
Classifier problem archetypes

Robert P.W. Duin, David M.J. Tax
Delft University of Technology, The Netherlands

{r.p.w.duin,d.m.j.tax}@tudelft.nl

Anil K. Jain
Michigan State University, East Lansing, USA

jain@cse.msu.edu

Abstract

Every automatic classification procedure, defined by a
classifier and an optimization procedure, has (a set of)
problems for which it performs better than other proce-
dures. The most simple of these problems we call the prob-
lem archetype of the classification procedure. In this paper
we present 2D examples of these problem archetypes for 14
standard classifiers. It gives insight in the focus and robust-
ness of the classification procedures1.

1. Introduction

The analyst who has to design a pattern recognition sys-
tem for a given application has to make a choice from the
large set of available classification procedures. These pro-
cedures differ in the classification model and the optimiza-
tion routine. Some of them are entirely automatic, but many
require the adjustment of parameters that can not be opti-
mized fully automatically from the data. Still, most soft-
ware packages offer default choices. We will call these stan-
dard classifier procedures.

The question of what is the best classifier procedure for a
given problem cannot be answered straightforwardly. Some
procedures focus on a particular type of problems and show
a bad performance on many others. Other procedures are
more robust and show an acceptable performance on a wide
variety of datasets.

The pragmatic solution to compare classifiers is to run
them over a set of standard problems. This produces tables
with performances and shows the variability of classifier be-
havior over the chosen set. Some insight may be gained on
classifier performances w.r.t. problem characteristics like
sample size, dimensionality, number of classes and multi-
modality. Examples of such studies are [4, 5]. Another way
to study the behavior of classification procedures is to an-
alyze their assumptions and compare these over the set of
procedures. The way some classifiers are defined, however,

1Unpublished paper, 2006

does not always map on a well defined model of problem
characteristics. Still there is a need to build knowledge on
what classifiers to choose for what type of datasets.

In this paper we try to achieve insight in classifier behav-
ior by an entirely different approach, based on artificially
generated problems only. First we state the following con-
jecture:

For every useful classifier procedure there exists at least
a single classification problem, possibly artificially gener-
ated, for which it outperforms all other classifiers.

This is a consequence of the fact that any training pro-
cedure is explicitly or implicitly based on assumptions on
the data distribution. A problem for which that distribution
exactly matches the assumptions is perfectly suited for the
corresponding classifier. If the assumptions used by classi-
fier A are more strict than the assumptions for classifier B,
then classifier A will perform better on a problem that just
fulfills assumptions A. Classifier B will perform better if the
assumptions B hold and the assumptions A do not.

A possible exception might be that a classifier C assum-
ing ’B and not A’ will do better than the more general classi-
fier B. Consequently, there would be no problem for which
classifier B is best. We think, however, that this situation is
very rare. Often classifier A is a particularly biased version
of B (for instance using an independence assumption), fill-
ing a subspace in the version space of A. This causes that
classifier C becomes practically equal to classifier B.

The most simple classification problems for which a
particular classifier outperforms all other classifiers is
archetypical for that classifier. It fulfills its basic assump-
tions and nothing more. It will thereby clearly illustrate the
classifier characteristics.

In this paper we set out to construct archetypical prob-
lems for each of 14 standard classifiers. We restrict our-
selves to two-class problems with equal class prior proba-
bilities in two dimensions and given by 50 training objects
per class each. This is done for simplicity and for illustra-
tive purposes. We realize that these restrictions may cause
difficulties as some classifiers might be particular good for
multi-class problems, high dimensionalities or for skewed
priors.

In the next section the classifiers and their proposed
archetypical problems are presented as well as the results
of the comparative experiments. The paper concludes with
a discussion.

2. Classifiers and their archetypical problems

Here we present a set of 14 artificial two-class problems
that illustrate the particular qualities of each of the 14 stan-
dard classifiers that we took from the PRTools toolbox [3].
We use default settings. Space does not allow to present
the classifiers in mathematical terms or by pseudo code. In-
terested readers can download the software and the exper-
iments from the author’s website. General references for
most of the classifiers we used can be found in [1, 2].

Our experiments are based on 25 training sets of 50 ob-
jects per class generated for each of the problems. Classi-
fiers are tested on a test set of 1000 objects per class. Figure
1 shows the results. The datasets are presented by scatter-
plots of 200 objects per class, to give a better impression
of the distributions. The classifier for which each dataset is
designed is listed above the plot. On the left of the plots the
averaged errors (×1000) are listed.

We continued to iterate over more trials just for this set.
Above each scatterplot the number of trials is given for
which the difference between the winning classifier and the
next one is significant.

QDA. This is the quadratic Bayes classifier assuming
Gaussian distributions. Two normal distributions with dif-
ferent, non-diagonal covariance matrices are generated.

UDA. As QDA, but assuming uncorrelated covariance
matrices. So we aligned the distributions with the feature
axes. QDA performs just slightly worse here, as it estimates
full covariance matrices.

LDA. As QDA, but assuming equal covariance matri-
ces. Other linear classifiers like the Logistic classifier and
SVM-1 perform slightly worse here as they do not use the
Gaussian model.

Nearest-Mean. The nearest mean classification rule is
optimal for spherical classes that only differ in mean. So
we generated two spherical Gaussian distributions. Other
linear classifiers, not based on the Gaussian model, perform
slightly worse.

Parzen. Our Parzen classifier uses a spherical Gaussian
kernel for which the width is optimized for the classification
performance on the training set using leave-one-out cross-
validation. This non-parametric density estimation rule is
similar to the K-NN classifier. The use of a Gaussian ker-
nel, however, has an advantage if in the overlap region the
tails of the class distributions have also a Gaussian shape.
In order to make this problem difficult for the Bayes Gaus-
sian classifiers like QDA we generated two ’banana’-shaped
classes (uniformly sampled sinusoidal curves) convoluted

with a spherical normal distribution. Consequently, neural
network based classifiers constructing a general non-linear
decision boundary also perform well on this data.

K-NN. Our implementation of the K-Nearest Neighbor
rule optimizes K by a leave-one-out cross validation pro-
cedure over the training set. The K-NN rule effectively
adapts the size of the neighborhood to the local density.
We generated the same banana-shaped classes as used for
the Parzen classifier problem, but additionally transformed
the features by an exponential scaling. This deteriorates the
performance of the Parzen classifier (using equal width ker-
nels) more than that of the K-NN rule.

1-NN. The 1-Nearest Neighbor rule is sub-optimal for
overlapping classes. However, various attempts to use non-
overlapping two-dimensional domains for the classes (e.g.
as used for the Decision Tree and the Radial Basis Support
Vector Machine, RB-SVM) failed, as either a neural net-
work or the RB-SVM always performed better. Therefore,
a rather artificial spiral problem was selected, sampled uni-
formly with the polar angle. The other classifiers, except
K-NN perform bad for this problem. The difference in per-
formance with K-NN was after 1000 trials not significant.

Naive-Bayes. The Naive-Bayes rule assumes indepen-
dent features. It has shown a surprisingly good performance
in high-dimensional problems for which standard density
estimations are problematic. The presented 2D-example is
based on a uniform distribution along one axis and a two-
mode Gaussian distribution along the other. These two axes
are reversed for the two classes.

RB-Neural-Net. The implementation of the Radial Ba-
sis Neural classifier is based on Matlab’s Neural Network
Toolbox. In this implementation the neural network is
grown by adding hidden units, till a maximum of 100 units.
The second layer of the network has two sigmoidal output
units. This classifier often performs well when general non-
linear decision functions are demanded, but it is usually in
competition with Parzen and K-NN. In case classes hardly
overlap, it wins as it emphasizes geometrical discrimination
over modelling of distributions.

Dec-Tree. The decision tree we implemented is based on
a CART-like procedure, maximizing the purity. As it treats
features separately, the effective decision function is piece-
wise linear, parallel to the feature axes. So we shaped the
classes aligned with the features and prevented class overlap
in order to profit optimally from the purity strategy.

LM-Neural-Net. Again Matlab’s Neural Network Tool-
box was used for training a feed-forward neural network
with 5 hidden units using the Levenberg-Marquardt rule. As
can be observed, this classifier is able to implement rather
sharp non-linearities. The example is the same as for the
decsion tree, but now rotated.

Logistic. The logistic classifier is a linear, robust pro-
cedure that concentrates on the area of overlap and is in-

2

sensitive to the shapes of the class distributions outside this
area. The Gaussian density based classifiers suffer from the
additional modes we generated for the classes. We had to
make the overlap area small, aligned with the classes and
had to use uniform instead of Gaussian distributions in or-
der to achieve a better performance than the linear Support
Vector Machine SVM-1.

SVM-1. We used a ν-SVM procedure [6], estimating ν
by the 1-NN error. It appeared to be very difficult to find an
example for which the linear support vector machine SVM-
1 is better than the logistic classifier. This may be caused
by the fact that the weights for the erroneously classified
objects are limited by the sigmoid function in the logistic
classifier while in the SVM they are weighted linearly with
the distance to the classifier. In the constructed example the
SVM is slightly better as the logistic classifier is somewhat
unstable for small class overlaps.

RB-SVM. The Radial Basis Support Vector Machine,
has a Gaussian shaped kernel. Again, we used a ν-SVM
machine [6], estimating ν by the 1-NN rule. The width of
the kernel was optimized in 10 steps using 10-fold cross val-
idation. Consequently 101 classifiers have to be computed,
which makes the learning procedure very time consuming.
However, this classifier often performs well, especially for
non-linearly separable problems. Class overlap should be
avoided to make it better than Parzen and the K-NN rule.

3. Discussion

We successfully created for every standard classifier in
the used toolbox an example for which that classifier outper-
forms all the others. Especially for the Naive-Bayes classi-
fier and the SVM-1, this appeared to be difficult, mainly as
a consequence of the limitations in 2D feature spaces.

The presented examples clearly show the specific clas-
sifier characteristics like linearity, emphasis on class over-
lap or model robustness. As we restricted ourselves, due
to space limitations, to problems with a fixed training set
size and dimensionality, issues like overtraining, stability
and dimensionality sensitivity have been neglected.

A further analysis of the data shows that some classifiers
are very similar, e.g. K-NN and Parzen, or Logistic and
SVM-1. The Nearest Mean rule is an outlier in the sense
that it is only good for its own problem. The radial basis
rules for the SVM and the neural network are good, robust
performing classifiers, directly followed by the LM-Neural-
Net, Parzen and K-NN. These latter two rules seem to per-
form better for overlapping problems and the neural net-
works, SVMs and 1-NN rule for almost separable classes.
The logistic classifier is an overall robust linear classifier.

It does not make much sense to average classifier per-
formances over different problems as the presented set of
examples will not be representative, in distribution, of any

set of practical problems. The worst case performances of
classifiers, however, may indicate the risk (in terms of the
worst thing that may happen) of using a particular classi-
fier for an arbitrary problem. If we exclude the very artifi-
cial spiral problem (1-NN) and normalize by the best per-
formance for a particular problem, then the best classifiers
ranked according to their worst relative performance are (i).
RB-SVM (1.68), (ii). RB-Neural-Net (1.74) and (iii). 1-NN
(1.97), indicating that the RB-SVM was at most 68% worse
than the best classifier for the same problem (which was for
this classifier the UDA problem: 89/53 = 1.68) .

We think that the methodology presented in this paper
may be worthwhile for discussing new classifier proposals.
They should be accompanied with their own archetypical
problems and may be compared with those of the stan-
dard classifiers to judge their characteristics. An exten-
sion of this methodology to multi-class problems and multi-
dimensional feature spaces may increase its value for real
world applications.

References

[1] R.O. Duda, P.E. Hart and D.G. Stork, Pattern classifica-
tion, Second Edition, Wiley, New York, 2001.

[2] A.K. Jain, R.P.W. Duin, and J. Mao, Statistical Pattern
Recognition: A Review, IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 22, no. 1, 2000, 4–37.

[3] R.P.W. Duin, P. Juszczak, D. de Ridder, P. Paclik, E.
Pekalska, and D.M.J. Tax, PRTools, a Matlab toolbox
for pattern recognition, http://prtools.org, 2004.

[4] D. Michie, D.J. Spiegelhalter and C.C Taylor, Machine
Learning, Neural and Statistical Classification, Ellis Hor-
wood, New York, 1994.

[5] T.S. Lim, W.Y. Loh, Y.S. Shih, A Comparison of Pre-
diction Accuracy, Complexity, and Training Time of
Thirty-Three Old and New Classification Algorithms,
Machine Learning, Vol. 40, 203-228, 2000.

[6] B. Scholkopf, A.J. Smola, R.C. Williamson, P.L.
Bartlett, New Support Vector Algorithms, Neural Comp.
Col. 12, 1207–1245, 2000.

3

 54 QDA*

 86 LM−Neural−Net

 89 RB−SVM

 90 RB−Neural−Net

 92 Parzen

 102 1−NN

 104 K−NN

 124 Dec−Tree

 162 UDA

 180 Logistic

 187 Naive−Bayes

 193 SVM−1

 202 LDA

 258 Nearest−Mean

QDA (10)

 53 UDA*

 54 QDA

 81 RB−Neural−Net

 89 RB−SVM

 92 Naive−Bayes

 93 Parzen

 93 Dec−Tree

 99 LM−Neural−Net

 102 1−NN

 104 K−NN

 180 Logistic

 193 SVM−1

 202 LDA

 258 Nearest−Mean

UDA (12)

 59 LDA*

 60 Logistic*

 60 SVM−1*

 61 QDA*

 81 LM−Neural−Net

 83 RB−SVM

 89 RB−Neural−Net

 95 Parzen

 109 K−NN

 116 1−NN

 151 Dec−Tree

 290 Nearest−Mean

 312 UDA

 365 Naive−Bayes

LDA (32)

 148 Nearest−Mean*

 150 LDA*

 150 Logistic*

 150 SVM−1*

 151 UDA

 153 QDA

 165 Parzen

 165 K−NN

 179 Naive−Bayes

 193 LM−Neural−Net

 196 RB−Neural−Net

 225 1−NN

 226 RB−SVM

 228 Dec−Tree

Nearest−Mean (39)

 146 Parzen*

 150 K−NN*

 158 RB−Neural−Net

 171 LM−Neural−Net

 184 Logistic

 184 LDA

 184 SVM−1

 184 RB−SVM

 185 QDA

 191 1−NN

 199 Naive−Bayes

 208 Nearest−Mean

 208 UDA

 232 Dec−Tree

Parzen (14)

 157 K−NN*

 160 Parzen*

 165 RB−Neural−Net*

 165 LM−Neural−Net*

 184 RB−SVM

 187 SVM−1

 189 Logistic

 190 1−NN

 203 QDA

 206 LDA

 216 Naive−Bayes

 219 Nearest−Mean

 223 UDA

 233 Dec−Tree

K−NN (6)

 13 1−NN*

 14 K−NN*

 48 Parzen

 134 Dec−Tree

 180 RB−SVM

 205 RB−Neural−Net

 273 Naive−Bayes

 333 LM−Neural−Net

 454 SVM−1

 455 LDA

 455 Logistic

 459 Nearest−Mean

 460 UDA

 460 QDA

1−NN

 317 Naive−Bayes*

 328 RB−Neural−Net

 333 Parzen

 342 RB−SVM

 352 K−NN

 353 1−NN

 377 LM−Neural−Net

 377 Dec−Tree

 493 UDA

 500 SVM−1

 500 Nearest−Mean

 501 LDA

 501 Logistic

 502 QDA

Naive−Bayes (11)

 29 RB−Neural−Net*

 30 Parzen*

 33 K−NN

 34 RB−SVM

 36 1−NN

 56 LM−Neural−Net

 69 Dec−Tree

 124 Naive−Bayes

 159 Logistic

 159 LDA

 160 SVM−1

 161 QDA

 203 UDA

 205 Nearest−Mean

RB−Neural−Net (152)

 27 Dec−Tree*

 30 LM−Neural−Net*

 36 RB−SVM

 47 RB−Neural−Net

 51 Parzen

 51 Naive−Bayes

 52 1−NN

 54 K−NN

 103 QDA

 123 UDA

 139 LDA

 142 Logistic

 143 SVM−1

 156 Nearest−Mean

Dec−Tree (44)

 32 LM−Neural−Net*

 36 RB−SVM*

 44 RB−Neural−Net

 50 Parzen

 52 1−NN

 54 K−NN

 89 Dec−Tree

 103 QDA

 111 UDA

 136 Naive−Bayes

 139 LDA

 142 Logistic

 143 SVM−1

 156 Nearest−Mean

LM−Neural−Net (10)

 51 Logistic*

 51 SVM−1*

 72 RB−SVM

 74 RB−Neural−Net

 75 LDA

 81 QDA

 98 LM−Neural−Net

 112 1−NN

 118 K−NN

 124 Parzen

 134 Dec−Tree

 233 Nearest−Mean

 246 UDA

 255 Naive−Bayes

Logistic (566)

 16 SVM−1*

 16 Logistic*

 18 RB−SVM*

 18 LM−Neural−Net

 19 RB−Neural−Net

 19 1−NN

 21 K−NN

 28 LDA

 29 QDA

 43 Parzen

 67 Dec−Tree

 132 Nearest−Mean

 172 UDA

 302 Naive−Bayes

SVM−1 (463)

 80 RB−SVM*

 131 RB−Neural−Net

 146 1−NN

 147 Parzen

 153 K−NN

 270 Dec−Tree

 303 LM−Neural−Net

 305 Naive−Bayes

 467 UDA

 473 QDA

 499 Logistic

 499 LDA

 499 Nearest−Mean

 500 SVM−1

RB−SVM (10)

Figure 1. Archetypical problems for the 14 standard classifiers. Mean errors (×1000, averaged over
25 experiments) are listed left of scatterplots based on 200 objects per class. Standard deviations
are estimated from the 25 experiments. Performances that are not significantly different from the
best results are indicated by *. The number next to the title indicates how many experiments are
required to obtain a significant performance difference between the best and second best classifier.
The higher the number, the smaller the difference in statistical terms between the best classifiers.4

