
Modelling Handwitten Digit Data using Probabilistic
Principal Component Analysis

Mohamed E.M. Musa, Robert P.W. Duin and Dick de Ridder

Pattern Recognition Group,
Department of Applied Physics
Delft University of Technology,

Lorentzweg 1, 2628 CJ Delft The Netherlands
e-mail: musa@ph.tn.tudelft.nl

Keywords: Principal Component Analysis, mixture models, model selection, handwritten digit recogntion

Abstract

Principal Component Analysis (PCA) is one cen-
tury old now. Nevertheless, it still undergoes research
and new extensions are found. Probabilistic Princi-
pal Component Analysis (PPCA, proposed by Tip-
ping and Bishop) is one of these recent PCA exten-
sions. PPCA defines a probabilistic generative model
for PCA.It can easily be extended to mixture mod-
els. Among recent mixture density theoretical de-
velopments is Dasgupta’s algorithm for learning mix-
tures of Gaussians. We propose enhancing PPCA’s
EM training algorithm by increasing the number of
submodels iteratively, together with using a version
of Dasgupta’s algorithm for parameter initialization.
Handwritten digit classification is an extensively stud-
ied problem. Therefore, it is considered a popular
benchmark for model comparison. Experimental re-
sults show remarkable improvement when using our
extensions.

1 Probabilistic Principal Component
Analysis

Principal Component Analysis (PCA) emerged at
the turn of the twentieth century. Nevertheless, it is
still one of the most popular techniques for dimen-
sionality reduction. If we project ann-dimensional
data set (assumed, without loss of generality, to have
zero mean) into anm-dimensional subspace (m <
n) and the resulting variance of the projected data
is measured, then the principal components define a
subspace such that this “captured” variance is high-
est. These m principal components are found to be
the dominantm eigenvectors (a proof can be found in
almost all multivariate statistics books). Karl Pearson
(1901) is the first to describe the technique. A descrip-

tion of practical computing methods came much later
from Hotelling (1935). Later, with the advent of elec-
tronic computers, the technique achieved widespread
use as the machine computational power increases the
dimensions of the data that can be manipulated by
many order of magnitudes.

Despite its popularity, PCA has some limitations.
Two of its main limitations are:

(I) A lack of a probabilistic or generative model.

(II) The technique is globally linear.

To overcome these two limitations Tipping and
Bishop [1] propose a mixture model for probabilistic
PCA. Their aim is to overcome the first limitation by
defining a probabilistic model for PCA, and to model
the data globally nonlinear by a mixture of local lin-
ear submodels. From here on, we will call this model
”PPCA”. A number of implementations of ”mixtures
of PCA” have been proposed in the literature, before
PPCA. Each defines a different algorithm or a varia-
tion [2,3], but none defines a probability density.

1.1 Probabilistic Principal Component
Analysis

PCA is merely a rotation of ann-dimensional data
space and selection ofm dimensions in the rotated
space as the newm-dimensional linear subspace. If
the data in the original space is Gaussian then the data
in the rotated subspace is also Gaussian. Therefore,
PPCA is a Gaussian modeller that defines the relation
between the Gaussians in the original space and the
subspace. The generative model:

t = Wx + µ + ε (1)

specifies the relation between these two Gaus-
sians wheret (n-dimensional) is the data vector,x
(m-dimensional) is the subspace vector,W are the
m dominant eigenvectors (principal components, or
PCs),µ is the data mean, andε is a noise model which
is assumed isotropic Gaussian (i.e.ε ∼ N(0, σI))
approximating the average of the minor eigenvalues
. This allows the following definitions of probability
distributions overt-space andx-space:

p(t) = (2π)−n/2|C|−1/2

exp
(
−1

2
(t− µ)T C−1(t− µ)

)
(2)

p(t|x) = (2πσ2)−n/2 exp
(
−1

2
σ2‖t−Wx− µ‖2

)
(3)

p(x) = (2π)−n/2 exp
(
−1

2
xT x

)
(4)

Formula (2) is the general Gaussian formula with
the covariance matrix approximated as:

C = σ2I + WWT (5)

1.2 Mixtures of Probabilistic Principal
Component Analyzers

The Gaussian density model has proved to be
the most exceedingly popular density model, perhaps
mainly due to its simplicity and general applicability.
This popularity leads density modelers to build mix-
tures of Gaussians when it seems that one Gaussian
does not fit the data well, or when the data naturally
emerges from a mixture of Gaussians. A multivariate
mixture of Gaussians is given by the weighted sum :

Fk(t) =
k∑
j

qjpj(t, θj) (6)

whereqj are the mixing weights satisfying
∑

qj =
1 andqj > 0. pj(t, θj) is thejth Gaussian, parame-
terized byθj . As PPCA is a Gaussian model, formula
(6) can also be used to define a mixture of PPCA mod-
els. The only difference to be mentioned here is in the
parameter set,θj . For the general Gaussian model,θj

contains the mean and the covariance matrix. For the
PPCA Gaussian model,θj contains the meanµj , the
m-dominant eigenvectorsWj and the average of the
minor eigenvaluesσj .

2 Training

Methods that can be used for distributing the train-
ing data among submodels are categorized ashard
clusteringor soft clustering. Hard clustering necessi-
tates a two-stage procedure: partitioning of the data
space followed by estimation of the parameters of
each partition. The other method, EM algorithm, car-
ries out the partitioning process and submodel param-
eter estimation as one global process. During the E-
step, responsibility for each data point is assigned to
the submodels; during the M-step PCA is performed,
altering the parameters of a submodel to fit the as-
signed data better. The fitting measurement – i.e. how
well the assigned data fit their model – is one of the
main differences between PPCA and previous work.
PPCA is a probabilistic model, therefore the fitting is
measured by the probability density function and the
maximum likelihood framework is the proper frame-
work for the M-step. As pointed out by the authors
of PPCA, all previous work suffer the limitation of
the absence of a probability. This limitation is the
main reason for finding different algorithms in the lit-
erature for measuring how the data fits in the model
[2,3]. One of the measurements that have been used
extensively is the reconstruction error. In reconstruc-
tion error the data point is projected into the subspace,
and then back to the data space. The distance between
the reconstructed data point and the original one is the
reconstruction error. However, the reconstruction er-
ror by itself is unfit for defining a probability measure.

2.1 Hard Clustering and Initialization
for the EM Algorithm

EM in a maximum likelihood framework may be
the most appealing framework that can be used for es-
timating the PPCA mixture model. Yet some difficul-
ties of EM should be considered. While EM is guar-
anteed not to decrease the likelihood, there is no guar-
antee that it may not get stuck in a local maximum.
For mixture learning, the algorithm has no proper ex-
tensions: neither for finding the optimal number of
submodels, nor a generally accepted method for pa-
rameter initialization.

If we needh data points to estimate a mean of
a one-dimensional data set, then we needhn data
points to estimate the mean ofn-dimensional data
sets. In other words, a plausible data size for an n-
dimensional data mean estimation is around2O(n).
This is an astronomical figure for high dimensional
data and no practical training data set is expected to
fulfil this requirement. Is it possible to reduce the di-
mension of the data so dramatically that this require-
ment actually becomes reasonable? Dasgupta showed
that to estimate the mean of a mixture of Gaussians
with common covariance matrix, we can map the data
to a random subspace of size O(log k) dimension,

wherek is the number of Gaussians, without collaps-
ing the Gaussians together [4]. This makes the num-
ber of data points needed only polynomial ink. The
reader may wonder how can we preserve the relative
distance between data points with this high reduction
of dimensionality by just random projection.

However, in our situation we do not want this. We
want most of the pairwise distances to contract sig-
nificantly, so that the fraction of points within the
expected distance from any Gaussian center in the
reduced spaceRm is exponentially greater than the
fraction of points within the expected distance from
the same center in the original spaceR

n. At the
same time we do not want the distance between dif-
ferent Gaussians to contract. These conflicting re-
quirements are accommodated by a projection to just
O(log k). This method of projection has another
tremendous benefit: even if the original Gaussians
are highly skewed, their projected counterparts will be
more spherical and there by easier to learn. A proof
for these arguments would be found in [4].

The clustering method described above which we
will refer to as “Dasgupta’s algorithm” can be used as
a hard clustering method for training a PPCA model.
However, it can also be used for calculating an initial
estimation for the EM algorithm (i.e. soft clustering).
In this project we test a version of Dasgupta’s algo-
rithm as a hard clustering method for PPCA. Finding
good initializations as a starting estimation may cut
down the training time and (most importantly) may
help in escaping some local maxima.

Increasing the number of submodels iteratively
during training may help in finding the optimal num-
ber of submodels. So in addition to testing Dasgupta’s
hard clustering we also test the efficiency of an EM
algorithm initialized by clusters found by Dasgupta’s
algorithm, as well as the efficiency of increasing the
number of submodels iteratively. This latter idea was
investigated by Li and Barron [5]. The next section
defines these techniques algorithmically.

2.2 Algorithms

The two algorithms in this paper will be called al-
gorithm A, for initialization, and algorithm B, for op-
timising the number of submodels iteratively.

2.2.1 Algorithm A

1. Project the whole data into the space of them
dominant principal components.

2. S = projected data

3. For i = 1. . . k

(a) For all x ∈ S, let rx be the smallest ra-
dius such that there are≥ p points within
distancerx from x.

(b) Letµ* be the pointx with the lowest radius
rx

(c) let S’= theq closest points toµ*

(d) From the points corresponding to S’ in the
data space estimateθj (i.e. µ* , Wj , σj)

e) S = S-S’

For this algorithm, the modeler should determine
the number of Gaussians,k; the subspace dimension-
ality, m; the number of points that are expected to
be close to it i-th Gaussian center,p; and the num-
ber of points expected to be from the sameith Gaus-
sian,q. These parameters depend upon the problem
at hand. However, two guidelines for the relation be-
tween these parameters, are: (I)m ∼= O(log k), i.e.
the dimension of the projection subspace should be in
the order of the number of Gaussians; (II)p < q, i.e.
the number of points used for finding the centers must
be a subset of the points used for the estimation of the
entire Gaussians.

After projecting the data into the subspace the
algorithm-control iteratesk times between the sub-
space and the original space: find a cluster in the sub-
space (steps (a)-(c)); go back to the original space and
estimate one submodel parameters using the points
corresponding to the recently found cluster (step (d));
remove the cluster (step (e)).

2.2.2 Algorithm B

1. Run EM onk submodels initialized by algorithm
A.

2. Find a new cluster (using algorithm A) using1
k th

part of the data. The data points chosen are the
points that have the lowest probability for the
currentk submodels.

3. Run EM onk + 1 submodels

4. If likelihood(k) ∼= likelihood(k + 1)or k = l,
stop (l is the upper limit for the number of Gaus-
sians); otherwise go to step 2.

3 Application

Handwritten digit recognition is a popular classifi-
cation problem that is used extensively in testing rel-
ative density classification approaches as well as dis-
criminative approaches [2]. The popularity and the
availability of large data sets enable it to stand as a
good benchmark for testing and comparing different
classification methods. Especially for our problem,
there are some publications on handwritten digit clas-
sification using “mixtures of PCA” [1,2]. In this sec-
tion we describe our experiments for testing the pro-
posed algorithms on modeling handwritten digits us-
ing mixtures of PPCA.

The data set used in our experiments was extracted
from the well-known NIST handwritten digit database
[6]. The original data set consisted of 128x128 pixel
binary images. In pre-processing, these images were
normalised for position, size, slant and stroke width,
resulting in 16x16 pixel grey-value images [7]. Fur-
thermore, for the experiments described in this paper
PCA was used on the entire data set to reduce the
number of dimensions from 256 to 64. The resulting
data set was used to construct training and test sets: all
experiments reported here were repeated three times
on randomly selected training and test sets of 1000
samples per class each.

3.1 Experiments description

We have trained a mixture of PPCA models for
handwritten digit recognition and tested its classifica-
tion performance. Each digit is modeled by ten sub-
models at most and each submodel has ten PCs. Dur-
ing the training phase, only images of one class are
presented to the model generator program, i.e. each
digit model is built separately. 1000 patterns (images)
per class (digit) have been use for training. Each pat-
tern is an 8x8 image taken as one 64-dimensional vec-
tor.

We have designed four experiments:

I. Training ten submodels per class starting with
random initializations.

II. Training ten submodels per class using algorithm
A – hard clustering only.

III. Training ten submodels per class starting with
initialization from algorithm A.

IV. Training at most ten submodels per class starting
with initialization from algorithm A and iteration
controlled by Algorithm B.

All experiments are repeated three times with dif-
ferently drawn train and test sets. Experiment (I) is
repeated three times for each pair of sets.

3.2 Clustering Parameters

The parametersp andq in algorithm A are initial-
ized with the values 50 and 100 respectively. We have
set q to 100 to divide one digit space into ten sub-
spaces. However, experiment (IV) indicates that it
could have been chosen higher as there are only 5 sub-
models per digit on average. The choice ofp follows
from that, as a demand is thatp < q.

4 Results

For all experiments we have used the same pro-
gram for testing. The testing data set consists of 1000

patterns per class. Table 1 summarizes the first test-
ing results. The error in this table is the percentage of
the misclassified patterns. We added a fourth column
to the table to show the average number of submodels
found by experiment IV.

As an illustration, figure 1 shows the cluster cen-
ters found in experiment II by algorithm A.

The data set has been classified before using a
number of methods [7,8]. Table 2 gives an overview
of the results obtained thus far on a training set of
1000 samples per class.

4.1 Discussion

The results of this first set of experiments show
that performances of all methods of initialisation and
model fitting are nearly equal. Especially the fact that
the hard clustering method, algorithm A, performs as
well as the EM algorithm is curious. To investigate
what caused this, we inspected the models found by
each algorithm. It became obvious that for some mod-
els, problems in estimatingσ, the noise level, caused
poor performance.

The technique, adopted by PPCA, of approximat-
ing the average of the minor eigenvalues correspond-
ing to the variance not explained by PCA, as a noise
parameterσ gives insight into this problem. Eqn. 5
shows that the diagonal components of the model co-
variance matrixC are dependent onσ in the minor
eigenvector directions. This structure makes the co-
variance matrix very sensitive to the actual value of
σ. For very small values,C will become singular and
the whole model becomes undefined. However, even
when the matrix is non-singular andσ is very small,
the model will become prone to overfitting. This can
be seen by realizing that for smallσ, some elements
of C−1 will become very large. Now, normally the
image elements which are multiplied by the large val-
ues inC−1 (see eqn. 2) will be very small, as their
variance is very low. However, if in the data set an im-
age occurs which has some noise present in pixel po-
sitions which normally have low variance, this noise
will be blown up. It will have a large effect on the
estimate of the probability of the image (eqn. 2) and
both training (specifically, the E-step) and recognition
will suffer.

This is the main reason that makes the clustering-
only experiment (experiment II) give results compa-
rable to the EM-based experiments (experiment I, III
and IV), as the noise has less influence on algorithm
A than on the EM algorithm. Table 3 shows the aver-
ageσ (over all submodels) and the recognition error
for each class for one of the experiments I. It is obvi-
ous from the table that digit “1” has one of the worst
results and the lowest value ofσ. This gives the in-
sight thatσ can be used as a clue for deciding on the
optimal number of PCs for the PPCA model in gen-

Experiment Initialization Model fitting Error (%) Std. dev. No. submodels

I random EM 2.63 0.13 100
II algorithm A - 2.70 0.22 100
III algorithm A EM 2.48 0.25 100
IV algorithm A algorithm B / EM 2.59 0.16 54

Table 1: Test results for the four experiments using different initalisation and model fitting algorithms.

Type Classifier Error (%)

Bayes plug-in Nearest mean 15.88
Linear 9.84
Quadratic 4.70

Neural network LeNotre 4.87
LeNet 3.43
LeCun 2.32
1 hidden layer @ 256 units 2.44
1 hidden layer @ 512 units 1.99

Support Vector Classifier Polynomial,5th degree 1.29
Radial basis,σ = 10 1.38

Table 2: Results for various classifiers on the NIST data set.

Class Avg. σ Error (%)

0 0.18 1.99
1 0.06 4.99
2 0.25 0.79
3 0.22 2.79
4 0.20 1.48
5 0.24 1.75
6 0.16 1.92
7 0.14 3.00
8 0.22 2.36
9 0.13 4.10

Table 3: The averageσ and test error for each of the 10 digit classes.

Experiment Initialization Model fitting Error (%) Std. dev. No. submodels

I random EM 2.08 0.18 100
II algorithm A - 2.60 0.23 100
III algorithm A EM 1.86 0.25 100
IV algorithm A algorithm B / EM 2.20 0.13 53

Table 4: Test results for the four experiments using different initalisation and model fitting algorithms. In these
experiments,σ was regularised by adding a constant value of 0.1 throughout all iterations.

eral and most importantly that regularisingσ, e.g. by
adding a regularisation constant, could improve per-
formance.

To verify this, we re-ran the experiments using reg-
ularization. In each iteration of the EM algorithm,σ
was calculated by averaging the minor eigenvalues,
as in normal PPCA, and adding a fixed value of 0.1.
For completeness, theσ’s estimated by algorithm A
(experiment II) were also regularized in the same way
before testing. Performance increased for each ex-
periment. The results of these experiments, shown
in table 4, show that randomly initialised PPCA now
performs quite good compared to the results previ-
ously obtained using other classifiers (table 2). It is
also obvious that EM is better than our hard cluster-
ing method, algorithm A alone. Using algorithm A
as an initialisation of the EM algorithm improves re-
sults somewhat, but not significantly. However, the
most interesting result is the fact the the number of
submodels found in experiment IV, by algorithm B, is
significantly reduced at only a small increase in test
error. Algorithm B found 53 submodels on average,
where the other models used 100; it gave a test error
of 2.20% on average, vs. 2.08% on average for the
standard PPCA algorithm.

5 Conclusion

We have applied Tipping and Bishop’s mixture-of-
PPCA model to handwritten digit recognition. In a
first set of experiments, it was shown that some of
the model’s assumptions (e.g., equal noise variance
in all directions) sometimes cause training problems
or poor final performance. To remedy this, simple
regularization was shown to improve results consider-
ably. The experiments with the regularized algorithms
show that the mixture-of-PPCA model performs quite
well, compared to results obtained earlier using (often
dedicated) classifiers.

A drawback of this method is that the number of
dimensions per subspace, and the number of sub-
spaces to be estimated per digit, have to be speci-
fied beforehand. We proposed a new way of train-
ing PPCA mixture models, inspired by the work of
Dasgupta and Li and Barron, which automatically de-
termines the optimal number of subspaces to be used
per digit. This training method was shown experi-
mentally to decrease the number of subspaces needed
significantly, at only small cost to the performance.

As future work, we plan on investigating better
ways of setting the parametersp andq of algorithm
A (section 2.2). If we improve initialization, it is
to be expected that the final performance of our new
training method will improve as well. Furthermore, it
would be interesting to see whether an automatic way
of finding the optimal number of PCs could be incor-
porated into the algorithm as well, perhaps based on

the value ofσ for each submodel. This would make
the mixture-model virtually free of parameters.

References

[1] Tipping, M.E. and Bishop, C.M. Mixtures of Prin-
cipal Component Analyzers. Neural Computation,
11(2):443-482,,1999

[2] Hinton, G.E., Dayan, P. and Revow, M. Modeling
the manifolds of images of handwritten digits. IEEE
Transaction on Neural Networks , 10(3):65-74, 1997.

[3] Kambhatla, N. and Leen T. K. Dimension reduc-
tion by local principal Component analysis. Neural
Computation, 9(7):1493-1516, 1997.

[4] Dasgupta, S. Learning Mixtures of Gaussians.
Proc. IEEE Symposium on Foundation of Computer
Science, 1999.

[5] Li, J.Q. and Barron, A.R., Mixture density esti-
mation. In Solla, S.A., Leen, T.K. and M̈uller, K.-R.,
editors, Advances in Neural Information Processing
Systems 12, MIT Press, Cambridge, MA. 2000.

[6] Wilson, C.L. and Garris, M.D. Handprinted char-
acter database 3, february 1992. National Institute of
Standards and Technology; Advanced Systems Divi-
sion. URL: http://www.nist.gov/srd/nistsd19.htm

[7] de Ridder, D., Hoekstra, A. and Duin, R.P.W., Fea-
ture extraction in shared weights neural networks. In
Kerckhoffs, E.J.H., Sloot, P.M.A., Tonino, J.F.M. and
Vossepoel, A.M., editors, Proceedings of the2nd an-
nual conference of the Advanced School for Comput-
ing and Image Processing, pp. 289-294, Delft, The
Netherlands, 1996. ASCI, ASCI.

[8] de Ridder, D., Adaptive methods of image pro-
cessing, PhD thesis, to appear.

Figure 1: Submodel origins found in experiment II, by algorithm A only.

