigmoid part will approach 1.0 and
the final output of the unit will be 0.0. This output can be used as an
inhibiting signal, by passing it to units of the same type in lower layers.
In this way, units in the third hidden layer have as output – if inputs are
denoted as σ1, σ2, σ3 and σ4 – :

si =

{
0.0 σi < minm=1,...,4∧m6=i σm

0.5 otherwise
(20)

Weights wA and wB are slightly different to handle cases in which two
inputs are exactly the same but one (in this case arbitrary) minimum
position has to be found. The fourth and fifth hidden layer ensure that
exactly one output unit will indicate that the corresponding input was
minimal, by setting the output of a unit to 0.0 if another unit to the
right has an output 6= 0.0. The units perform an xor-like function, giving
high output only when exactly one of the inputs is high. Finally, biases
(indicated by bA, bB and bC next to the units) are used to let the outputs
have the right value (0.0 or 0.5).

– The selection module (MODSel, figure 29 (d)) uses large weights cou-
pled to the position-of-minimum module outputs (inputs s1, s2, s3 and
s4) to suppress the unwanted average values µi before adding these. The
small weights with which the average values are multiplied and the large
incoming weight of the output unit are used to avoid the nonlinearity of
the transfer function.

Since all weights were fixed, this ANN was not trained.

• ANNM
2 modules have the same architectures as those of ANNM

1 . However,
in this case the weights were not fixed, hence the modules could be trained.
These modules were expected to perform poorly, as some of the optimal
weights (as set in ANNM

1 ) were very high and some of the transfer functions
are unbounded (see figure 28 (b)).

48



−
9
1

f(a) = a

µi

Input

Output

(a) MODAvg

Output

Input

+1−1

f(a) = tanh
2
(a) σ

i

+1−

−
9
1

9
1

f(a) = a

(b) MODVar

Output

Input

1+exp(−a)

2

f(a) = a

f(a) = −1

+0.02 −1000

µ µ µ µ1 2 3 4 1s s2 s3 s4

+1
+3

+200

(d) MODSel

49



Input

Output

Aw
B-w B-w B-w

A-w Bw
Ab Ab AbAb

A-w A-w Aw
Bw Bw B-w

Ab Ab Ab Ab Ab Ab Ab
AwAw Aw

AwB-w
Aw

B-w

A-w A-w A-w
Bw

Bw

Bb Bb Bb Bb
CwCwCwCw

-b B

C-w C-w C-w
-b B -b B -b B

Ab Ab Ab Ab

D-w D-w D-w D-w

Cb Cb Cb Cb

Aw Aw

Aw

Ab
Aw

Bw Aw

wD

Aw

Ab

Cb

Cw

Bw

Bb

= 0.5

= 1000

= 10   + 1012
= 10

12

6

= 100

= 500

= 0.5

1
1+exp(-a)f(a) = ln

1
1+exp(-a)f(a) = 

σ σ σσ1 2 3 4

+1

1 2 3 4s s s s

+1+1 +1 +1

+1 +1 +1

+1 +1 +1 +1

f(a) = a

(value transport)

(switch)

(xor-like gate)

(c) MODPos
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• In ANNM
3 modules, non-standard transfer functions were no longer used. As

a result, the modules MODVar and MODPos had to be replaced by standard
ANNs. These ANNs contained 2 layers of 25 hidden units, each of which
had a double sigmoid transfer function. This number of hidden units was
thought to give the modules a sufficiently large number of parameters, but
keeps training times feasible.

• In the final type, ANNM
4 , all modules consisted of standard ANNs with 2

hidden layers of 25 units each.

With these four types, a transition is made from a fixed, hard-wired type of
ANN (ANNM

1 ), which is a hard-wired implementation of the Kuwahara filter,
to a free type (ANNM

4 ) in which only the prior knowledge that the filter consists
of four subtasks is used. The goal of the exercise is to see a gradual change in
behaviour and performance.

Note that the ANNM
1 architecture is probably not the only error-free im-

plementation possible using ANN units. It should be clear from the discussion,
though, that any architecture should resort to using non-standard transfer func-
tions and unconventional weight settings to perform the nonlinear operations
error-free over a large range of input values. In this respect, the exact choices
made here are less important.

5.2.2 Standard networks

As section 3 showed, the use of prior knowledge in ANN design will not al-
ways guarantee that such ANNs will perform better than standard architec-
tures. To validate results obtained with the ANNs described in the previ-
ous section, experiments were also performed with standard, fully connected
feed-forward ANNs. Although one hidden layer should theoretically be suffi-
cient (Funahashi, 1989; Hornik et al., 1989), the addition of a layer may ease
training or lower the number of required parameters (although there is some
disagreement on this). Therefore, ANNs having one or two hidden layers of 1,
2, 3, 4, 5, 10, 25, 50, 100 or 250 units each were used. All units used the double
sigmoid transfer function. These ANNs will be referred to as ANNS

L×U , where
L indicates the number of hidden layers (1 or 2) and U the number of units
per hidden layer. ANNS

L will be used to denote the entire set of ANNs with L
hidden layers.

5.2.3 Data sets and training

To train the ANNs, a training set was constructed by drawing samples randomly,
using a uniform distribution, from image A (input) and its Kuwahara filtered
version (output), both shown in figure 26 (a). The original 8-bit 256 grey
value image was converted to a floating point image and rescaled to the range
[−0.5, 0.5]. Three data sets were constructed, containing 1,000 samples each: a
training set, a validation set and a testing set. The validation set was used to
prevent overtraining: if the error on the validation set did not drop below the
minimum error found so far on that set for 1,000 cycles, training was stopped.
Since in all experiments only k = 3 Kuwahara filters were studied, the input
to each ANN was a 5 × 5 region of grey values and the training target was 1
value. For the modular ANNs, additional data sets were constructed from these
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Figure 30: Performance of the individual modules on the testing set in each of
the modular ANNs, ANNM

1 . . . ANNM
4 .

original data sets to obtain the mappings required by the individual ANNs
(average, variance, position-of-minimum and selection).

For training, the standard stochastic back propagation algo-
rithm (Rumelhart et al., 1986) was used. Weights were initialised to random
values drawn from a uniform distribution in the range [−0.1, 0.1]. The learning
rate was set to 0.1; no momentum was used. Training was stopped after 25,000
cycles or if the validation set indicated overtraining, whichever came first. All
experiments were repeated five times with different random initialisations; all
results reported are averages over five experiments. Where ever appropriate,
error bars indicate standard deviations.

5.2.4 Results

Results are given in figures 30 and 31. These will be discussed here for the
different architectures.

Modules The different modules show rather different behaviour (figure 30).
Note that in these figures the MSE was calculated on a testing set of 1,000
samples. As was to be expected, the MSE is lowest for the hand-constructed
ANNM

1 modules: for all ANNs except MODPos, it was 0. The error remaining
for the MODPos module may look quite high, but is caused mainly by the
ANN choosing a wrong minimum when two or more input values σi are very
similar. Although the effect on the behaviour of the final module (MODSel) will
be negligible, the MSE is quite high since one output which should have been
0.5 is incorrectly set to 0.0 and vice versa, leading to an MSE of 0.25 for that
input pattern. For the other ANNs, it seems that if the manually set weights
are dropped (ANNM

2 ), the modules are not able to learn their function as well
as possible (i.e., as well as ANNM

1 ). Nonetheless, the MSE is quite good and
comparable to ANNM

3 and ANNM
4 .

When the individual tasks are considered, the average is obviously the easiest
function to approximate. Only for ANNM

4 , in which standard modules with two
hidden layers were used, is the MSE larger than 0.0; apparently these modules
generalise less well than the hand-constructed, linear MODAvgs. The variance
too is not difficult: MSEs are O(10−5). Clearly, the position-of-minimum task
is the hardest. Here, almost all ANNs perform poorly. Performances on the
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Type MSE MSE with MODPos of ANNM
1

ANNM
2 9.2× 10−1 ± 5.2× 10−1 8.7× 10−4 ± 1.7× 10−4

ANNM
3 1.2× 10−1 ± 1.2× 10−1 1.0× 10−3 ± 2.0× 10−4

ANNM
4 3.6× 10−2 ± 1.7× 10−2 1.2× 10−3 ± 2.4× 10−4

Table 2: Dependence of performance, in MSE on the image A testing set, on
the MODPos module. Values given are average MSEs and standard deviations.

selection problem, finally, are quite good. What is interesting is that the more
constrained modules (ANNM

2 , ANNM
3 ) perform less well than the standard ones.

Here again the effect that the construction is closely connected to the optimal
set of weights plays a role. Although there is an optimal weight set, the training
algorithm did not find it.

Modular networks When the modules are concatenated, the initial MSEs of
the resulting ANNs are poor: for ANNM

2 , ANNM
3 and ANNM

4 O(1), O(10−1) and
O(10−2) respectively. The MODPos module is mainly responsible for this; it is
the hardest module to learn due to the nonlinearity involved (see the discussion
in section 5.2.4). If the trained MODPos in ANNM

2 . . . ANNM
4 is replaced by the

constructed ANNM
1 module, the overall MSE always decreases significantly (see

table 2). This is an indication that, although its MSE seems low (O(10−2)),
this module does not perform well. Furthermore, it seems that the overall MSE
is highly sensitive to the error this module makes.

However, when the complete ANNs are trained a little further with a low
learning rate (0.1), the MSE improves rapidly: after only 100-500 learning cycles
training can be stopped. In (Pugmire et al., 1998), the same effect occurs. The
MSEs of the final ANNs on the entire image are shown in figures 31 (a), (e) and
(i) for images A, B and C, respectively. Images B and C were pre-processed in
the same way as image A: the original 8-bit (B) and 5-bit (C) 256 grey value
images were converted to floating point images, with grey values in the range
[−0.5, 0.5].

To get an idea of the significance of these results, re-initialised versions of the
same ANNs were also trained. That is, all weights of the concatenated ANNs
were initialised randomly without using the prior knowledge of modularity. The
results of these training runs are shown in figures 31 (b), (f) and (j). Note
that only ANNM

2 cannot be trained well from scratch, due to the non-standard
transfer functions used. For ANNM

3 and ANNM
4 the MSE is comparable to the

other ANNs. This would indicate that modular training is not beneficial, at
least according to the MSE criterion.

The ANNs seem to generalise well, in that nearly identical MSEs are reached
for each network on all three images. However, the variance in MSE is larger on
Image B and Image C than it is for Image A. This indicates that the modular
networks may have become slightly too adapted to the content of Image A.

Standard networks Results for the standard ANNs, ANNSs, are shown in
figure 31 (c)-(d), (g)-(h) and (k)-(l) for images A, B and C. In each case, the
first figure gives the results for ANNs with one hidden layer; the second figure
for ANNs with two hidden layers. What is most striking is that for almost all
sizes of the ANNs the MSEs are more or less the same. Furthermore, this MSE
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is nearly identical to the one obtained by the modular ANNs ANNM
2 . . . ANNM

4 .
It also seems that the smaller ANNs, which give a slightly larger MSE on Image
A and Image B, perform a bit worse on Image C. This is due to the larger
amount of edge pixels in Image C; the next section will discuss this further.

5.3 Investigating the error

The experiments in the previous section indicate that, no matter which ANN
is trained (except for ANNM

1 ), the MSE it will be able to reach on the images
is equal. However, visual inspection shows small differences between images
filtered by various ANNs; see e.g. the left and centre columns of figure 32.
To gain more insight in the actual errors the ANNs make, a technique can
be borrowed from the field of Bayesian learning, which allows the calculation of
error bars for each output of the ANN (Bishop, 1995). The computation is based
on the Hessian of the ANN output w.r.t. its weights w, H = ∇2

wR(x; w), which
needs to be found first. Using H, for each input x a corresponding variance σ2

tot

can be found. This makes it possible to create an image in which each pixel
corresponds to 2σtot, i.e. the grey value equals half the width of the error bar on
the ANN output at that location. Conversely, the inverse of σtot is sometimes
used as a measure of confidence in an ANN output for a certain input.

For a number of ANNs, the Hessian was calculated using a finite differencing
approximation (Bishop, 1995). To calculate the error bars, this matrix has
to be inverted first. Unfortunately, for the ANNMs, inversion was impossible
as their Hessian matrices were too ill-conditioned because of the complicated
architectures, containing fixed and shared weights. Figures 32 (b) and (c) show
the results for two standard ANNs, ANNS

1×25 and ANNS
2×25. In the left column

the ANN output for Image A (26 (a)) is shown. The centre column shows
the absolute difference between this output and the target image. In the third
column the error bars calculated using the Hessian are shown.

The figures show that the error the ANN makes is not spread out evenly over
the image. The highest errors occur near the edges in Image A, as can be seen
by comparing the centre column of figure 32 with the gradient magnitude of
|∇IA| of Image A, shown in figure 33 (a). This gradient magnitude is calculated
as (Young et al., 1998)

|∇IA| =

√(
δIA

δx

)2

+
(

δIA

δy

)2

(21)

where δIA

δx is approximated by convolving Image A with a [−1 0 1] mask, and
δIA

δy by convolving Image A with its transpose.
The error bar images, in the right column of figure 32, show that the standard

deviation of ANN output is also highest on and around the edges. Furthermore,
although the output of the ANNs look identical, the error bars show that the
ANNs actually behave differently.

These results lead to the conclusion that the ANNs have learned fairly well
to approximate the Kuwahara filter in flat regions, where it operates like a local
average filter. However, on and around edges they fail to give the correct output;
most edges are sharpened slightly, but not nearly as much as they would be by
the Kuwahara filter. In other words, the linear operation of the Kuwahara filter
is emulated correctly, but the nonlinear part is not. Furthermore, the error bar
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images suggest there are differences between ANNs which are not expressed in
their MSEs.

5.4 Discussion

The most noticeable result of the experiments above is that whatever ANN is
trained, be it a simple one hidden unit ANN or a specially constructed modular
ANN, approximately the same performance (measured in MSE) can be reached.
Modular training does not seem to boost performance at all. However, inspec-
tion of error images and standard deviation of ANN outputs suggests that there
are differences between ANNs. Furthermore, the errors made by ANNs are con-
centrated around edges, i.e. in the part where the Kuwahara filter’s nonlinearity
comes into play.

There are a number of hypotheses as to what causes all ANNs to seemingly
perform equally well, some of which will be investigated in the next section:

• the problem may simply be too hard to be learned by a finite-size ANN.
This does not seem plausible, since even for a two-hidden layer ANN with
250 hidden units per layer, resulting in a total of 69,000 free parameters,
the MSE is no better than for very simple ANNs. One would at least
expect to see some enhancement of results;

• it is possible that the sample size of 1,000 is too small, as it was rather
arbitrarily chosen. An experiment was performed in which ANNS

1×50 was
trained using training sets with 50, 100, 250, 500, 1,000 and 2,000 samples.
The results, given in figure 33 (b), show however that the chosen sample
size of 1,000 seems sufficient. The decrease in MSE when using 2,000
samples in the training set is rather small;

• the training set may not be representative for the problem, i.e. the nature
of the problem may not be well reflected in the way the set is sampled
from the image;

• the error criterion may not be fit for training the ANNs or assessing their
performance. It is very well possible that the MSE criterion used is of
limited use in this problem, since it weighs both the interesting parts of
the image, around the edges, and the less interesting parts equally;

• the problem may be of such a nature that local minima are prominently
present in the error surface, while the global minima are very hard to
reach, causing suboptimal ANN operation.

6 Inspection and improvement of regression
networks

This section tries to answer the questions raised by the experiments in the pre-
vious section, by investigating the influence of the data set, the appropriateness
of the MSE as a performance measure and the trained ANNs themselves.
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Figure 31: Performance of all ANNMs and ANNSs on the three images used:
(a)-(d) on image A (fig. 26 (a)), (e)-(h) on image B (fig. 26 (b)) and (i)-(l) on
image C (fig. 26 (c)). For the ANNSs, the x-axis indicates the number of hidden
units per layer.
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Figure 32: (a) The original Image A. (b) and (c), from left to right: outputs of
two ANNSs on Image A; absolute differences between target image and ANN
output and ANN output error bar widths plotted as grey values.
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Figure 33: (a) The gradient magnitude of Image A, |∇IA|. (b) Performance of
ANNS

1×50 for various training set sample sizes.
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6.1 Edge-favouring sampling

Inspection of the ANN outputs and the error bars on those outputs led to the
conclusion that the ANNs had learned to emulate the Kuwahara filter well in
most places, except in regions near edges (section 55.3). A problem in sampling
a training set from an image12 for this particular application is that such in-
teresting regions, i.e. the regions where the filter is nonlinear, are very poorly
represented. Edge pixels constitute only a very small percentage of the total
number of pixels in an image (as a rule of thumb, O(

√
n) edge pixels on O(n)

image pixels) and will therefore not be represented well in the training set when
sampling randomly using a uniform distribution.

To learn more about the influence of the training set on performance, a second
group of data sets was created by sampling from Image A (figure 26 (a)) with
a probability density function based on its gradient magnitude image |∇IA|
(eqn. 21). If |∇I| is scaled by a factor c such that

∫
x

∫
y
c · |∇I(x, y)|dydx = 1,

and used as a probability density function when sampling, edge regions have
a much higher probability of being included in the data set than pixels from
flat regions. This will be called edge-favouring sampling, as opposed to normal
sampling.

6.1.1 Experiments

Performances (in MSE) of ANNs trained on this edge-favouring set are given in
figures 34 and 35. Note that the results obtained on the normal training set (first
shown in figure 31) are included again to facilitate comparison. The sampling of
the data set clearly has an influence on the results. Since the edge-favouring set
contains more samples taken from regions around edges, the task of finding the
mean is harder to learn due to the larger variation. At the same time, it eases
training the position-of-minimum and selection modules. For all tasks except
the average, the final MSE on the edge-favouring testing set (figures 34 (b), (d),
(f) and (h)) is better than that of ANNs trained using a normal training set.
The MSE is, in some cases, even lower on the normal testing set (figures 34 (e)
and (g)).

Overall results for the modular and standard ANNs (figure 35) suggest that
performance decreases when ANNs are trained on a specially selected data set
(i.e., the MSE increases). However, when the quality of the filtering operation
is judged by looking at the filtered images (see e.g. figure 36), one finds that
these ANNs give superior results in approximating the Kuwahara filter. Clearly,
there is a discrepancy between performance as indicated by the MSE and visual
perception of filter quality. Therefore, below we will investigate the possibility
of finding another way of measuring performance.

6.2 Performance measures for edge-preserving smoothing

The results given in section 66.16.1.1 show that it is very hard to interpret
the MSE as a measure of filter performance. Although the MSEs differ only
slightly, visually the differences are quite large. If images filtered by various

12From here on, the term sampling will be used to denote the process of constructing a data
set by extracting windows from an image with coordinates sampled from a certain distribution
on the image grid.
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Figure 34: Performance of the individual modules in each of the modular ANNs,
ANNM

1 . . . ANNM
4 on the normal testing set (top row) and edge-favouring testing

set (bottom row).

ANNs trained on the normal and edge-favouring data sets are compared, it seems
clear which ANN performs better. As an example, figure 36 shows two filtered
images. The left image was filtered by ANNM

4 trained on an edge-favouring
training set. The image on the right is the output of ANNS

1×100 trained on a
normal data set. Although the MSEs are nearly equal (1.48× 10−3 for the left
image versus 1.44 × 10−3 for the right one), in the left image the edges seem
much crisper and the regions much smoother than in the image on the right;
that is, one would judge the filter used to produce the left image to perform
better.

One would like to find a measure for filter performance which bears more
relation to this qualitative judgement than the MSE. The reason why the MSE
is so uninformative is that by far the largest number of pixels do not lie on
edges. Figure 37 (a) illustrates this: it shows that the histogram of the gradient
magnitude image is concentrated near zero, i.e. most pixels lie in flat regions.
Since the MSE averages over all pixels, it may be quite low for filters which
preserve edges poorly. Vice versa, the visual quality of the images produced by
the ANNs trained using the edge-favouring data set may be better while their
MSE is worse, due to a large number of small errors made in flat regions.

The finding that the MSE does not correlate well with perceptual qual-
ity judgement is not a new one. A number of alternatives have been pro-
posed, among which the mean absolute error (MAE) seems to be the most
prominent one. There is also a body of work on performance measures for
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edge detection, e.g. Pratt’s Figure of Merit (FOM) (Pratt, 1991) or Average
Risk (Spreeuwers, 1992). However, none of these capture the dual goals of edge
sharpening and region smoothing present in this problem.

6.2.1 Smoothing versus sharpening

In edge-preserving smoothing, two goals are pursued: on the one hand the
algorithm should preserve edge sharpness, on the other hand it should smooth
the image in regions that do not contain edges. In other words, the gradient
of an image should remain the same in places where it is high13 and decrease
where it is low.

If the gradient magnitude |∇I| of an image I is plotted versus |∇f(I)| of a
Kuwahara-filtered version f(I), for each pixel I(i,j), the result will look like fig-
ure 37 (b). In this figure, the two separate effects can be seen: for a number of
points, the gradient is increased by filtering while for another set of points the
gradient is decreased. The steeper the upper cloud, the better the sharpening;
the flatter the lower cloud, the better the smoothing. Note that the figure gives
no indication of the density of both clouds: in general, by far the most points lie
in the lower cloud, since more pixels lie in smooth regions than on edges. The
graph is reminiscent of the scattergram approach discussed (and denounced)
in Katsulai and Arimizu, 1981, but here the scattergram of the gradient mag-
nitude images is shown.

To estimate the slope of the trend of both clouds, the point data is first
separated into two sets:

A =
{

(|∇I|(i,j), |∇f(I)|(i,j))
∣∣ |∇I|(i,j) ≥ |∇f(I)|(i,j)

}
(22)

B =
{

(|∇I|(i,j), |∇f(I)|(i,j))
∣∣ |∇I|(i,j) < |∇f(I)|(i,j)

}
(23)

Lines y = ax+ b can be fitted through both sets using a robust estimation tech-
nique, minimising the absolute deviation (Press et al., 1992), to get a density-
independent estimate of the factors with which edges are sharpened and flat
regions are smoothed:

(aA, bA) = arg min
(a,b)

∑
(x,y)∈A

|y − (ax + b)| (24)

(aB, bB) = arg min
(a,b)

∑
(x,y)∈B

|y − (ax + b)| (25)

The slope of the lower line found, aA, gives an indication of the smoothing
induced by the filter f . Likewise, aB gives an indication of the sharpening effect
of the filter. The offsets bA and bB are discarded, although it is necessary to
estimate them to avoid a bias in the estimates of aA and aB. Note that a
demand is that aA ≤ 1 and aB ≥ 1, so the values are clipped at 1 if necessary –
note that due to the fact that the estimated trends are not forced to go through
the origin, this might be the case.

13Or even increase. If the regions divided by the edge become smoother, the gradient of
the edge itself may increase, as long as there was no overshoot in the original image. Over-
shoot is defined as the effect of artificially sharp edges, which may be obtained by adding
a small value to the top part of an edge and subtracting a small value from the lower
part (Young et al., 1998).
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To account for the number of pixels actually used to estimate these values, the
slopes found are weighed with the relative number of points in the corresponding
cloud. Therefore, the numbers

Smoothing(f, I) =
|A|

|A|+ |B|
(a′A − 1) and (26)

Sharpening(f, I) =
|B|

|A|+ |B|
(aB − 1) (27)

are used, where a′A = 1
aA

was substituted to obtain numbers in the same range
[0,∞〉. These two values can be considered to be an amplification factor of
edges and an attenuation factor of flat regions, respectively.

Note that these measures cannot be used as absolute quantitative indications
of filter performance, since a higher value does not necessarily mean a better
performance; i.e., there is no absolute optimal value. Furthermore, the measures
are highly dependent on image content and scaling of f(I) w.r.t. I. The scaling
problem can be neglected however, since the ANNs were trained to give output
values in the correct range. Thus, for various filters f(I) on a certain image,
these measures can now be compared, giving an indication of relative filter
performance on that image. To get an idea of the range of possible values,
smoothing and sharpening values for some standard filters can be calculated,
like the Kuwahara filter, a Gaussian filter

fG(I, σ) = I ⊗ 1
2πσ2

exp
(
−x2 + y2

2σ2

)
(28)

for14 σ = 0.0, 0.1, . . . , 2.0; and an unsharp masking filter

fU (I, k) = I − k ×

I ⊗

 -1 2 -1

2 -4 2

-1 2 -1

 (29)

which subtracts k times the Laplacian15 from an image, k = 0.0, 0.1, . . . , 2.0.

6.2.2 Experiments

Smoothing and sharpening performance values were calculated for all ANNs
discussed in section 66.16.1.1 The results are shown in figure 38. First, lines
of performance values for the Gaussian and unsharp masking filters give an
indication of the range of possible values. As expected, the Gaussian filter on
Images A and B (figures 26 (a) and (b)) gives high smoothing values and low
sharpening values, while the unsharp masking filter gives low smoothing values
and high sharpening values. The Kuwahara filter scores high on smoothing and
low on sharpening. This is exactly as it should be: the Kuwahara filter should
smooth while preserving the edges, it should not necessarily sharpen them. If
ANNs have a higher sharpening value, they are usually producing overshoot
around the edges in the output images.

14For σ ≤ 0.5 the Gaussian is ill-sampled; in this case, a discrete approximation is used
which is not stricly speaking a Gaussian.

15This is an implementation of the continuous Laplacian edge detector mentioned in sec-
tion 44.14.1.1, different from the discrete detector shown in figure 11.
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The measures calculated for Image C (figure 26 (c)) show the limitations
of the method. In this image there is a large number of very sharp edges in
an otherwise already rather smooth image. For this image the Gaussian filter
gives only very low smoothing values and the unsharp masking filter gives no
sharpening value at all. This is due to the fact that for this image, subtracting
the Laplacian from an image produces a very small sharpening value, together
with a negative smoothing value, caused by the Laplacian greatly enhancing the
amount of noise in the image. Since the values were clipped at 0, the results are
not shown in the figure.

Regarding the ANNs, some things become clear. First, the hand-constructed
ANN (ANNM

1 ) almost perfectly mimics the Kuwahara filter, according to the
new measures. However, as soon as the hand-set weights are dropped (ANNM

2 ),
performance drops drastically. Apparently the non-standard transfer functions
and special architecture inhibits the ANN too much. ANNM

3 and ANNM
4 perform

better and generalise well to other images. However, besides ANNM
1 , no other

ANN in this study seems to be able to approximate the Kuwahara filter well.
The best trained ANN still performs much worse.

Second, edge-favouring sampling has a strong influence. Most of the archi-
tectures discussed only perform reasonably when trained on a set with a sig-
nificantly larger number of edge samples than acquired by random sampling,
especially the ANNSs. This indicates that, although the MSE actually indicates
ANNs trained on an edge-favouring set perform worse, sampling in critical ar-
eas of the image is a prerequisite for obtaining a well-performing, nonlinear
approximation to the Kuwahara filter.

Most standard ANNs perform poorly. Only for ANNS
2×10, ANNS

2×25 and
ANNS

2×50 performance is reasonable. In retrospect, this concurs with the drop
in the MSE that can be seen in figure 35 (d), although the differences there are
very small. ANNS

2×50 clearly performs best. A hypothesis is that this depends
on the training of the ANNs, since training parameters were not optimised
for each ANN. To verify this, the same set of standard ANNs was trained in
experiments in which the weights were initialised using random values drawn
from a uniform distribution over the range [−1.0, 1.0], using a learning rate of
0.5. Now, the optimal standard ANN was found to be ANNS

2×25, with all other
ANNs performing very poorly.

Generalisation is, for all ANNs, reasonable. Even on Image C (figure 26 (c)),
which differs substantially from the training image (Image A, figure 26 (a)), per-
formance is quite good. The best standard ANN, ANNS

2×50, seems to generalise
a little better than the modular ANNs.

6.2.3 Discussion

In Dijk et al., 1999, it is shown that the smoothing and sharpening performance
measures proposed here correlate well with human perception. It should be
noted that in this study, subjects had less problems in discerning various levels
of smoothing than they had with levels of sharpening. This indicates that the
two measures proposed are not equivalently spaced.

The fact that the measures show that edge-favouring sampling in building a
training set increases performance considerably, suggests possibilities for exten-
sions. (Pugmire et al., 1998) claim that learning should be structured, i.e. start
with the general problem and then proceed to special cases. This can be easily

62



accomplished in training set construction, by adding a constant to each pixel
in the gradient magnitude image before scaling and using it as a probability
density function from which window coordinates are sampled. If this constant
is gradually lowered, edge-pixels become better represented in the training set.
Another, more general possibility would be to train ANNs on normally sam-
pled data first and calculate an error image (such as those shown in the centre
column of figure 32). Next, the ANN could be trained further – or re-trained
– on a data set sampled using the distribution of the errors the ANN made, a
new error image can be calculated, and so on. This is similar to boosting and
arcing approaches in classification (Shapire, 1990). An advantage is that this
does not use the prior knowledge that edges are important, which makes it more
generally applicable.

6.2.4 Training using different criteria

Ideally, the sharpening and smoothing performance measures discussed in the
previous section should be used to train ANNs. However, this is infeasible as
they are not differentiable. This means they could only be used in learning
procedures which do not need the criterion function to be differentiable, such
as reinforcement learning (Gullapalli, 1990). This falls outside the scope of the
experiments in this section.

However, the previous section showed that ANNs did learn to emulate the
Kuwahara filter better when trained using the edge-favouring data set. Note
that constructing a data set in this way is equivalent to using a much larger
data set and weighing the MSE with the gradient magnitude. Therefore, this
approach is comparable to using an adapted error criterion in training the ANN.
However, this weighting is quite specific to this problem.

In the literature, several more general alternatives to the MSE (eqn. 8) have
been proposed (Hertz et al., 1991; Burrascano, 1991). Among these, a very flex-
ible family of error criteria based on the Lp norm is:

Ep(W,B) =
1

2|L|
∑

(xi,yi)∈L

m∑
k=1

|R(xi; W,B)k − yi
k|p, (30)

where p ∈ Z∗. Note that for p = 2, this criterion is equal to the MSE. For
p = 0, each error is considered equally bad, no matter how small or large it
is. For p = 1, the resulting error criterion is known as the mean absolute
error or MAE. The MAE is more robust to outliers than the MSE, as larger
errors are given relatively smaller weights than in the MSE. For p > 2, larger
errors are given more weight, i.e. the data is considered not to contain outliers.
In fact, which p to use should be decided by assuming a noise model for the
target data (Burrascano, 1991). The L1 norm (robust to outliers) corresponds
to a noise distribution with large tails, a Laplacian distribution, under which
outliers are probable. At the other extreme, L∞ corresponds to a uniform noise
distribution.

As discussed before, the Kuwahara filter is most interesting around the edges
in an image, were the filter behaves nonlinearly. It was also shown that exactly
around these edges most ANNs make the largest errors (figure 32). Therefore,
it makes sense to use an error criterion which puts more emphasis on larger
errors, i.e. the Lp norm for p > 2. To this end, a number of experiments were
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run in which different norms were used.
Although implementing these criteria in the back-propagation algorithm is

trivial (only the gradient calculation at the output units changes), the modified
algorithm does not converge well using standard settings. The learning rate and
initialisation have to be adapted for each choice of norm, to avoid divergence.
Therefore, the norms were used in the CGD training algorithm, which is less
sensitive to initialisation and choice of criterion due to the line minimisation
involved.

The best performing ANN found in section 66.2, ANNS
2×50, was trained using

CGD with the Lp norm. The parameter p was set to 1, 2, 3, 5 and 7, and both the
normal and the edge-favouring training sets were used. The ANN was trained
using the same settings as before; in the CGD algorithm, directions were kept
conjugate for 10 iterations.

Figure 39 shows the results. Clearly, using the Lp norm helps the ANN trained
on the normal set to achieve better performance (figure 39 (a)). For increas-
ing p, the sharpening performance becomes higher. However, the smoothing
performance still lags behind that of the ANN trained using the MSE on the
edge-favouring training set (fig. 38 (d)).

When ANNS
2×50 is trained using the Lp norm on the edge-favouring data

set, smoothing performance actually decreases (figure 39 (b)). This is caused
by the fact that the training set and error criterion in concert stress errors
around edges so much, that the smoothing operation in flat regions suffers.
Figure 40 illustrates this by showing the output of ANNS

2×25 as well as the
absolute difference between this output and the target image, for various values
of p. For increasing p, the errors become less localised around the edges; for
p ≥ 3 the error in flat regions becomes comparable to that around edges.

In conclusion, using different Lp norms instead of the MSE can help in improv-
ing performance. However, it does not help as much as edge-favouring sampling
from the training set, since only the latter influences the error criterion exactly
where it matters, around edges. Furthermore, it requires choosing a value for
the parameter p, for which an optimal setting is not clear beforehand. Finally,
visual inspection still shows p = 2 to be the best choice.

6.3 Inspection of trained networks

6.3.1 Standard networks

To gain insight into the relatively poor performance of most of the standard
ANNs according to the performance measure introduced in section 66.2, a very
simple architecture was created, containing only a small number of weights
(see figure 41 (a)). Since the Kuwahara filter should be isotropic, a symmetric
weight mask was imposed on the weights (cf. section 4.1.2). Furthermore,
linear transfer functions were used to avoid the complications introduced in the
analysis by the use of sigmoids. No bias was used. This ANN was trained on
the normal data set, using a validation set. The learned weight set is shown
in figure 42 (a). In filtering terms, the main component looks like a negative
Laplacian-of-Gaussian (i.e. the negative values around the centre and the slightly
positive values in the four corners). Further analysis showed that this filter
closely resembles a linear combination of a normal Gaussian and a Laplacian-
of-Gaussian.
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To confirm the hypothesis that standard ANNs learned such linear approx-
imations to the Kuwahara filter, a simple standard ANN was trained in the
same way ANNK was, using the DCGD training algorithm (section 44.2.2).
This ANN, ANNS

1×2, is shown in figure 41 (b). All weights were initialised
to a fixed value of 0.01, λ was set to 1 and the number of directions to be
kept conjugate was set to 10. After training, the MSE on the testing set was
1.43 × 10−3, i.e. comparable to other standard ANNs (fig. 31), and C2 was
5.1× 10−3. The resulting weight sets show that the filter can indeed be decom-
posed into a Gaussian-like and a negative Laplacian-like filter. Adding more
hidden units and training using DCGD, for which results are not shown here,
did not cause any new filters to be found.

This decomposition can well be explained by looking at the training objective.
The Kuwahara filter smoothes images while preserving the edges. The Gaussian
is a smoothing filter, while its second derivative, the Laplacian, emphasises edges
when subtracted from the original. Therefore, the following model for the filter
found by the ANN was set up:

f(c1, σ1, c2, σ2) = c1fG(σ1)− c2fL(σ2) =

c1
1

2πσ2
1

exp
(
−x2 + y2

2σ2
1

)
− c2

(x2 + y2)− σ2
2

2πσ6
2

exp
(
−x2 + y2

2σ2
2

)
(31)

in which c1 and σ1 are parameters to be estimated for the Gaussian and c2 and
σ2 are parameters for the Laplacian. Figure 42 (c) shows these two functions.

A Gauss-Newton fitting procedure (Mathworks Inc., 2000) was used to find
the parameters of f(c1, σ1, c2, σ2) given the weights shown in figure 42 (a). The
resulting model weights are shown in figure 42 (b) and a cross-section is shown
in figure 42 (c). Although the fit (c1 = 10.21, σ1 = 2.87, c2 = 3.41, σ2 = 0.99)
is not perfect with a model fit MSE εf = 2.5 × 10−3, the correlation between
the model and the actual weights is quite high (C = 0.96).

The hypothesis was that this solution, i.e. applying a Gaussian and a Lapla-
cian, was a local minimum to which the ANNSs had converged. To test this,
the model fitting procedure was applied to each of the units in the first hidden
layer of each of the ANNSs. This resulted in a model fit error εf and correlation
C between the actual weights and the model weights for each unit.

The results, given in figure 43 show that, at least for the smaller ANNs, the
hypothesis is supported by the data. For the ANNs trained on the normal data
set, over a large range of sizes (i.e. 1-5, 10 and 25 hidden units) the model closely
fits each hidden unit. Only for larger numbers of hidden units the fit becomes
worse. The reason for this is that in these ANNs many units have an input
weight distribution which is very hard to interpret. However, these units do
not play a large role in the final ANN output, since they are weighted by small
weights in the next layer.

For the ANNs trained on the edge-favouring set the fit is less good, but
still gives a reasonable correlation. Note however that ANNs which have high
performance w.r.t. the smoothing and sharpening measures (section 66.26.2.2)
do not necessarily show the lowest correlation: ANNSs with more hidden units
give even lower correlation. An opposite effect is playing a role here: as ANNs
become too large, they are harder to train.

The conclusion is that many of the standard ANNs have learned a linear
approximation to the Kuwahara filter. Although this approximation performs
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well in uniform regions, its output does not correspond to that of the Kuwahara
filter near edges.

6.3.2 Modular networks

It is interesting to see whether the modular ANNs still use their initialisa-
tion. Remember that to obtain good performance, the ANNMs had to either be
trained further after the modules were concatenated, or re-initialised and trained
over (section 5.2.4). The question is whether the modules are still performing
the functions they were initially trained on, or has the ANN – after being trained
further for a while – found a better solution? To inspect the ANNs, first the
modules were evaluated on the sets they were trained with. Next, the concate-
nated ANNMs were taken apart and the modules were evaluated on the same
sets. Figures 44 and 45 show some examples of such plots.

Unfortunately, detailed inspection is hard. Ideally, if each module was per-
forming the function it was trained to perform exactly, each plot would show a
straight line y = x. The plots show that this is, in most cases, not true. How-
ever, it is possible to make some general remarks about the differences between
the various ways of training the ANNs. These differences are most clear for the
mean and selection modules:

• for well-performing ANNs, the mapping in each module is no longer ev-
ident. Instead, it seems these modules make rather good use of their
nonlinearity (figure 44 (c)). The poorly performing ANNs still show a
reasonably linear behaviour (figure 45 (a));

• there is a progressive increase in nonlinearity for ANNM
2 , ANNM

3 and
ANNM

4 (figures 44 (a)-(c), 45 (a)-(c) and (d)-(f)). The added complexity
allows the modules more flexibility when they are trained further. Note
however that the basic mapping is still preserved, i.e. the trend is still
visible for all units;

• there is an increase in nonlinearity when ANNs are trained on the edge-
favouring set instead of the normal set (figures 45 (a)-(c) v. (d)-(f));

• as was to be expected, ANNMs trained from scratch generally do not find
the modular structure (figures 44 (d)-(e)).

This leads to the conclusion that although the initialisation by training models
individually was useful, the modules of the more well-performing ANNs are no
longer performing their original function. This is likely to be caused by the
modules being trained individually on ideal, noiseless data. Therefore, modules
have not learned to deal with errors made by other modules. This is corrected
when they are trained further together in the concatenated ANNs. The larger
the correction, the better the final performance of the concatenated ANN.

For the MODVars and MODPoss, the differences are less clear. Most of these
modules seem to have no function left in the final ANNs: the outputs are
clamped at a certain value or vary a little in a small region around a value.
For MODVar, only ANNM

4 modules have enough flexibility. Here too, training
on the edge-favouring set increases the nonlinearity of the output (figures 46
(a)-(c)). MODPos, finally, is clamped in almost all architectures. Only ANNM

4
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modules give some variation in output (figures 46 (d)-(e)). Networks trained
from scratch are always clamped too.

In conclusion, it seems that in most ANNs, the modules on the right hand
side (MODVar and MODPos, see figure 27) are disabled. However, the ANNs
that do show some activity in these modules are the ANNs that perform best,
indicating that the modular initialisation to a certain extent is useful. All results
indicate that, although the nature of the algorithm can be used to construct
and train individual modules, the errors these modules make are such that the
concatenated ANNs perform poorly (see section 5.2.4). That is, modules trained
separately on perfect data (e.g. pre-calculated positions of the minimal input)
are ill-equipped to handle errors in their input, i.e. the output of preceding
modules. For the concatenated ANNs, the training algorithm leaves its modular
initialisation to lower the overall MSE; trained as a whole, different weight
configurations are optimal. The fact that a trained MODPos has a very specific
weight configuration (with large weights) to be able to perform its function
means it is more susceptible to weight changes than other modules and will
easily lose its original functionality. In other words, the final concatenated
ANN has “worked around” the errors made by MODPos by disabling it.

6.4 Discussion

The previous section discussed a number of experiments, in which modular and
standard feed-forward ANNs were trained to mimic the Kuwahara filter. The
main result was that all ANNs, from very simple to complex, reached the same
MSE. A number of hypotheses was proposed for this phenomenon: that the
data set and error measure may not accurately represent the finer points of this
particular problem or that all ANNs have reached local minima, simply since
the problem is too hard. Testing these hypotheses in this section, it was shown
that:

• using a different way of constructing training sets, i.e. by mainly sampling
from regions around the edges, is of great benefit;

• using performance measures which do not average over all pixels, but
take the two goals of edge-preserving smoothing into account, gives better
insight into relative filter performance;

• by the proposed smoothing and sharpening performance measures, which
correspond better to visual perception, modular ANNs performed better
than standard ANNs;

• using the Lp norm to train ANNs, with p � 2, improves performance,
albeit not dramatically;

• the smaller ANNSs have learned a linear approximation of the Kuwahara
filter; i.e., they have reached a local minimum;

• in the poorly performing modular ANNs, the modules still perform the
functions they were trained on. The better performing modular ANNs
retain some of their initialisation, but have adapted further to a point
that the function of individual modules is no longer clear. The better the
performance of the final ANN (according to the new measure) the less
clear the initialisation is retained.
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In the attempts to try to understand the operation of an ANN instead of treating
it like a black box, the interpretability trade-off (discussed in section 4) again
played a role. For the modular ANNs, as soon as some of the constraints
were dropped, ANN performance became much worse: there was no graceful
degradation. It was shown too that it is hard to interpret the operation of the
modular ANN after training it further; the operation of the ANN is distributed
differently than in the original modular initialisation. The one advantage of
using the prior knowledge of the modular nature of the problem (for example,
as in ANNM

4 ) is that it helps to avoid pain-staking optimisation of the number of
hidden layers and units, which was shown to be quite critical in standard ANNs.
Of course, for different problems this prior knowledge may not be available.

The main conclusion is that, in principle, ANNs can be put to use as non-
linear image filters. However, careful use of prior knowledge, selection of ANN
architecture and sampling of the training set are prerequisites for good opera-
tion. In addition, the standard error measure used, the MSE, will not indicate
an ANN performing poorly. Unimportant deviations in the output image may
lead to the same MSE as significant ones, if there is a large number of unim-
portant deviations and a smaller number of important ones. Consequently,
standard feed-forward ANNs trained by minimising the traditional MSE are
unfit for designing adaptive nonlinear image filtering operations; other crite-
ria should be developed to facilitate easy application of ANNs in this field.
Unfortunately, such criteria will have to be specified for each application (see
also Spreeuwers, 1992). In this light it is not surprising to find a large number
of non-adaptive, application-specific ANNs in the literature.

Finally, although all performance measures used in this section suggest that
ANNs perform poorly in edge-preserving smoothing, the perceptual quality of
the resulting filtered images is quite good. Perhaps it is the very fact that
these ANNs have only partially succeeded in capturing the nonlinearity of the
Kuwahara filter that causes this. In some cases this could be considered an
advantage: constrained nonlinear parametric approximations to highly nonlin-
ear filtering algorithms may give better perceptual results than the real thing,
which is, after all, only a means to an end.

7 Conclusions

This paper discussed the application of neural networks in image processing.
Three main questions were formulated in the introduction:

• Applicability: can (nonlinear) image processing operations be learned by
adaptive methods?

• Prior knowledge: how can prior knowledge be used in the construction
and training of adaptive methods?

• Interpretability: what can be learned from adaptive methods trained to
solve image processing problems?

Below, answers will be formulated to each of the questions.
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Figure 35: Performance of all ANNMs and ANNSs on the three images used:
(a)-(d) on Image A (fig. 26 (a)), (e)-(h) on Image B (fig. 26 (b)) and (i)-(l) on
Image C (fig. 26 (c)).
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outputKuwahara
Target: Standard ANN

output
Modular ANN

Figure 36: Two ANN output images with details. For the left image, output of
ANNM

4 trained on the edge-favouring set, the MSE is 1.48× 10−3; for the right
image, output of ANNS

1×100 trained on a normally sampled set, it is 1.44×10−3.
The details in the middle show the target output of the Kuwahara filter; the
entire target image is shown in figure 26 (a).
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Figure 37: (a) Histograms of gradient magnitude values |∇I| of Image A (fig-
ure 26 (a)) and a Kuwahara filtered version (k = 3). (b) Scattergram of the
gradient magnitude image pixel values with estimated lines.
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Figure 38: Performance of standard filters, all ANNMs and ANNSs on the three
images used: (a)-(d) on Image A (fig. 26 (a)), (e)-(h) on Image B (fig. 26 (b))
and (i)-(l) on Image C (fig. 26 (c)). In the legends, ef stands for ANNs trained
on edge-favouring data sets, as opposed to normally sampled data sets (nrm);
further indicates ANNs initialised by training the individual modules as opposed
to ANNs trained from scratch (over); and 10, 25 and so on denote the number
of units per hidden layer.
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Figure 39: Performance of ANNS
2×50 on Image A (fig. 26 (a)), trained using

different Lp norm error criteria and (a) the normal training set and (b) the
edge-favouring training set.
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Figure 41: (a) ANNK, the simplest linear ANN to perform a Kuwahara filtering:
a 5 × 5 unit input layer and one output unit without bias. The ANN contains
6 independent weights indicated in the mask by the letters A through F. (b)
ANNS

1×2: two hidden units, no mask (i.e., no restrictions).
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Figure 42: (a) Weights found in ANNK (fig. 41 (a)). (b) Weights generated by
the fitted model (eqn. 31: c1 = 10.21, σ1 = 2.87, c2 = 3.41, σ2 = 0.99). (c) A
cross section of this model at x = 0. (d), (e) Weight matrices found in ANNS

1×2

(fig. 41 (b)) trained using DCGD.
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Figure 43: A comparison between the actual weights in ANNSs and the fitted
models, for both ANNS

1s and ANNS
2s. The median εf is shown in (a) and (b) as

the average εf is rather uninformative due to outliers.
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Figure 44: Plots of outputs of the four MODAvgs before concatenation against
outputs of the same modules after concatenation and training further or over.
Different markers indicate different output units. The plots show progressively
more freedom as the modules become less restricted ((a)-(c)) and an increase in
nonlinearity when modules are trained on the edge-favouring data set ((a)-(c)
vs. (d)-(e)).
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Figure 45: Plots of MODSel outputs before concatenation against MODSel out-
puts after concatenation and training further or over. The plots show progres-
sively more freedom as the modules become less restricted ((a)-(c), (d)-(f)) and
an increase in nonlinearity when modules are trained on the edge-favouring data
set ((a)-(c) v. (d)-(f)).
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Figure 46: Plots of MODVar and MODPos outputs before concatenation against
the same outputs after concatenation and training further or over. Different
markers indicate different output units. The plots show many module outputs
in the concatenated ANNs are clamped at certain values. Note that in the latter
two figures, the original output is either 0.0 or 0.5; a small offset has been added
for the different units for presentation purposes.
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7.1 Applicability

The overview in section 2 discussed how many researchers have attempted to
apply artificial neural networks (ANNs) to image processing problems. To a
large extent, it is an overview of what can now perhaps be called the “neural
network hype” in image processing: the approximately 15-year period following
the publications of Kohonen, Hopfield and Rumelhart et al. Their work inspired
many researchers to apply ANNs to their own problem in any of the stages of
the image processing chain. In some cases, the reason was biological plausi-
bility; however, in most cases the goal was simply to obtain well-performing
classification, regression or clustering methods.

In some of these applications the most interesting aspect of ANNs, the fact
that they can be trained, was not (or only partly) used. This held especially for
applications to the first few tasks in the image processing chain: pre-processing
and feature extraction. Another advantage of ANNs often used to justify their
use is the ease of hardware implementation; however, in most publications this
did not seem to be the reason for application. These observations, and the fact
that often researchers did not compare their results to established techniques,
casted some doubt on the actual advantage of using ANNs. In the remainder
of the paper, ANNs were therefore trained on two tasks in the image processing
chain: object recognition (supervised classification), and pre-processing (super-
vised regression) and, where possible, compared to traditional approaches.

The experiment on supervised classification, in handwritten digit recognition,
showed that ANNs are quite capable of solving difficult object recognition prob-
lems. They performed (nearly) as well as some traditional pattern recognition
methods, such as the nearest neighbour rule and support vector classifiers, but
at a fraction of the computational cost.

As supervised regressors, a number of ANN architectures was trained to mimic
the Kuwahara filter, a nonlinear edge-preserving smoothing filter used in pre-
processing. The experiments showed that careful construction of the training
set is very important. If filter behaviour is critical only in parts of the image
represented by a small subset of the training set, this behaviour will not be
learned. Constructing training sets using the knowledge that the Kuwahara
filter is at its most nonlinear around edges improved performance considerably.
This problem is also due to the use of the mean squared error (MSE) as a
training criterion, which will allow poor performance if it only occurs for a
small number of samples. Another problem connected with the use of the MSE
is that it is insufficiently discriminative for model choice; in first attempts,
almost all ANN architectures showed identical MSEs on test images. Criteria
which were proposed to measure smoothing and sharpening performance showed
larger differences. Unfortunately, these results indicate that the training set
and performance measure will have to be tailored for each specific application,
with which ANNs lose much of their attractiveness as all-round methods. The
findings also explain why in the literature, many ANNs applied to pre-processing
were non-adaptive.

In conclusion, ANNs seem to be most applicable for problems requiring a
nonlinear solution, for which there is a clear, unequivocal performance crite-
rion. This means ANNs are more suitable for high-level tasks in the image
processing chain, such as object recognition, rather than low-level tasks. For
both classification and regression, the choice of architecture, the performance
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criterion and data set construction play a large role and will have to be optimised
for each application.

7.2 Prior knowledge

In many publications on the use of ANNs in image processing, prior knowledge
was used to constrain ANNs. This is to be expected; unconstrained ANNs
contain large numbers of parameters and run a high risk of being overtrained.
Prior knowledge can be used to lower the number of parameters in a way which
does not restrict the ANN to such an extent that it can no longer perform the
desired function. One way to do this is to construct modular architectures, in
which use is made of the knowledge that an operation is best performed as a
number of individual sub-operations. Another way is to use the knowledge that
neighbouring pixels are related and should be treated in the same way, e.g. by
using receptive fields in shared weights ANN.

The latter idea was tested in supervised classification, i.e. object recognition.
The shared weight ANNs used contain several layers of feature maps (detecting
features in a shift-invariant way) and subsampling maps (combining informa-
tion gathered in previous layers). The question is to what extent this prior
knowledge was truly useful. Visual inspection of trained ANNs revealed little.
Standard feed-forward ANNs comparable in the number of connections (and
therefore the amount of computation involved), but with a much larger number
of weights, performed as well as the shared weight ANNs. This proves that the
prior knowledge was indeed useful in lowering the number of parameters without
affecting performance. However, it also indicates that training a standard ANN
with more weights than required does not necessarily lead to overtraining.

For supervised regression, a number of modular ANNs was constructed. Each
module was trained on a specific subtask in the nonlinear filtering problem the
ANN was applied to. Furthermore, of each module different versions were cre-
ated, ranging from architectures specifically designed to solve the problem (us-
ing hand-set weights and tailored transfer functions) to standard feed-forward
ANNs. According to the proposed smoothing and sharpening performance mea-
sures, the fully hand-constructed ANN performed best. However, when the
hand-constructed ANNs were (gradually) replaced by more standard ANNs,
performance quickly decreased and became level with that of some of the stan-
dard feed-forward ANNs. Furthermore, in the modular ANNs that performed
well the modular initialisation was no longer visible (see also the next section).
The only remaining advantage of a modular approach is that careful optimisa-
tion of the number of hidden layers and units, as for the standard ANNs, is not
necessary.

These observations lead to the conclusion that prior knowledge can be used
to restrict adaptive methods in a useful way. However, various experiments
showed that feed-forward ANNs are not natural vehicles for doing so, as this
prior knowledge will have to be translated into a choice for ANN size, connectiv-
ity, transfer functions etc., parameters which do not have any physical meaning
related to the problem. Therefore, such a translation does not necessarily result
in an optimal ANN. It is easier to construct a (rough) model of the data and
allow model variation by allowing freedom in a number of well-defined param-
eters. Prior knowledge should be used in constructing models rather than in
molding general approaches.
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7.3 Interpretability

Throughout this paper, strong emphasis was placed on the question whether
ANN operation could be inspected after training. Rather than just applying
ANNs, the goal was to learn from the way in which they solved a problem. In
few publications this plays a large role, although it would seem to be an impor-
tant issue when ANNs are applied in mission-critical systems, e.g. in medicine,
process control or defensive systems.

Supervised classification ANNs were inspected w.r.t. their feature extraction
capabilities. As feature extractors, shared weight ANNs were shown to perform
well, since standard pattern recognition algorithms trained on extracted features
performed better than on the original images. Unfortunately, visual inspection
of trained shared weight ANNs revealed nothing. The danger here is of over-
interpretation, i.e. reading image processing operations into the ANN which are
not really there. To be able to find out what features are extracted, two smaller
problems were investigated: edge recognition and two-class handwritten digit
recognition. A range of ANNs was built, which showed that ANNs need not
comply with our ideas of how such applications should be solved. The ANNs
took many “short cuts”, using biases and hidden layer-output layer weights.
Only after severely restricting the ANN did it make sense in terms of image
processing primitives. Furthermore, in experiments on an ANN with two fea-
ture maps the ANN was shown to distribute its functionality over these maps
in an unclear way. An interpretation tool, the decorrelating conjugate gradient
algorithm (DCGD), can help in distributing functionality more clearly over dif-
ferent ANN parts. The findings lead to the formulation of the interpretability
trade-off, between realistic yet hard-to-interpret experiments on the one hand
and easily interpreted yet non-representative experiments on the other.

This interpretability trade-off returned in the supervised regression problem.
Modular ANNs constructed using prior knowledge of the filtering algorithm
performed well, but could not be interpreted anymore in terms of the individual
sub-operations. In fact, retention of the modular initialisation was negatively
correlated to performance. ANN error evaluation was shown to be a useful
tool in gaining understanding of where the ANN fails; it showed that filter
operation was poorest around edges. The DCGD algorithm was then used to
find out why: most of the standard feed-forward ANNs found a sub-optimal
linear approximation to the Kuwahara filter. The conclusion of the experiments
on supervised classification and regression is that as long as a distributed system
such as an ANN is trained on single goal, i.e. minimisation of prediction error,
the operation of sub-systems cannot be expected to make sense in terms of
traditional image processing operations. This held for both the receptive fields
in the shared weight ANNs and the modular setup of the regression ANNs:
although they are there, they are not necessarily used as such. This also supports
the conclusion of the previous section, that the use of prior knowledge in ANNs
is not straightforward.

This paper showed that interpretation of supervised ANNs is hazardous. As
large distributed systems, they can solve problems in a number of ways, not
all of which necessarily correspond to human approaches to these problems.
Simply opening the black box at some location one expects the ANN to exhibit
certain behaviour does not give insight into the overall operation. Furthermore,
knowledge obtained from the ANNs cannot be used in any other systems, as it
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only makes sense in the precise setting of the ANN itself.

7.4 Conclusions

We believe that the last few years have seen an attitude change towards ANNs,
in which ANNs are not anymore automatically seen as the best solution to any
problem. The field of ANNs has to a large extent been re-incorporated in the
various disciplines that inspired it: machine learning, psychology and neuro-
physiology. In machine learning, researchers are now turning towards other,
non-neural adaptive methods, such as the support vector classifier. For them
the ANN has become a tool, rather than the tool it was originally thought to
be.

So when are ANNs useful in image processing? First, they are interesting
tools when there is a real need for a fast parallel solution. Second, biological
plausibility may be a factor for some researchers. But most importantly, ANNs
trained based on examples can be valuable when a problem is too complex to
construct an overall model based on knowledge only. Often, real applications
consist of several individual modules performing tasks in various steps of the
image processing chain. A neural approach can combine these modules, control
each of them and provide feedback from the highest level to change operations
at the lowest level. The price one pays for this power is the black-box char-
acter, which makes interpretation difficult, and the problematic use of prior
knowledge. If prior knowledge is available, it is better to use this to construct
a model-based method and learn its parameters; performance can be as good,
and interpretation comes natural.
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