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Abstract

For learning purposes, representations of real
world objects can be built by using the concept of dis-
similarity. In such a case, an object is characterized
in a relative way, i.e. by its dissimilarities to a set
of the selected prototypes. Such dissimilarity repre-
sentations are found to be more practical for some
pattern recognition problems.

When experts cannot decide for a single dissimi-
larity measure, a number of them may be studied in
parallel. Now the question arises how to make use of
all the information given. We investigate two possi-
bilities of combining either dissimilarity representa-
tions themselves or classifiers built on each of them
separately. Our experiments conducted on a hand-
written digit set demonstrate that when the dissimi-
larity representations are different in nature, a much
better performance can be obtained by their combina-
tion than on individual representations.

1 Introduction

An alternative to the feature-based description is
a representation based on dissimilarity (distance) re-
lations between objects. In general, dissimilarities
are built directly on raw or preprocessed measure-
ments, e.g. based on template matching. The use of
dissimilarities is especially of interest when features
are difficult to obtain or when they have a little dis-
criminative power. Such situations are encountered
in practice when there is no straightforward manner
to define features, when data is highly dimensional
or when features consist of both, continuous and cat-
egorical measurements. The choice in favor of dis-
similarity representations depends also on the appli-
cation or the data itself. For instance, some partic-
ular characteristics of objects or measurements, like
curves or shapes, may naturally lead to such repre-

sentations, since they make recognition tasks more
feasible.

To construct a decision rule on dissimilarities, the
training set T of size n and the representation set R
[2] of size r will be used. R is a set of prototypes
which are representatives of all classes present. Here,
R is chosen to be a subset of T (R C T'), although, in
general, R and T might be disjunct. In the learning
process, a classifier is built on the n x r dissimilarity
matrix D (T, R), relating all training objects to all
prototypes. The information on a set S of s new
objects is provided in terms of their distances to R,
i.e. as an s X r matrix D (S, R).

A conventional way to discriminate between ob-
jects represented by dissimilarities is the nearest
neighbor rule (NN) [1]. This method suffers, how-
ever, either from a potential loss of accuracy when
a small set of prototypes is selected or from its sen-
sitivity to noise. To overcome these limitations, we
have proposed another classifier [7] constructed on
the same representation, but being a weighted com-
bination of dissimilarities.

In practice, our suggestion is to treat the dissim-
ilarity representation D (T, R) as a description of a
space where each dimension corresponds to a dis-
tance to an object. D (x, R) can be seen as a map-
ping of & onto an r-dimensional dissimilarity space
(note that the dimensionality of such a space is de-
termined only by the size of R). The advantage of
such a representation is that any traditional decision
rule operating on feature spaces may be used.

Most of the commonly-used dissimilarity mea-
sures, e.g. the Euclidean distance or the Hamming
distance, are based on sums of differences between
measurements. The choice of Bayesian classifiers [4],
assuming normal distributions, is a natural conse-
quence of the central limit theorem applied to them.
The LNC (Linear Normal densities based Classifier)
[4] is especially of interest because of its simplicity.
Such a suggestion is strongly supported by our ear-



lier experiments [7, 8], which demonstrate the good
performance of the LNC on distance representations.

Selecting a good dissimilarity measure becomes
an issue for the classification problem at hand.
When considering a number of different possibilities,
it may happen that there are no convincing argu-
ments to prefer one measure over another. There-
fore, the problem that we want to address here
is whether combining dissimilarity representations
might be beneficial. To study this question, two ap-
proaches are considered.

First, the base classifiers are found on each dissim-
ilarity representation separately and then combined
into one decision rule. If the representations have
different characters, the resulting classifiers differ in
their assignments. By combining them, a more pow-
erful decision rule may be constructed. Secondly,
instead of combining classifiers, representations are
combined to create a new representation for which
only one classifier has to be trained.

The paper is organized as follows. Section 2 gives
some insight into the dissimilarity representations,
classifiers and combining rules used. Section 3 de-
scribes the dataset and the experiments conducted.
Results are discussed in section 4 and conclusions
are summarized in section 5.

2 Combining dissimilarity represen-
tations

Assume that we are given the representation
set R and p different dissimilarity representations
DT, R), D®(T,R), ..., DP)(T,R). Our idea is
to combine good base classifiers, but on distinct rep-
resentations. It is important to emphasize here that
the distance representations should have different
character, otherwise they convey similar classifica-
tion information and not much can be gained by
their combination.

Two cases are here considered. In the first one,
a single LNC is trained for each representation
DW(T, R) separately and then all of them are com-
bined into one decision rule. In the second case, the
NN rule is also included. The NN rule and the LNC
differ in their decision-making process and their as-
signments. The NN method operates on dissimilar-
ity information in a rank-based way, while the LNC
approaches it in a feature-based way, therefore they
differ in their decision-making process and their as-
signments. Although the recognition accuracy of the
NN rule is often worse than of the LNC, still better
results may be obtained when both types of classi-
fiers are included in the combining procedure. So,
all individual LNC’s and NN rules form a set of base
classifiers to be combined.

Many possibilities exist for combining classi-
fiers [5]. Here, we limit ourselves to fixed rules which

operate to posterior probabilities, e.g. mean or prod-
uct. For the LNC, the posterior probabilities are
based on normal density estimates, while for the NN
method, they are estimated from distances to the
nearest neighbor of each class [3].

Another approach to learning from many distinct
dissimilarities is to combine all the representations
into a new one and then train e.g. the LNC. As a
result, a more powerful representation may be ob-
tained, allowing for a better discrimination. Two
methods for creating a new representation are stud-
ied here. The first method relies on building an ex-
tended representation Dy, which in matrix nota-
tion is given as:

Dew(T.R) = [DV(T.R) ... DV(T.R)| (1)

It means that a single object is now characterized
by pr dissimilarities coming from various represen-
tations (each representation describes it by r dis-
tances), but still computed to the same prototypes.
The requirement of having the same prototypes is
not crucial at all. Different representation sets are
allowed, but for the sake of simplicity, we keep them
the same here. (Note that although the distances
coming from various representations may have dif-
ferent orders of magnitude, scaling is not essential
since the sample covariance matrix used for the con-
struction of the LNC takes care of that.)

In the second method, all distances of different
representations are first scaled in such a way that
their values are in a similar range. Then, the final
representation is created by computing their sum, as
shown below:

DY (T,R) =a; DY(T,R), i=1,...,p

max

r (2)
Daum (T, R) = DY), .(T,R),
=1

where «;’s scale all representations so that their
maximum values become equal. (Note that now the
representation sets should be identical to perform
the sum operation.) The scaling procedure is neces-
sary, otherwise the new representation will copy the
character of a representation contributing the most
to a sum, i.e. one with the largest distances. Scal-
ing changes the orders of magnitude, but not the
rankings, therefore all neighbor information is pre-
served. Also instead of adding distinct dissimilarity
representations, more sophisticated possibilities can
be considered. An example is taking the weighted
sum, the maximum or the median from a sequence of
dissimilarity values of different representations but
relating a training object to the same prototype.

3 Dataset and experiments

The NIST handwritten digit set [10] is used in
the experimental study. To illustrate our point,
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Figure 1: Spearman coefficients (top) and tradi-
tional correlation coefficients (bottom) comparing
dissimilarity representations.

we investigate a 2-class classification problem be-
tween the digits 3 and 8. The digits are given as
binary images with the resolution of 128 x 128 pix-
els. Since no natural features arise from the appli-
cation, constructing dissimilarities is an interesting
possibility to deal with such a recognition problem.
Three dissimilarity measures are considered: Ham-
ming, modified-Hausdorff [6] and *blurred’, resulting
in three representations: Dy, Dy and Dp corre-
spondingly. The Hamming distance simply counts
the number of pixels which disagree, i.e. have dif-
ferent binary values. The Hausdorff distance is of-
ten used for image comparison. Here, we will use
a variant, namely the modified-Hausdorff distance
since it is found more useful for template match-
ing purposes [6]. We apply it on the contours of
digits. The modified-Hausdorff distance measures
the difference between two sets A = {a1,...,a4}
and B = {by,... by} (here two contours) and is de-
fined as Dy (A, B) = maxz(hy (A, B), hy (B, A)),
where hys (A, B) = % > aca Mingep ||a—b||. To find
the last representation images are first blurred with
the Gaussian kernel and the standard deviation of
8 pixels. Then the Euclidean distance is computed
between the blurred versions. We will refer to the
resulting distances as to the 'blurred’ distances.

Each of the distance measures uses the image in-
formation in a particular way, so from the process
of their construction, it follows that our dissimilar-
ity representations differ in properties. To prove,
however, their different characteristics, the Spear-
man rank correlation coefficient rg is used. For two
rankings p(!) and p® it is defined as:

2
il (pl(vl) - pﬁ”)
N(N? 1)

7’5:1—

Now we rank the distances computed to each pro-
totype. Basically, we want to show that the rank-
ings differ between representations., i.e. they are not
linearly correlated. Therefore, for each pair of rep-

resentations the Spearman coefficients between the
distance rankings to all prototypes are computed.
Histograms of their distributions are presented in
the upper row of Fig. 1. All coefficients are be-
tween —0.05 and 0.4, where most of them are smaller
than 0.2, which implies that the rankings signifi-
cantly differ. Different rankings influence the vari-
ation in assignments of the NN rule the most. To
check whether the dissimilarity spaces of the indi-
vidual representations are different, the traditional
correlation coefficient is used.

The traditional correlation values are higher than
those given by the Spearman rates. It is to be ex-
pected, since now the exact distances are considered,
which cannot completely vary from one representa-
tion to another since the representations are descrip-
tions of the same data and the same relations. Some
coefficients are very small, some are larger. On aver-
age, the correlations are found to be (see bottom row
of Fig. 1): 0.39 between the blurred and modified
Hausdorff representations, 0.56 between the blurred
and Hamming representations and 0.28 between the
modified Hausdorff and Hamming representations.
In the end, most coefficients are smaller than 0.6,
thereby, they all indicate only weak linear dependen-
cies. In summary, we can say that our dissimilarity
representations differ in character.

The experiments are performed 25 times. In a
single experiment, the data, consisting of 1000 ob-
jects per class, is randomly split into two equally-
sized sets: the design set L and the test set S. Both
L and S contain 500 examples per class. The test
set is kept constant, while L serves for obtaining the
training sets 71, T», T3 and Ty (being subsets of L)
of the following sizes: 50, 100, 300 and 500 (= L).
For each training set, the experiments are conducted
with varying size of the representation set R. Here,
for simplicity, R is chosen to be a random subset of
the training set.

4 Discussion

Considering single classifiers, it appears that the
LNC consistently outperforms the NN rule for four
training sets: 17 — Ty. Also, in all cases, the LNC
on the blurred dissimilarities reaches a higher accu-
racy than for the other two representations. Since
this behavior is repeated over all training sets, only
the performance of the individual classifiers for the
largest training set Ty is presented in Fig. 2.

The results of combining either classifiers or rep-
resentations are presented in Fig. 3 - 6. All figures
show the same type of plots but for different training
sets. These small, moderate and large training sets
are considered in order to investigate the influence
of the training size on our combining results.

All plots in Fig. 3 - 6 show curves of averaged clas-
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Figure 2: Averaged classification error of the individual LNC’s (left) and NN rules (right) as a function of the

representation set size for the training set 7.
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Figure 3: Averaged classification error as a function of the representation set size for the individual NN
classifiers combined by the product, mean or max operation.

sification error (based on 25 runs) together with its
standard deviation. Each error curve is a function of
the representation set size (i.e. the number of pro-
totypes). The largest representation set considered
is about half of the training set. Since our goal is to
improve the performance of single classifiers by com-
bining the information, all the results are presented
in the relation to the behavior of the LNC on the
blurred distance representation Dpg, as to the one
that reaches the highest individual accuracy overall.

Fig. 3 presents the generalization errors obtained
for combining three individual NN methods, each
found for one dissimilarity representation. The com-
bining rules are the mean, maximum and product
applied to posterior probabilities. Operating on pos-
terior probabilities is motivated by the intention of
combining both the LNC and NN rule further on.
Although the estimation of these probabilities is
rather crude for the NN method, it still allows for an
improvement of the combined rules. In all cases, the
combination by the mean or product operation gives
significantly better results than each individual NN

rule. The larger both training and representation
sets, the more indicative gain in accuracy.

Fig. 4 shows the error curves obtained when three
individual LNC’s are combined on posterior proba-
bilities by the mean, maximum and product rules.
For all training sets, when small representation sets
(in comparison to the training set size) are consid-
ered, the product and maximum rules give some-
what better results than the mean rule. However,
for larger representation sets, the mean rule is bet-
ter. In addition, the error curve for both the LNC
and NN method combined for all representations by
the mean rule is also shown. We can see that in-
cluding the NN rule to the combining procedure,
lowers somewhat the classification errors for larger
representation sets (this does not happen for small
representation sets due to bad performance of each
individual NN rule).

Fig. 5 presents the error curves of a single LNC
operating on the combined dissimilarity representa-
tions constructed from the three given: Dp, Dyg
and Dg. Two different cases are here considered: an
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Figure 4: Averaged classification error as a function of the representation set size for the individual LNC’s
combined by the product, mean or max rule or for the LNC’s and the NN methods combined by the mean.

extended representation Dy (1) and the combined
representation Dgyy, (2). The LNC on Dy, signifi-
cantly outperforms the individual LNC’s (it reaches
higher accuracy than the best individual result on
Dpg), which is observed for all training sets. The
LNC on D.,; can gain even better accuracy, how-
ever, the comparison between the representations
Dgym and D, should be explained carefully. If the
LNC is trained on Dy, using, say, r prototypes per
class, then Dy is built from three such representa-
tions, each based on r prototypes, thereby the LNC
operates in a 3r-dimensional space. It means that for
larger representations sets, the total number of di-
mensions exceeds the training size. The LNC is then
not defined since the sample covariance matrix be-
comes singular and its inverse cannot be determined.
In such cases, a fixed, relatively large regularization
(1%) is used [4]. For moderate representation sizes
(for which the dimensionality of D.,; approaches
the number of training examples) the error curve
of the LNC shows a peaking behavior (characteris-
tic for this classifier). Therefore, worse performance
is observed when number of prototypes is close to

one third of the training size. For either small or
larger representation sets, a very good performance
is reached.

Fig. 6 presents the comparison between the com-
binations (by the mean rule) of individual classi-
fiers found on different dissimilarity representations
and the LNC trained on the combined representa-
tion Dgypm. For all training set sizes, adding the
NN rule to the process of combining classifiers im-
proves the results for larger representation sets (this
does not happen for small representation sets due to
bad performance of each individual NN rule). For
larger number of prototypes, the LNC trained on
the representation Dy, works slightly better than
the combined decision rule consisting of the LNC’s
and NN classifiers. It can be observed once again
that adding the NN rule to the set of base classifiers
improves the performance of the combiner.

Summarizing, the accuracy of individual classi-
fiers and combined classifiers increases with the in-
creasing size of both the training set and representa-
tion set. For all training sets, most of the combining
procedures perform significantly better than the in-
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Figure 5: Averaged classification error of the LNC as a function of the representation set size for the combined

representations.

dividual classifiers. For the LNC and smaller repre-
sentation sets the product rule gives slightly better
results than the mean rule, while for larger repre-
sentation sets it behaves much worse, worse than
the individual classifiers. However, for the combi-
nation of the NN methods, both combining opera-
tions give nearly the same results. This phenomenon
can be explained as follows. For small dissimilarity
spaces (i.e. small number of prototypes) such repre-
sentations tend to be independent and therefore the
product rule based on the LNC'’s is expected to give
better results [9]. For larger dissimilarity spaces, the
posterior probabilities (based on normal density esti-
mates) are not well estimated, and the product rule
deteriorates; then the mean combiner is preferred.
For the NN rule, the posterior probabilities are es-
timated from distances to the nearest neighbor and
do not depend on the dimensionality of the problem.
Therefore, both rules perform the same.

4.1 Other considerations

In order to illustrate the importance of dissimilar-
ity representations of a different nature, we present

Hausd.-Mod. Hausd. Hausd.-Mod. Hausd.

SPEARMAN COEF.
CORR. COEF.

Figure 7: Histograms of Spearman and traditional
correlation coefficients comparing Dy;g and Dpyg.

below an example where the Hausdorff dissimilar-
ity Dyg is used instead of Hamming. Therefore,
a triple {Dp, Dy, Dy} is considered for experi-
ments. The modified Hausdorff representation D ;g
is only a modification of the Hausdorff distance. It
changes the dissimilarity rankings (it is expected
since the modified Hausdorff measure violates the
triangle inequality), but the dissimilarity spaces are
rather similar. In Fig. 7 histograms of both the
Spearman and traditional correlation coefficients for
these two representations are plotted. The Spear-
man values do not differ much from the same values
for other pairs of representations considered before
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(compare Fig. 1), but the traditional correlations be-
come much higher, on average 0.91, indicating high
dependence between those two dissimilarity spaces.
It means that although by combining the individ-
ual NN rules for Dg, Dy g and Dgg an essential
improvement may be gained, it does not necessarily
hold for combining the LNC’s. Fig. 8 presents the
comparison between the performances of such classi-

fiers combined by the mean rule for two training sets:
Ty and Ty. It can be clearly observed that when
Dpyg is used instead of Dy, the combined LNC’s
performs much worse. For small training set 77 it
may even achieve a worse accuracy than that of the
best individual LNC, i.e. the LNC on Dpg. Still,
the combined NN rules are behaving only somewhat
worse than for the triple {Dg, Dy, Dy}



When the Hausdorff representation was added to
the original three, the performances of the combined
classifiers (now trained on four representations) or
the LNC on Dy, were very slightly better or not at
all. The only significant improvement was observed
for the extended representation D..;. Those two ex-
amples explain that having distinct representations
is crucial for useful combining.

5 Conclusions

Using a number of distance representations may
be of interest when there is no clear preference for a
particular one. Here, one example of combining in-
formation from a few distinct representations is in-
vestigated, i.e. a 2-class problem between the hand-
written digits 3 and 8 is studied for three dissimilar-
ity representations: Hamming, modified Hausdorff
and blurred.

We analyzed two possibilities of combining such
representations, either by combining classifiers or by
combining representations themselves. First, indi-
vidual classifiers are found for all representations
separately and then they are combined into one rule.
Since dissimilarities can be approached in two differ-
ent ways (feature-based and rank-based), two types
of classifiers can be used: the LNC (linear one) and
the NN rule. They differ in their construction and
the decision process, therefore combining them may
be of interest. In comparison to the best results
achieved on dissimilarity representations, the mean
combiner based on three LNC’s (built on each rep-
resentation separately) or the mean combiner based
on three LNC’s and three NN methods, perform sig-
nificantly better.

In the second approach, dissimilarity representa-
tions are combined into a new one for which a sin-
gle LNC can be applied. Our proposal is to scale
them first so that their values lie in a similar range
and then to sum them up, resulting in the repre-
sentation Dy (see (2)). Here, scaling is done by
making the maximum values equal. We have also in-
vestigated another ways of scaling, like making the
means identical or the maximum values for each pro-
totype equal. They gave worse results and therefore
are not reported in this paper. The LNC on Dy,
significantly improves the results of each individual
LNC. Combining representations in this way allows
to get one, which has a more discriminative power.

As a reference, the extended representation D,y
is also considered. It is created from three repre-
sentations so that each object is now characterized
by 3r distances (see (1)). The LNC on such repre-
sentation reaches even better results than on Dy,
provided that the number of all prototypes is either
small or large in comparison to the training set size.

In conclusion, when dissimilarity representations

differ in character, combining either individual clas-
sifiers or by creating a new representation can be
beneficial. In our experiments, we showed that when
distinct representations are combined into Dy, as
a result, a representation which allows for a better
discrimination can be obtained. This not only im-
proves the classifier, but it is also of interest because
of the computational aspect.
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