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Many problems in data analysis and pattern recogni-
tion may be attacked by neural networks. Sometimes
this approach is better, sometimes it is worse than the
use of alternatives. A general discussion is presented
on possibilities, advantages and disadvantages of
their use in comparison with more specific
approaches. The study of neural networks, once
almost a ‘black box’ has given a better understanding
of the possibilities of pattern learning. The recent
development of more specific methods has been
strongly stimulated by this knowledge.

1. Introduction

Neural networks are now used for 10 to 15 years for
adaptive data analysis. At their start they caused a
large hype, attracting many new researchers to the
field, fascinated by the new possibilities. For a
number of scientists they are still the only way to do
such an analysis. Some even simply call any approach
in this field a neural network.

Much has been learned about neural networks in
particular and about machine learning in general on
the basis of a more than ten year world wide effort in
experimenting, evaluating and analyzing neural net-
works. It is possible now, not only to look back and
judge the early promises and claims, but moreover, to
reformulate and explain the properties of neural net-
work in present terms. To that end we will discuss a
number of characteristic issues for neural networks
that increased the understanding of learning in gen-
eral. We will do this using the pattern recognition ter-
minology as neural networks are well suited for
finding and describing pattern classes in feature
spaces.

This will not be an introductory paper to the field.
It is assumed that the reader is generally familiar with
the various approaches, training procedures and prob-
lems related to the neural networks. We will restrict
ourselves to a global, verbal analysis, and to com-
ments and opinions. In the context of this paper it is
not possible to present very precise analyses end dis-
cussions. The author is aware of the fact that on some
places more careful formulations and argumentations
are desired for a more strict scientific discussion.

As indicated above, there is no universally accept
definition of an artificial neural network. We will
restrict to systems that are constituted by a possib
large set of identical simple building stones: neuron
Such a neuron has a set of inputs, a state vector (t
may be independent of its actual input) and one
more outputs (dependent on state and input value
Neurons are usually connected: inputs may be fed
external measurements as well as by outputs of oth
neurons.

Neural networks can be flat: just a single layer o
connected neurons which outputs is identical to th
output of a ‘winning’ neuron. They also may be orga
nized in a hierarchical way: a series of so called ‘hid
den’ layers containing so called ‘hidden neurons’ an
on top a visible layer of ‘output’ neurons.

The input of a neural network can be (a subset o
the raw measurement data or some feature represe
tion of it. Two typical choices often made for the stat
of a neuron are a set of weights for their inputs (fea
tures) and/or a feature vector that may be interpret
as a position of the neuron in feature space. Thr
examples of neural network architectures are:

• The Feed-Forward Neural Network (FFNN) o
multi-layer perceptron. There is at least one hidde
layer. All neurons have a single sigmoid output. I
classification applications its outputs may be inte
preted as class confidences or posterior probab
ties, provided the network is well trained.

• The Radial Basis Neural Network (RBNN) has
first hidden layer of neurons of which the output
are radial basis functions of the inputs. This can b
an exponential function (e.g. the Gaussian functio
of the distance between the input and a ‘position’ o
the neuron in the feature space. The neurons in t
next layer may weight all the contributions of the ra
dial basis functions. In total this can be interprete
as a weighted (not necessarily normalized) sum
Gaussians.

• The Self Organizing Map (SOM) consists also of
set of neurons ‘positioned’ in feature space. Durin
training they are now connected in a low dimension
al grid (1, 2 or possibly 3-dimensional). During test
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ing the ‘winner takes all’ strategy is used, i.e. the
output of the network is determined by the neuron
closest to the input.

In our discussion we will mainly refer to the FFNN as
it is the most widely used architecture.

3. Training versus Implementing

There are many ways to estimate parameters
(weights) for a given architecture. The architecture of
the FFNN is so general that almost any function can
be implemented by it. This is one of the basic state-
ments in the neural network area [6]. Many papers
have been devoted to the way a specific non-neural
method can be implemented on a neural network, see
[7] for an example.

In order to give the phrase ‘neural network’ a spe-
cific meaning we should specify both, the architecture
as well the way its parameters are estimated. There-
fore, neural network training has to be different from
just estimating a function or a classifier in one way
and mapping it on a neural network. Usually a true
neural network training procedure is based on an iter-
ative approximation in which the parameters are suc-
cessively updated in numerous steps. Such a step can
be based on a single data item, on a set of them, or an
all available data points. In each step the desired out-
come is compared with the actual one and, using the
knowledge of the architecture, all parameters are
changed slightly such that the error for the presented
data points decreases.

Consequently, a neural network is defined by an
architecture based on many simple neuronsand a
training procedure in which these neurons are slowly
adapted such that the overall performance increases.
A number of problems related with this adaptation
procedure will be discussed below. The main prob-
lem, however, can be stated here.

The parameters of the individual neurons are in a
nonlinear way related to the performance of the entire
network. Moreover, their influence is highly depen-
dent. Optimization procedures are based on a simpli-
fied relationship: linear or quadratic approximation,
steps computed for a subset of the data. This works if
the steps are small. In fact, the larger the network and
the more complex the data set, the smaller the steps
should be in order to find a path in a good direction.
Consequently, neural network training is very, very
slow.

4. The Universal Approximator

In theory, almost any well-behaved function can be
realized by a neural network of sufficient size [6]. For
some functions this size may be large. This property,
however, holds for the architecture. There is no guar-
antee that the parameters of such a system can be
found by a training procedure based on examples. In

practice, it appears to be very difficult or impossibl
to find strongly nonlinear networks describing th
data, even if it is known to exist [13].

A serious problem caused by the property that su
ficiently large network can implement any function, i
that they are also able to follow the noise in the dat
This prevents large networks to generalize. Inste
they overtrain, as will be discussed section 6.

5. Nonlinearity

An important step made by the introduction of neura
networks is the possibility of creating controlled
moderately nonlinear systems. The above discuss
problem, that the theoretical possibility of imple
menting arbitrary functions cannot be realized i
practice, is in fact an advantage. In many application
the way the data is given by the sensors and by t
measurements (features) obtained from the sen
data is such that it has some meaning to the expe
mentator. Consequently, a natural metric for the da
representation (e.g. Euclidean distances in the feat
space) offers already a first approximation to th
structure in the data. Linear descriptions may there
yield a good performance. Moderately nonlinea
descriptions may improve this where the natural re
resentation is good but not optimal.

At this point it is good to realize that the common
initialization of a FFNN by small weights generate
an almost linear network. At the start of training thi
linear function adapts itself to the linear structures
the data. Next, when the weights increase, it gradua
becomes nonlinear. If training is proceeded too fa
the weights may become large and the netwo
becomes strongly nonlinear, see section 6.

If a highly nonlinear description fits, however, this
indicates that a completely different representatio
than the original data description may be better. W
are then in the area where the experimenter has
idea what is going on in the data (his representation
wrong) and all knowledge has to be found from a st
tistical analysis of the data.

We believe that such a desperate attempt shou
only be made in the very rare situation that there is n
good prior knowledge, but one is convinced that the
is something hidden in the data. Sufficient resourc
should be available to collect a large dataset and
perform an extensive nonlinear analysis. For the lar
majority of applications a moderately nonlinea
approach is just perfect: it finds in the data a sma
improvement over the available knowledge.

6. Training and Overtraining

A neural network is trained in order to establish a fi
to a set of examples, i.e. the network should outp
values close to the target values assigned by
expert-teacher to the training set of objects. We
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trained networks generalize in the sense that their out-
puts are (close to) correct for objects not available in
the training set.

If the training set is noisy or contains errors (like
overlapping classes in case of a classification prob-
lem), a too heavily trained network may be adapted to
the noise and does not generalize. It is overtrained and
produces random outputs for unseen input objects.

Overtraining can be detected during training by the
use of a test set. The disadvantage is that such a set
reduces the size of the training set and thereby
decreases the final performance. A good trick is to
rotate (parts of) the training set and the test set. Over-
training is sometimes related to strong nonlinearity.
This can be detected by the size of the weights. Only
for large weights the network is able to have a strong
nonlinear functionality.

Overtraining may be avoided by:
• Early stopping, i.e. stopping the training in time, be-

fore an adaptation to the noise starts. It is difficult to
detect an optimal stopping moment without the use
of a test set.

• Small networks. If the network has much less pa-
rameters than objects in the training set, it cannot be
overtrained.

• Pruning, i.e. reducing the size of a network after it
is trained. In this way unimportant neurons, causing
noise, are deleted. It is necessary to retrain the net-
work after pruning.

• Large training sets. Networks of a fixed size cannot
be overtrained for large training sets.

• Data enrichment, i.e. artificially enlarging the train-
ing set by objects that ‘smooth out’ the noise.

• Regularization. One way to do this is to add a pen-
alty term to the optimization criterion for networks
with large weights, as these are related to strong
nonlinearity, section 5.

7. Redundancy

Neural networks are often larger than necessary. The
final network, after training, may be mapped on a
smaller system without a significant change in behav-
ior. The question arises: wouldn’t it be advantageous
to scale down the networks to a size that just fits the
problem?

It is interesting to note that this is not true. The per-
formance of a neural network shows, as a function of
its size an optimum for sizes larger than necessary.
This is directly related to the difficulty to exploit the
possible nonlinearity as discussed above. The conclu-
sion that can be drawn is that some redundancy in a
network is advantageous for good training.

This observation contradicts the traditional opin-
ion in pattern recognition that redundant systems
should be avoided in order to circumvent effects like
the curse of dimensionality and the peaking phenom-

enon [8]. Neural networks have shown that a deto
by oversized systems may be worthwhile.

8. Speed and memory

Neural networks are large systems. As a conseque
they are slow and need a lot of memory. This holds f
testing and in particular for training. The update o
large sets of parameters by an iterative procedu
based on all training samples is computational
intensive. For larger networks some optimizatio
algorithms, e.g. the ones based on second derivativ
are even computationally prohibitive.

In the early days of neural networks, their spee
was sometimes advocated as an advantage. This
based on the possibility of using parallel hardwar
Many neurons having the same architecture make
possible to build cheap special devices that efficient
evaluate an entire network. It appears to be difficu
however, to integrate such devices with various trai
ing rules and to maintain the flexibility in training tha
is necessary for the application over a large set
problems. Moreover, it has to be realized that man
other pattern recognition algorithms, like the Parze
classifier and the nearest neighbor rule, may
speeded up similarly by such devices.

9. What one needs to know

Retrieving knowledge from observations cannot sta
from nothing. What may be hoped is that existin
knowledge grows from observations. The questio
arises: what prior knowledge is needed for what lear
ing system? This may differ considerably over th
various procedures for pattern learning. Bayes me
ods need knowledge over distributions and prior pro
abilities. Most traditional classification procedure
prefer a small set of good features.

The type of knowledge needed for neural network
is somewhat different. As they adaptively adjust t
moderately nonlinear data structures, probabilist
information is hard to use. Moreover, to some respe
neural networks may combine feature reduction an
classification. In a FFNN the input layer can be con
sidered as a mapping to a subspace represented by
hidden layer. If the number of neurons in this layer
smaller than the number of inputs, this is a dimensio
reduction.

So what is needed to make a neural network su
cessful? Let us reconsider the FFNN. To some resp
the number of parameters in the input layer is not s
important. What is essential for a good generalizatio
however, is the number of parameters in the outp
layer relative to the sample size. This output laye
constitutes a linear classifier and determines direc
the performance. Even if all weights below this laye
are random, a good accuracy may be reached if t
proportion in the order of 1:10. Here we see the rel
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tion between sample size and nonlinearity. More sam-
ples enable a larger hidden layer and thereby a larger
nonlinearity.

What is needed for a neural network to be success-
ful is that the sample size fits the demands of the prob-
lem in the above described way. The number of
samples should allow for an architecture that can be
adapted to the structure of the data. Moreover, every-
thing, data and network and training procedure,
should fit into the computer at hand. So the data rep-
resentation, the data size and the network architecture
together should match the data structure to be
adapted.

In general, there is no guaranteed way to solve this.
In practice one hopes that the data representation is
sufficiently well to make the problem solvable (at
most moderately nonlinear without introducing to
much noise) by the architecture that is allowable for
the given size of the training set.

10. What one may learn

A successfully trained neural network maps inputs on
outputs such that these are close to the targets. As
such it can be applied. In some applications one likes
to achieve more. For instance, the actually important
features, or an explanation for a certain outcome. This
appears to be very difficult. All information is distrib-
uted over the neurons. Just by advanced experiments
one may extract such information [14].

A well trained multi-layer network represents in its
hidden layer a space from which the following layers
construct the final output. If this space has a lower
dimensionality than the input space (less neurons than
inputs) then the neural network represents from input
to hidden layer a useful nonlinear map on which also
other classifiers or data analysis techniques may be
applied.

An important property that is returned by a neural
classifier is that such a system, trained for hard classi-
fications, may still return confidence values that
approximate for some problems the posterior proba-
bilities [15]. This makes a neural networks suitable
for integration with expert knowledge or for combin-
ing classifiers [16].

11. Are neural networks better?

A question that has been addressed may times is
whether neural networks are any better than tradi-
tional techniques. This is in fact an unanswerable
question as it relates two types of systems for which
no objective evaluation exists [11]. This can be under-
stood as follows.

Traditional pattern recognition systems usually
have a small set of free parameters, like the number of
neighbors in the k-NN rule. Such a parameter can be

optimized over the training set. The performance
the classifier follows from a test set. On the whole
such an evaluation is objective as another data-anal
will find the same performance for the same classifi
using the same data set.

A neural network has many user adjustable param
eters, some determining its architecture, others a
related to the training rule. It is very common that th
data analyst chooses good values for these parame
on the basis of some initial experiments and his exp
rience. Moreover, a neural network is randomly initi
alised. As a consequence, different data analysts,
even the same data analyst on different days, will fin
different networks and thereby different perfor
mances. What effectively is evaluated is not the neu
network as such, but the skills of the data analyst
using the given neural network toolbox.

An evaluation over neural networks and traditiona
classifiers thereby compares analysts with fixed pr
cedures. It is, of course, possible to freeze a neu
network procedure by estimating its parameters fro
the data where possible and by making consta
choices on other places. Such an automatic neu
classifier can be compared objectively with a fixe
traditional procedure. It is, however, not represent
tive for the neural network possibilities as a whole.

12. Conclusions

What we have learned from neural networks is that
is possible to train large systems with many inputs o
the basis of relatively small data sets. The resultin
systems usually have a moderately nonlinear stru
ture. These results are of significant scientific intere
as they contradict the earlier state of knowledge.

Neural networks offer an interesting toolbox tha
may be powerful in the hands of an experienced da
analyst. In theory they are more general and ha
potentially a better performance than any other lear
ing system, as the result of any other system can
implemented on a neural network. In practice th
training procedures for obtaining such results direct
do not exist. In fact they cannot exist because a mo
general system will always perform less than an op
mally chosen (using prior knowledge) specific sys
tem. This is reflected by the common saying that
neural network usually offers ‘the second best sol
tion’.

Given the knowledge obtained from experimen
and studies on neural networks one may aim at buil
ing better, more specific systems. Examples of ne
learning systems that have benefitted in this way a
the technique of combining classifiers [5], the suppo
vector machine [9] and the use of (non)linear sub
spaces [12].
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