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Abstract

In a dissimilarity (distance) data each pair of ob-
jects is characterized by a value which expresses the
magnitude of difference between them. This type of
data can be now classified using various approaches,
provided that a new object is represented by its dis-
tances to the training samples.

This paper discusses a number of possibilities to
tackle such a classification problem. Two types of
methods are investigated: the feature-based (i.e. in-
terpreting the distance data as a feature space) and
rank-based decision rules. Experiments conducted
on real datasets demonstrate that the feature-based
classifiers often outperform the rank-based ones.
The normal-based decision rules perform well, since
summation-based distances (frequently appearing in
practice) are, under general conditions, approxi-
mately normally distributed. In addition, also the
support vector classifier achieves a high accuracy,
particularly in distance spaces of a very high dimen-
sionality.

1 Introduction

In the traditional approach to pattern recognition
objects are represented in a feature space. However,
this is not the only space where classification prob-
lems can be tackled. Alternative ways can be found
by constructing decision rules on dissimilarity rep-
resentations. Such representations become an op-
tion when the original data consists of a large set of
attributes, originating either from a homogeneous
source (e.g. spectra bands, images) or being a col-
lection of heterogeneous characteristics.

For some applications it can be also easier or more
natural to define a distance or similarity between ob-
jects than to formulate the features explicitly. Let us
assume e.g. a syntactic way of treating patterns, in

which a distance measure is defined as the smallest
number of the operations necessary to transform one
pattern into another [7]. This introduces a transfor-
mation system consisting of the structured objects
(pattern representatives) and a finite set of mod-
ification operators. A concrete example is a sys-
tem, which describes strings over a finite alphabet,
and the substitution operations are some variants
of deletion and insertion. It is also possible to as-
sign non-negative weights to the particular opera-
tions, emphasizing those which refer to rare phe-
nomena, as well. Chromosome classification is an
application of such an approach. Each chromosome
is composed of some primitives, where the fixed set
of primitives defines our alphabet. The dissimilarity
measure should now reflect how much the chromo-
somes differ. The number of necessary substitutions
in order to transform one chromosome into another
is such an intuitive value.

There exist many ways of defining a dissimilarity
measure and this confirms the usefulness of study-
ing recognition problems on distance representa-
tions. They can offer an alternative approach to
pixel based image recognition, as well.

This paper investigates methods for building clas-
sifiers on dissimilarity representations. A number of
approaches is introduced in section 2, which gives
also some insight into the types of distance distri-
butions and their consequences for classifiers. The
experiments are performed on real datasets which
alongside with the experimental set-up are described
in section 3. The results are discussed in section 4
and the conclusions are summarized in section 5.

2 Dissimilarity-based pattern recog-
nition

Dissimilarity measures differ according to various
datasets or applications. It is assumed that the dis-
tances are non-negative and two objects have a zero



distance only when they are identical. This allows
us for defining classifiers on dissimilarity represen-
tations.

A straightforward way of dealing with such
a problem is based on the distance relation between
objects, which naturally leads to the rank-based
methods, e.g. to the nearest neighbor (NN) rule
or to the Parzen classifier.

Another possibility is to use the distance-based
information to construct the support vector classi-
fier (SVC) [3, 12].

The distances can be also treated as a descrip-
tion of a specific feature space, where each dimen-
sion corresponds to an object. This does not essen-
tially change the classical feature-based approach,
although a special case is considered, where the
number of samples n equals their dimensionality k
(which is an example of the critical training set size
problem) and each data value expresses a dissimilar-
ity between two objects. In general, any arbitrary
classifier operating on features can be used. In the
learning process, the pattern recognizers are built
on the n × n distance matrix. The p test objects
are classified using their distances to the n training
samples (the size of the test data is p× n).

Another alternative to tackle dissimilarity data
refers to a problem of its embedding into a feature
space by imposing that the structure, revealed in
distances, is preserved. Having an arbitrary non-
negative and symmetric distance representation, it
is in general possible to find a distance preserving
mapping onto a pseudo-Euclidean space [6]. In such
a space, classifiers can be then built. This approach
remains topic for future research.

In this paper, we analyze the behavior of clas-
sifiers operating on distance representations (see
also [10]). Our aim is not only to investigate,
but also to provide some reasoning and general
rules, which could suggest a reasonable classifier for
a given type of distance measure. We examine the
basic and commonly used decision rules which refer
to distances either as features or as relations.

2.1 Distributions of distances

Most of the commonly-used distance measures,
e.g. (squared) Euclidean, Minkowski or Hamming
distances, are based on the sum of (absolute) dif-
ferences between variables. The key issue is then
to realize the importance of the central limit theo-
rem (CLT), which applies to them. Under general
circumstances, the CLT states that the mean of n
random variables tends to be normally distributed
in the limit. The main conditions are that the vari-
ances must exist and none of them should dominate.
The variables can be drawn from the same or dif-
ferent distributions, nevertheless, their sum tends

to approximate the Gaussian. In practical applica-
tions, the approximation can be already very good
for small n, such as 20, for instance.

The (squared) Euclidean distances computed for
a few variables can be considered as being approx-
imately χ2 distributed. With the growing number
of variables (degrees of freedom), their distribution
starts to resemble the normal distribution. The
square root in the Euclidean distance is a modifi-
cation, in the spirit of the Box-Cox transformation
(see [8]), which also imposes the normality.

The conclusion is that distances based on a sum
of many variables are normally distributed, provided
that no variance of the sum components dominates.
(Otherwise, they are described by χ2 or gamma dis-
tribution, in general, with a few degrees of freedom.)
This fact has a crucial effect on the classification
task. It suggests that the normal-based classifiers
applied to the distance data should perform well, as
the assumption on normality is fulfilled.

When only n objects are available in an n-
dimensional dissimilarity space, the training sam-
ples are not sufficient for representing the real data
distribution (the curse of dimensionality [9]). On the
other hand, one could expect [13] that such decision
rules will not handle the given task well, since they
have to deal with the critical learning size problem
(n = k). In fact, they make use of the inverse of the
estimated covariance matrix, which becomes singu-
lar. Knowing, however, that data is approximately
normally distributed, a sort of regularization should
guarantee a way to construct classifiers.

2.2 Classifiers

For feature-based classifiers, simple pattern
recognition techniques are expected to generalize
better, since less parameters are to be determined
on the basis of the given samples. Therefore, linear
or quadratic classifiers are of interest.

Although, reduction of the dimensionality is an
important issue (see [4, 10]), it remains beyond the
scope of this paper. Here, we focus on studying
classifiers for the complete dissimilarity data.

Within the group of the feature-based and rank-
based classifiers, the following are studied:

Regularized normal-based linear classifier

The normal-based linear classifier (NLC) assumes
that all classes are characterized by multi-normal
distributions with the same covariance matrix S.
For a 2-class problem the NLC is given by:

f(x) =
[
x−

x(1) + x(2)

2

]T

S−1 (x(1) − x(2))

+ 2 log
P(1)

P(2)
,



where P(i), i = 1, 2 are prior probabilities. Since
the rank of the estimated covariance matrix S is
not larger than n − 1 for our dissimilarity data, it
is impossible to determine its inverse. Therefore,
a regularized version Sr is used instead and such a
decision rule is called the regularized normal-based
linear classifier (RNLC). Regularization takes care
that the inverse operation is possible by emphasiz-
ing (e.g. enlarging) the diagonal values (variances)
of the matrix S with reference to the off-diagonal
elements (covariances).

Regularized normal-based quadratic classifier

The normal-based quadratic classifier (NQC) as-
sumes that the classes have multi-normal distribu-
tions, each characterized by different covariance ma-
trix. For a 2-class problem the NQC with the co-
variances matrices: S(1) and S(2) is given by:

f(x) =
2∑

i=1

(−1)i (x− x(i))T S−1
(i) (x− x(i))

+ 2 log
P(1)

P(2)
+ log

|S(1)|
|S(2)|

where P(i), i = 1, 2 are prior probabilities. When
the estimated covariance matrices become singular
the regularization versions are used for the dissimi-
larity data and the classifier is called the regularized
normal-based quadratic classifier (RNQC).

Pseudo-Fisher linear discriminant (PFLD)

It uses a single covariance matrix to describe all
classes. This classifier originates from the Fisher lin-
ear discriminant, obtained by maximizing the ratio
of the between-scatter to the within-scatter (Fisher
criterion [5]), which for 2 classes is basically the
NLC, without regularization. When the estimated
covariance matrix is singular, a pseudo-inverse oper-
ation is proposed instead and the resulting classifier
is called the Pseudo-Fisher linear discriminant [11].
The pseudo-inverse relies on the singular value de-
composition of the matrix S and it becomes the in-
verse of S in the subspace spanned by the eigenvec-
tors corresponding to r non-zero eigenvalues. The
classifier is found in this subspace and in the remain-
ing n − r directions is orthogonal to this subspace.
The PFLD can perform badly [13], but it is used
here as a reference for the RNLC.

Support Vector Classifier (SVC)

The SVC is a hyperplane maximizing the margin be-
tween two separable classes (the shortest object dis-
tance to the hyperplane) [3, 12]. In case of overlap,
the soft margin classifier is introduced, which han-
dles the misclassified points. For the training points:

x1, . . . , xn with the labels λ1, . . . , λn, (λi = ±1),
the linear SVC is found by:

f(x) =
n∑

i=1

αi λi (x · xi)︸ ︷︷ ︸
wi x

+w0, andw =
n∑

i=1

αi λi xi,

where (x · xi) is the dot product operation and αi

are non-negative values. The w coefficients are ex-
pressed as weighted linear combinations of the train-
ing objects. In fact, many weights αi appear to be
zero, so in the end only some objects contribute to
the classifier. The objects with non-zero weights are
called support vectors (SV).

A nonlinear decision function is obtained by
a mapping Φ of the input objects to a high-
dimensional feature space and finding a linear clas-
sifier in that space. This classifier is expressed as [3]:

f(x) =
n∑

i=1

αi λi (Φ(x) · Φ(xi)) + w0,

where the dot product can be replaced by its gener-
alized version: K(x,xi) = (Φ(x) · Φ(xi)), called
a kernel. Since in a high-dimensional space the
SVC’s function is based on dot products of vectors
and support vectors only, this allows for defining
explicitly the kernel operator instead of the map Φ.
The kernel can be any symmetric and positive defi-
nite function fulfilling the Mercer theorem [3].

To introduce the SVC operating on a dissimilar-
ity matrix D, a data dependent mapping DΦ from
the original space to a higher-dimensional space is
defined by:

DΦ : x → [D(x1,x), . . . , D(xn,x)]T ,

which maps each new object x into a vector con-
sisting of the distances to all n training samples.
The linear decision function in the distance space
becomes:

f(x) = wT DΦ(x) + w0

The kernel matrix K in the training process consists
of the dot products of the form: (DΦ(xi) ·DΦ(xj)),
and it is given by K = D DT . It is positive definite
by construction. In this approach a linear classifier
in the n-dimensional distance space is constructed.
We refer to this method as to the SVC-D - support
vector classifier on distances.

Another way to define the linear SVC on dis-
similarities is as follows. Let us consider the same
data-dependent mapping DΦ. The singular value
decomposition of the distance matrix D is found as
D = U L V T and the whitening-type of transfor-
mation W [15] is defined by: W = L−

1
2 UT . This

transformation is then applied to the mapping DΦ.
Therefore, the kernel operator becomes:

K(xi,xj) = ( (W DΦ(xi)) · (W DΦ(xj)) ),



which in the training process becomes the following:

K = D WT W DT = D U L−1UT DT

We will refer to this method as to the SVC-D2.
Both the SVC-D and SVC-D2 construct linear

classifiers in the distance space, however the SVC-
D2 decorrelates the distance features and re-scales
them. Therefore, the variances become more similar
to each other.

Parzen classifier

The Parzen classifier models the class-conditional
probabilities, P (X|ci) for the class ci, by kernel den-
sity estimation methods. It uses the multi-normal
density function, with mean consisting of all train-
ing samples and the diagonal covariance matrix with
the overall variance h2:

p(x|ci) =
1
n

n∑
i=1

1√
2 π h

e−
||x−xi||

2

2 h2

The parameter h is determined by maximum-
likelihood estimation [5]. Two approaches are then
possible: the first one (rank-based) treats the given
dissimilarities as the distances to be used in the den-
sity function instead of the Euclidean ones, while the
second (feature-based) - addresses them in a tradi-
tional way, computing the Euclidean distances from
the considered dissimilarities.

The nearest neighbor classifier (NN)

The nearest neighbor classifier assigns an object to
the class of its nearest neighbor. Two possibilities
are here considered. In the first approach (rank-
based), the given dissimilarities are used directly, in
the second (feature-based) - they are treated as a
feature space for which the Euclidean distances are
computed and then used for classification.

Decision trees (DT)

A decision tree (DT) is an example of a hierarchical
decision process. It partitions the feature space of all
possible objects into subregions described in leaves.
Different subsets of the original feature space are
used at different levels of the tree. Each sample is
then classified by the label of the leaf it reaches. We
consider here the binary decision trees.

The maximum entropy criterion (DT-max) and
the Gini index (DT-Gini) are frequently used split-
ting rules [2]. In each node, they determine a fea-
ture, together with a threshold, to be used for the
data partition. When a DT operates on a distance
representation, selecting a feature actually means

choosing an object. Splitting takes place by check-
ing whether the sample under study lies in a neigh-
borhood (given by the threshold in the considered
distance measure) of the selected object or not.

3 Datasets and experiments

A number of real datasets are used in our study:

• Iris dataset characterizes 3 species of iris flow-
ers, which are described by 4 attributes: sepal
length/width and petal length/width. In total,
150 observations are available; 50 per class.

• Crabs dataset describes blue and orange Lep-
tograpsus crabs with their male and female rep-
resentatives. There are 200 samples given, each
characterized by 5 length measurements.

• Sonar dataset consists of 111 patterns of
a metal cylinder and 97 patterns obtained from
rocks. There are 60 features, each representing
the energy within a particular frequency band
of the sonar signals.

• Face dataset consists of faces 256× 256 images
of 40 people. For each person 10 different im-
ages are given.

• Pump dataset consist of 900 objects and 500
features. Pump vibration was measured with 5
accelerometers mounted on a submersible pump
operating in one abnormal and 3 abnormal
states. The wavelet decomposition of the power
spectrum was used. For each sensor the 100
coefficients with the largest variances were con-
sidered.

• Originally the Texture set consists of 7 256×
256 filter images, where each is a composition
of 5 textures. All points are expressed in a 7-
dimensional space consisting of the filters’ in-
tensity values for the same pixel. This makes
2562 = 65536 objects in total. In our exper-
iments, only 200 randomly chosen objects per
texture were used. In Figure 1, two complete
filter images are shown.

• Cband dataset describes 1D-chromosome
banding patterns. There are 600 objects evenly
distributed over 24 classes.

• Digit dataset comes from the NIST
database [17] and consists of 2000 images
evenly distributed over 10 classes.

The characteristics of datasets is summarized in Ta-
ble 1 and the examples of image data are shown in
Figure 1. All datasets, but Sonar, have equally prior
probabilities.

In the experiments, the behavior of classifiers
built on dissimilarity data is studied. We investi-
gate various distance measures (summation-based,



Table 1: Datasets used in experiments.

Iris[16] Crabs[14] Sonar[16] Face[1] Texture Pump[18] Cband Digit[17]

Dimens. 4 5 60 256× 256 7 500 Undefined 256× 256
# classes 3 4 2 40 5 4 24 10
# p. class 50 5 111,97 10 200 225 25 200
Distance Euclidean Euclidean Euclidean Hamming Euclidean City-block Dot Contour
measures Exponent Max-norm product

Lp; p=0.5

Figure 1: Examples from the Texture, Face and Digit image data sets.

normally or χ2 distributed, or the max norm dis-
tance - the largest absolute difference between ob-
jects) and some transformations, as well. We fo-
cus on the dissimilarity-based pattern recognition
problem itself, i.e. how to deal with such classifica-
tion problems on distance representations, in gen-
eral. The Iris, Crabs and Texture datasets come
from low-dimensional spaces and their distance rep-
resentations are considered here as references.

All datasets are randomly split into approxi-
mately equally-sized the training and testing sets,
taking care that prior probabilities remain equal (ex-
cept for the Sonar case). In our study, based on 10
runs, all the classifiers are firstly built on the com-
plete n × n distance matrices and then applied to
the test data consisting of p×n dissimilarities (com-
puted between the p test and n training objects).

4 Discussion

Table 2 presents the mean generalization errors
obtained for different distance measures and data.
For the RNLC and RNQC only the lowest errors,
obtained in a few trials with different regularization
parameters, are reported. Although the PFLD does
not assume any parametric model, it still makes use
of the sample covariance matrix. Thereby, it re-
mains in the spirit of the normal-based classifiers.
On the contrary, the SVC is found without any es-
timation of the class conditional densities, which
makes it attractive for our problem.

The most important results and observations are
discussed below.

4.1 Distances of originally low-di-
mensional data

The Iris and Crabs Euclidean distances, based
on a small number of variables, are χ2-distributed,
especially since in both cases one variance of sum
components slightly dominates. The Iris data con-
sists of three classes, where only two are somewhat
overlapping. In such a case, nearly all considered
decision rules (except for the DT) perform well.

For the Crabs data with four classes there is a
larger overlap and the problem becomes harder. The
linear (RNLC or PFLD) or quadratic classifiers per-
form the best. In order to reduce the influence of the
dominant variance, distances for the standardized
Crabs data were also considered. The results indi-
cate, that this significantly decreases the error, not
only for the RNLC and RNQC, but the other clas-
sifiers, as well. For the RNLC and RNQC discrimi-
nation functions, although the distances are still χ2

distributed, they have a larger number of degrees
of freedom, which seems to have already a positive
effect on the classification. For other classifiers, the
improvement in accuracy is probably due to a fact
that all features contribute to the overall distance
in the same way.

The Texture Euclidean distances are based on 7-
component sums and are also χ2-distributed. There
is no dominant variance, so the approximation of the
Gaussian distribution starts to be reasonable. The
RNLC and PFLD perform well, however the SVC’s
functions achieve the same or even better results.



Table 2: Mean generalization error with its standard deviation (in %) for different distance data.

Data Iris Crabs Crabs Sonar Sonar Sonar Sonar

Distance Euclidean Euclidean Stand. Euclidean Exponent Stand. Lp; p=0.5

L-1-out NN 4.0 12.0 10.0 17.3 17.3 12.5 15.4

TR sizes 75× 75 100× 100 100× 100 105× 105 105× 105 105× 105 105× 105

RNLC (f) 3.5 ± 0.4 10.7 ± 0.7 8.7 ± 0.6 17.0 ± 0.8 23.7 ± 1.3 18.4 ± 1.1 21.6 ± 0.9
RNQC (f) 3.1 ± 0.6 18.7 ± 1.3 15.2 ± 1.3 16.9 ± 1.3 21.0 ± 1.1 17.0 ± 1.0 21.4 ± 1.0
PFLD (f) 3.7 ± 0.4 15.1 ± 1.1 11.7 ± 0.8 17.3 ± 0.8 42.2 ± 3.0 18.0 ± 1.1 46.0 ± 1.9
SVC-D (f) 4.1 ± 0.5 11.2 ± 0.8 10.3 ± 0.6 18.5 ± 1.2 24.2 ± 1.2 20.3 ± 1.0 19.6 ± 1.2
# of SV 12 63 60 58 54 56 41
SVC-D2 (f) 3.6 ± 0.5 12.5 ± 0.8 10.0 ± 0.7 17.0 ± 1.2 25.3 ± 1.9 18.1 ± 1.1 23.6 ± 1.2
# of SV 29 92 87 86 70 83 56
1-NN (f) 4.0 ± 0.6 52.5 ± 1.5 41.4 ± 1.5 26.0 ± 1.7 29.1 ± 1.9 22.3 ± 1.6 20.9 ± 1.2
1-NN (r) 4.7 ± 0.5 21.3 ± 1.3 16.3 ± 1.1 18.6 ± 0.9 18.6 ± 0.9 15.2 ± 1.0 18.5 ± 1.0
Parzen (f) 3.1 ± 0.5 51.8 ± 1.6 41.0 ± 1.4 22.8 ± 0.8 25.9 ± 1.1 18.1 ± 0.9 20.5 ± 1.5
Parzen (r) 3.9 ± 0.5 20.8 ± 1.4 16.3 ± 1.1 18.2 ± 1.0 17.7 ± 0.8 14.0 ± 1.1 16.1 ± 0.8
DT-max (r) 6.7 ± 0.6 50.0 ± 2.1 43.1 ± 1.5 29.8 ± 1.2 29.8 ± 1.2 27.1 ± 1.7 27.1 ± 1.6
DT-Gini (r) 10.8 ± 1.5 58.7 ± 1.7 53.2 ± 2.2 28.0 ± 1.4 28.2 ± 1.3 25.1 ± 1.2 27.8 ± 1.3

Data Face Texture Pump Pump Cband Cband Digit

Distance Hamming Euclidean City-block Max-norm Product Box-Cox Contour

L-1-out NN 0.5 5.4 74.4 64.6 27.8 27.8 18.8

TR sizes 200× 200 500× 500 452× 452 452× 452 600× 600 600× 600 1000× 1000

RNLC (f) 4.1 ± 0.6 7.3 ± 0.3 34.6 ± 0.8 57.8 ± 0.8 25.6 ± 0.6 22.5 ± 0.5 13.6 ± 0.4
RNQC (f) 11.0 ± 0.6 8.5 ± 0.2 37.8 ± 0.8 71.4 ± 0.2 65.7 ± 0.7 26.7 ± 0.5 24.8 ± 0.3
PFLD (f) 2.6 ± 0.4 7.3 ± 0.3 36.9 ± 0.6 73.4 ± 0.8 50.8 ± 0.7 24.2 ± 0.6 14.0 ± 0.4
SVC-D (f) 2.7 ± 0.5 7.2 ± 0.4 36.3 ± 0.3 46.2 ± 0.5 30.2 ± 0.6 23.3 ± 0.5 11.5 ± 0.3
# of SV 200 130 414 406 553 554 729
SVC-D2 (f) 2.5 ± 0.5 6.6 ± 0.2 36.3 ± 0.6 50.0 ± 0.3 32.3 ± 0.6 21.7 ± 0.4 12.5 ± 0.3
# of SV 200 220 447 438 594 599 929
1-NN (f) 3.5 ± 0.5 14.2 ± 0.5 38.2 ± 0.7 46.6 ± 0.7 44.8 ± 0.7 40.1 ± 0.5 15.3 ± 0.3
1-NN (r) 2.9 ± 0.4 9.9 ± 0.2 74.7 ± 0.1 64.0 ± 0.3 31.2 ± 0.3 31.2 ± 0.3 20.7 ± 0.4
Parzen (f) 3.4 ± 0.5 13.4 ± 0.3 22.3 ± 0.6 27.5 ± 0.6 41.6 ± 0.5 37.5 ± 0.3 ——
Parzen (r) 3.0 ± 0.6 9.3 ± 0.2 46.4 ± 0.3 40.5 ± 0.8 24.1 ± 0.3 22.7 ± 0.4 20.1 ± 0.3
DT-max (r) 43.6 ± 1.1 15.8 ± 0.5 42.5 ± 0.6 54.1 ± 0.8 50.6 ± 0.9 50.6 ± 0.9 29.1 ± 0.4
DT-Gini (r) 78.7 ± 2.2 22.5 ± 1.1 44.1 ± 0.4 54.7 ± 0.7 79.8 ± 0.6 79.7 ± 0.7 53.4 ± 1.0

—— − no result, because of numerical instabilities
L-1-out NN − the leave-one-out NN rule for the given distance matrix
(f) / (r) − feature-based approach (distances as features) / rank-based approach (using given distances)

4.2 Normally distributed distances

The Sonar, Face and Digit sets refer to distances
based on a sum of many variables with no dominant
variance. The RNLC, RNQC and PFLD [11] should
then perform well, since the normality condition
holds. The experiments confirm our expectations.
They show that such classifiers outperform in gen-
eral the other ones, provided that the dimensionality
is not very high. In case of the Digit data, the dis-
tance representation describes a 1000-dimensional
space. In such a space, the SVC, although based
on many support vectors (73% or 93% of all ob-
jects), seems to discriminate more accurately then
the normal-based decision rules. The normal-based
classifiers make use of the inverse of a large sam-
ple covariance matrix, and it is possible that in the
computational process of its determination some nu-
merical instabilities can appear more easily.

The variances of the distance sum components
of the Sonar data are similar, so the standardiza-
tion will not help in case of the normal-based classi-
fiers. The tests demonstrate this clearly. However,
the standardization improves the performance of all
rank-based decision rules. One possible explanation
can be that when the original features are of the
same order of magnitude with equal variances, then
each of them contributes to the summation-based
distances in the same way. This gives more a ho-
mogeneous description and allows dissimilarities to
make use of the discriminative power of all features.

4.3 Non-normally distributed dis-
tances

For the Sonar Euclidean distances (normally dis-
tributed), the exponential equivalents for all non-
zero distances were investigated. The aim of this



operation is to study the changes in accuracy of clas-
sifiers. In case of the rank-based pattern recognition
techniques, such a transformation has a minor influ-
ence or no influence at all (because the rank is kept).
The performance of the normal-based classifiers, as
expected, became much worse due to imposed non-
normalities. Also both SVC’s functions give signifi-
cantly worse results.

The Pump dataset with max-norm distances and
the Cband with inner-product distances were also
studied. The max-norm distances are definitely not
a good measure for the Pump classification. They
are studied here only in order to get an illustra-
tive example of non-normally distributed data. The
Cband dissimilarities, although based on sum, are
approximately χ2 distributed. In those two cases,
the rank-based methods, like NN, Parzen and DT
(Gini index) perform a bit better then the normal-
based classifiers. However, both SVC’s discrimina-
tion functions seem to approach the best accuracy
obtained by the rank-based decision rules.

4.4 Imposing the normality

One possible way to deal with the non-normally
distributed distances is to impose the Gaussian dis-
tribution on them by using the Box-Cox transfor-
mation [8]. Such a transformation is applied for
each element d of both the training and testing
distance matrices by using the following formula:
dp−1

p , for p ∈ (0, 1]. The classification problem
solved for the transformed (p = 0.25) Cband dataset
confirms that the feature-based pattern recognizers
have considerably better performance than without
such a transformation (inner-product distances).

4.5 Non-metric distances

The L0.5 distance (for which a triangle inequal-
ity does not hold) was considered as an example of
a non-metric distance measure. For two vectors: x
and y it is given by:

dL0.5(x,y) =
(∑n

i=1

√
|xi − yi|

)2

Such summation-based dissimilarities were applied
to Sonar data. The sums themselves are approxi-
mately normally distributed, however the square op-
eration disturbs it. Thereby, the approximation is
not so good any longer. This is confirmed also by
the RNLC and RNQC results which are significantly
worse than in case of the Euclidean distances. The
rank-based NN classifier and DT seem to perform in
a similar way, as for the Euclidean distances, but the
rank-based Parzen classifier achieves much worse ac-
curacy. However, all those results indicate that pat-
tern recognizers can be applied to non-metric repre-
sentations, as well.

4.6 SVC

For the Iris, Crabs and Sonar data, both SVC’s
functions perform mostly worse than the paramet-
ric classifiers. In case of other datasets, the SVC-D
and SVC-D2 often outperform the normal-based de-
cision rules. One possible explanation of this fact
is that the dimensionality is of not much impor-
tance for the SVC, while it has a major effect on the
normal-based classifiers. It seems that it is easier to
successfully regularized such classifiers in a lower-
dimensional space (e.g. 75D Iris or 100D Crabs dis-
tance data) then in a high-dimensional space (e.g.
500D distance Texture data).

4.7 Decision trees, NN and Parzen
classifiers

What is very surprising, is the poor performance
of DT classifiers, even in case of a little overlap
between the Iris classes. When the best features,
equal to objects in the distance space, are sought for
a split, such pattern recognizers should give good re-
sults. Choosing a feature for a split, in the process
of building a DT, stands for finding a good pro-
totype and considering objects lying in its sphere-
neighborhood (in the given metric). The DT gives
an error-free result on the training data (no pruning
used), but it drastically increases the test error. It
seems that the objects chosen for the splits are def-
initely not good reference points. There is often a
number of them equally good for a split (according
to a criterion) and in such cases one is randomly
chosen. It turns out that the selected objects are
mostly representatives of the first few classes. When
many classes are present (e.g. Cband or Face data),
not every class is represented by an object. One
must then realize that this way of splitting does not
positively influence the classification results. Possi-
bly, some variants of DT could be considered, which
take into account objects which are more evenly dis-
tributed over classes.

On the contrary, the NN rule and the Parzen
classifier applied to the distances in a rank-based
way give reasonable results, however often not bet-
ter than those obtained by the RNLC or the SVC.

5 Conclusions

There are important conclusions which can be
drawn both from the CLT and our experiments.

First of all, summation-based distances of many
variables are approximately normally distributed,
provided that none of the variance component dom-
inates. In such cases, the normal-based classifiers
significantly outperform the rank-based ones.

Secondly, when there is a dominant variance or
the distances describe a low-dimensional representa-



tion, they are χ2 distributed. In this situation, two
approaches are possible. The Box-Cox transforma-
tion imposes normality on the distance distribution,
which has a positive effect on the feature-based clas-
sifiers, while the rank-based classifiers give the same
results. Standardization in the original space (be-
fore distances are computed) significantly improves
the performance of both types of classifiers. How-
ever, it is not often possible, when only distances
are given.

Thirdly, for the dissimilarities which are not
based on sums, or which distributions are far from
the Gaussian, the rank-based classifiers, i.e. the NN
rule, Parzen classifier and DT, give results which are
not worse than those obtained by the normal-based
decision rules.

Next, the linear support vectors classifiers per-
form in general well. They often reach one of
the best accuracy, especially when the dissimilarity
space is high-dimensional, e.g. 400D or more. Those
classifiers do not estimate the class conditional den-
sity functions, but they try to maximize the (soft)
margin between classes, instead. This way of pro-
ceeding does not suffer from the curse of dimension-
ality [9]. In most cases, the SVC-D, constructing a
linear classifier in the distance space, performs bet-
ter than the SVC-D2, constructing also a linear clas-
sifier but in the transformed (decorrelated) space.
Nearly all dissimilarity representations need at least
50% (up to 100%) of all objects to become the sup-
port vectors. This suggest also how difficult in such
a critical learning set size problem is to establish the
boundary between classes.

Finally, decision trees perform here badly, much
worse than expected. One possible reason is that
no pruning was used. Also, the objects (features)
chosen for splitting during the process of building
a decision tree can be often representatives of only
first few classes, so in case of many classes much
worse performance is observed (e.g. Cband or Face
sets versus Iris or Sonar). This remains a topic for
further research to find a suitable solution.
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