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Abstract

In previous research the support vector data de-
scription (SVDD) is proposed to solve the problem
of one-class classification. In one-class classifica-
tion, one set of data, called the target set, has to
be distinguished from the rest of the feature space.
In the original optimization of the support vec-
tor data description, two parameters have to be
given beforehand by the user. In this paper a new,
heuristic, error is defined. Minimizing this error,
both free parameters in the SVDD can be deter-
mined without the use of example outlier objects.
This paper shows under what circumstances the
heuristic error correlates well with the true error.

1 Introduction

In one-class classification, the problem is to dis-
tinguish one class of data from the rest of the fea-
ture space. This situation can occur, for instance,
when we want to monitor a machine. A classi-
fier should detect when the machine is showing
abnormal, faulty behavior. Measurements on the
normal operation of the machine are easy to ob-
tain, but in faulty situations, the machine might
be destroyed completely. In these type of clas-
sification problems, one of the classes is charac-
terized well, while for the other class (almost) no
measurements are available. In one-class classifi-
cation we assume that we have examples from just
one class, called the target class and that all other
possible objects, per definition the outlier objects,
are uniformly distributed.

In general, the problem of one-class classifica-
tion is harder than the problem of conventional
two-class classification. For conventional classifi-
cation the decision boundary is supported from

both sides by examples of both classes. Because
in the case of one-class classification only one set
of data is available, only one side of the boundary
is supported. It is hard to decide, on the basis of
just one class, how strictly the boundary should fit
around the data in each of the feature directions.

This one-class classification problem is often
solved by estimating the target density [5], of by
fitting a model to the data [4]. In this paper we
use a method inspired by the support vector clas-
sifier [10] (or for a more simple introduction [7]).
Instead of using a hyperplane to distinguish be-
tween two classes, a hypersphere around the tar-
get set is used. This method is called the support
vector data description (SVDD)[8].

In the SVDD the volume of the hypersphere is
minimized directly. It has the possibility to reject
a fraction of the training objects, when it suffi-
ciently decreases the volume of the hypersphere (a
better explanation will be given in section 2). Un-
fortunately, the user has to supply a trade-off pa-
rameter C. Furthermore, the hypersphere model
of the SVDD can be made more flexible by in-
troducing kernel functions. Although it gives the
possibility of making more flexible and better fit-
ting descriptions, the user has to give the value of
another parameter, the scale at which the impor-
tant characteristics in the data are. The choice for
these parameters is not directly intuitive, but they
are important to find a good data description.

In this paper, we focus on the problem of the
determination of the two variables, using only tar-
get objects (so no example outliers are required!).
In section 2 we will explain the support vector
data description, and introduce the free variables.
In section 3 we show how s and C can be op-
timized and in section 4 this is applied to some
classification tasks. We end with discussions in
section 5.



2 Support vector data description

First we give a short derivation of the support
vector data description. To describe the domain
of a dataset, we enclose the data with a hyper-
sphere with minimum volume. By minimizing the
volume of the captured feature space, we hope to
minimize the chance of accepting outlier objects.
Assume we have a data set containing N data
objects, {xi, i = 1, .., N} and the hypersphere is
described by center a and radius R.
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Figure 1: Graphical representation of the (hy-
per)sphere around some training data. One object
is rejected by the description (i.e. an error).

A graphical representation is shown in figure 1.
To allow the possibility of outliers in the training
set, the distance from xi to the center a should
not be strictly smaller than R2, but larger dis-
tances should be penalized. Therefore, we intro-
duce slack variables ξi which measure the distance
to the boundary, if an object is outside the de-
scription. An extra parameter C has to be intro-
duced for the trade-off between the volume of the
hypersphere and the errors.

Now, we minimize an error function L contain-
ing the volume of the hypersphere and the dis-
tance from the boundary of the outlier objects.
We constrain the solution with the requirement
that all data is within the hypersphere:

L(R,a,γ) = R2 + C
∑

i

ξi (1)

‖xi − a‖2 ≤ R2 + ξi, ∀i (2)

The constraints (2) can be incorporated in the
error (1) by applying Lagrange multipliers [1]:

L(R,a,γ,α, ξ) = R2 + C
∑

i

ξi (3)

−
∑

i

αi{R2 − (x2
i − 2a · xi + a2)} −

∑
i

γiξi

with Lagrange multipliers αi ≥ 0 and γi ≥ 0. This
function has to be minimized with respect to R,a
and ξi and maximized with respect to αi and γi.

Setting the partial derivatives of L to R and a
to zero, gives:∑

i

αi = 1, a =
∑

i

αixi,

∂L

∂ξi

= C − αi − γi = 0, ∀i (4)

From the last equation αi = C−γi and because
αi ≥ 0, γi ≥ 0, Lagrange multipliers γi can be
removed when we demand that

0 ≤ αi ≤ C,∀i (5)

Resubstituting these values in the Lagrangian
(3) gives to maximize with respect to α:

L =
∑

i

αi(xi · xi)−
∑
i,j

αiαj(xi · xj) (6)

with 0 ≤ αi ≤ C,
∑

i αi = 1.
This error function is in a standard quadratic

form, and combined with the constraints, it gives
a quadratic optimization problem. Error (6) should
be maximized with respect to αi. In practice it ap-
pears that a large fraction of the αi becomes zero.
For a small fraction, αi > 0 and the corresponding
objects are called support objects. These objects
appear to lie on the boundary (in figure 1 these
are the three light gray objects on the boundary).
We see that the center of the hypersphere depends
just on the few support objects. The objects with
αi = 0 can be disregarded in the description of
the data.

Object z is accepted by the description when:

‖z− a‖2 = (z · z)− 2
∑

i

αi(z · xi)

+
∑
i,j

αiαj(xi · xj) ≤ R2
(7)

Radius R can be determined by calculating the
distance from the center a to a support vector xi

on the boundary.
Here the model of a hypersphere is assumed

and this will not be satisfied in the general case.
Analogous to the method of Vapnik [10], we can
replace the inner products (x · y) in equations
(6) and in (7) by kernel functions K(x,y) which
gives a much more flexible method. When we re-
place the inner products by Gaussian kernels for
instance, we obtain:

(x · y) → K(x,y) = exp(−‖x− y‖2/s2) (8)

Equation (6) now changes into:

L = 1−
∑

i

αi
2 −

∑
i 6=j

αiαjK(xi,xj) (9)



The maximization of (9) gives α, which are used
in the computation of the center a. Now for a
novel object z it can be checked if it is within the
hypersphere (from (7)):

∑
i

αiK(z,xi) ≤
1
2

1−R +
∑
i,j

αiαjK(xi,xj)


(10)

This Gaussian kernel contains one extra free
parameter, the width parameter s in the kernel
(from definition (8)). For small values of s the
SVDD resembles a Parzen density estimation, while
for large s the original hypersphere solution is ob-
tained [9]. As shown in [9] this parameter can be
set by setting a priori the maximal allowed rejec-
tion rate of the target set, i.e. the error on the
target set. Secondly, we also have the trade-off
parameter C. We can define a new variable ν:

ν =
1

NC
(11)

Schölkopf [6] showed that this is an upper bound
for the fraction of objects outside the description.
The exact influence of s and ν (or C) on the SVDD
is investigated in the next section.

3 Optimization of s and ν

When the user specifies beforehand a fraction
of the target objects which can be rejected by the
description, just one of the parameters s or ν can
be determined. Unfortunately, both the values for
s and ν have large influence on the final solution
of the SVDD.

In figure 2 the decision boundaries of the SVDD
for different choices of s and ν are shown. The fig-
ure shows that for smaller s, small details in the
data are followed. On the other hand, when s is
very large (in the order of the size of the complete
dataset), only a spherical solution is found (for
s →∞ the rigid hypersphere solution is obtained
[9]). For ν = 0 (C = ∞) no target objects are
allowed outside the description. All objects (in-
cluding the somewhat remote object at (10,0)) are
accepted. When ν = 1

4 about one quarter of the
target data can be outside the description. When
enough data is available, a more robust estimate
of the boundary is obtained.

For this 2-dimensional dataset it is possible to
judge the boundary visually. For data in more
than 3 dimensions this is impossible. In these
cases other measures have to be invented to judge
the quality of the solution.

For a good data description, two requirements
have to be fullfilled: (1) a low target rejection

rate and (2) a low outlier acceptance rate. When
we are given only examples of the target set, the
first term can be estimated by the number of sup-
port vectors that we obtain in the minimization
of Lagrangian (6). It appears that the fraction
of objects what become support vector is a leave-
one-out estimate of the error on the target set:

E [P (error target set)] =
#SV

N
(12)

Minimizing just the error on the target set is
not sufficient. The optimal solution then would be
to accept the complete feature space. To estimate
the outlier acceptance rate without example out-
liers, we have to assume an outlier distribution.
When we assume that the outliers are uniformly
distributed in the part of the feature space we are
interested in, we should minimize the volume oc-
cupied by the description. To minimize this, we
have to estimate the volume of the description.
This can be done by creating a large set of outlier
objects around the target dataset. Unfortunately,
this is very expensive in high dimensional feature
spaces. It would be very convenient when the data
description itself would offer an indication of the
volume of the description.

When the Gaussian kernel is used (definition
(8)), each object just has a limited support in
the feature space. This is visible in the evalua-
tion function (10), where the interaction between
test object z and training objects xi is only via
the kernel (8). By this kernel, the influence of a
particular support vector xi is limited by a hy-
persphere with radius of (about) s in the feature
space.

An heuristic approach for the SVDD with a
Gaussian kernel would be to use the number of
support vectors on the boundary. We then as-
sume that each support object on the boundary
accounts for a volume sd in feature space. To be
able to compare this with the error on the target
set (which is a fraction of the target set which is
rejected), we divide this with an estimate of the
complete outlier volume sd

max where smax is the
maximum distance present in the training set.

We now have an heuristic error to minimize:

Λ(s, ν) =
#SV

N
+ λ#SVb

(
s

smax

)d

(13)

where λ regulates the trade-off between the er-
ror on the target data and on the outlier data.
#SV indicates the total number of support vec-
tors (both on the boundary as outside the descrip-
tion), #SVb is the number of support vectors ex-
actly on the boundary (i.e. 0 < αi < C). In the
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Figure 2: Decision boundaries of a simple 2-dimensional dataset, with different choices of s and ν.

experiments we will consider the variables

fT =
#SVb

N
(14)

and ν, defined by (11) (now both fT and ν are
parameters between 0 and 1).

This estimate is very rough. It disregards the
fact that several support vectors on the boundary
may support the same part of the data descrip-
tion. The effective volume ( s

smax
)d per boundary

support vector might, therefore, be substantially
smaller. In these cases the trade-off parameter λ
should be adapted, or the method will minimize
the number of objects at the boundary further
than is desirable. The advantage is, that no ex-
ample outliers are required in the optimization.

For the data shown in figure 2 the s and ν are
found by minimizing error (13). For the minimal
error s = 5.8, ν = 0.16, and the resulting data de-
scription is shown in figure 3. Although it does
not detect the banana shape of the dataset, it re-
jects the remote outliers. So with an assumption
on the volume of the data description (that it can
be estimated by the number of support vectors on
the boundary) we replaced the variables s and ν
by the new variable λ. In the experiments we will
investigate how well these assumptions hold.
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Figure 3: Solution of the data description for the
dataset given in figure 2 and λ = 1.

4 Experiments

In this section we want to investigate if the op-
timization of (13) results in reasonable values of
s and ν and thus reasonable data descriptions.

4.1 Handwritten digits

In the first experiment, we trained a SVDD
on a handwritten digits dataset (the Concordia
dataset, already used in [2]). This dataset con-
tains handwritten digits (size 32 × 32), with 400
objects per class in a training set and 200 objects
per class in a testing set. The data dimensionality
was reduced from 1024 to about 30 using PCA, re-
taining 75% of the variance in the data. A SVDD



was trained on the class representing the threes.
The s and ν were optimized simultaneously by
minimizing (13).

Figure 4: Testing target objects rejected by the
data description.

In figure 4 the objects are shown, which are
rejected by the SVDD. Surprisingly, some pretty
reasonable threes are rejected (the upper left three,
for instance), but also a real segmentation error
was detected (the thirteen in the lower left). Note
that only information about the target class is
used, and that no extra preprocessing was done
(except for using 75% PCA). These results show
that reasonable results can be obtained with this
automatic optimization, but it is hard to judge
whether these results are good, because here no
ground truth is available (i.e. an object is a gen-
uine three, or an outlier three). In the next section
we investigate an example where a ground truth
is available.

4.2 Texture segmentation

In this application we try to distinguish be-
tween two types of textures. These textures are
taken from [3], and we considered textures 1, 3
and 4 (texture 2 appeared to be very simple to
separate, this is not shown here). We know be-
forehand the ground truth of both textures. In
figure 5 the ground truth and the three texture
images are shown. To classify a pixel an image
patch containing 16 × 16 = 256 pixels is drawn
around this pixel. The texture is therefore char-
acterized by a 256-dimensional feature vector.

In the first experiment, no feature reduction is
performed and the SVDD is trained on a training
set, which is sampled from the complete target re-
gion (i.e. the dark region in the upper left picture
of figure 5). Four hundred objects are used for
training. When a patch in the neighborhood of
the boundary of the target class is used, a part of

1

2 3

Figure 5: Texture segmentation. The texture in
the cross shaped region in the middle is used as
target class (upper left figure). The next three
images are examples of textures used.

the outlier texture can be included in the patch.
In that case the objects is not a pure target ob-
ject and can be considered an outlier object for
the target class. First we consider the third image
(lower right image in figure 5) because this prob-
lem is neither very simple, not extremely hard.
Next we will discuss the other two problems.

In table 1 the results are shown for the third im-
age. We compare the performances of the meth-
ods by directly minimizing Λ (in the first two
lines) and by varying fT and ν by hand (last
six lines). The third column shows the minimal
error Λ∗ (13), where numbers between brackets
show the standard deviation over five runs. The
fourth and fifth column give the error on the tar-
get class Etar and the error on the outlier class
Eout respectively (the percentage of pixels which
is erroneously classified). This shows which trade-
off between the target and outlier errors is made.
The last column gives the total error Etot, the per-
centage of pixels that is erroneously classified.

In the comparison between the total error Etot

of the hand-picked s and ν and that of the au-
tomatic optimization shows that the automatic
optimization comes close to the best hand-picked
configuration (although it is not completely opti-
mal). The heuristic error has a strong correlation
with the true total error.

It appears that the minimization of Λ is rela-
tively insensitive for the value of λ. For λ = 1, a
comparable solution as for λ = 1000 is obtained.
In the optimization of Λ, solutions with low num-



Table 1: Performances on image 3 using a trainingset of 400 patches (size 16× 16). All 256 features are
used. Results are averaged over five runs and multiplied by 100.

fT ν Λ∗ Etar Eout Etot

Well-sampled data, image 3
λ = 1 8.05 (1.43) 6.45 (1.78) 0.67 (0.41) 2.47 (0.36)

λ = 1000 5.80 (1.18) 6.41 (2.08) 0.70 (0.41) 2.48 (0.46)
0.00 0.00 5.40 (1.04) 6.28 (0.95) 0.64 (0.20) 2.40 (0.20)
0.00 0.10 11.40 (0.52) 12.06 (1.63) 0.10 (0.04) 3.82 (0.52)
0.00 0.20 21.15 (0.29) 19.67 (3.20) 0.00 (0.00) 6.12 (1.00)
0.10 0.00 6.25 (1.26) 7.67 (1.23) 0.45 (0.12) 2.70 (0.32)
0.10 0.10 11.55 (0.57) 10.93 (1.19) 0.18 (0.09) 3.52 (0.33)
0.10 0.20 21.20 (0.33) 21.63 (2.35) 0.00 (0.00) 6.73 (0.73)

ber of objects outside the boundary are favored (ν
is small). The results for λ = 1 or λ = 1000 are
comparable with the results of fT = 0, ν = 0 or
fT = 0.1, ν = 0. The low value for ν indicates that
the number of outlier objects in the data is low,
and that we can use the dataset with confidence.

In table 2 the dimensionality of the objects was
reduced from 256 to 67 or to 35, retaining about
90% or 75% of the variance in the training set. Al-
though it might be expected that by reducing the
dimensionality, the boundary of the target class
can be determined better (using a limited train-
ing sample), the classification performance actu-
ally did not improve significantly. It appears that
extra overlap between the classes is introduced.
This is visible in the second experiment where
75% of the variance is retained. When 0.66% of
the target class is rejected, already 20.2% of the
outlier data is accepted.

The minimization of the heuristic error again
results in almost the same solution as in the min-
imization of the true total error, although for the
75%-case a better correlation than for the 90%
case is obtained. The results show that the heuris-
tic error Λ has a preference for low values of ν.
The minimal values of Λ∗ (third column) often
occur for ν = 0. This shows that the first term
in error (13) is weighted harder than the second
term. Only for lower dimensionalities, larger val-
ues of ν are preferred. Also note, that when fT

and ν are optimized, large variation in Λ∗ ap-
pears (for instance, fT = 0, ν = 0.1 at 75% PCA,
Λ∗ = 77± 143!).

In table 3 the same experiment as in 1 is shown,
except that in this experiment the training data is
drawn from the boundary of the dataset. It means
that all training objects, all the 16 × 16 image
patches, somewhere touch or cross the boundary
between the two classes. About half of the data
is actually an outlier object (its true label is ’out-

lier’). The total error Etot dramatically increases
(from 3% error to about 30%), but the error on
the target set Etar actually decreases. By using the
boundary objects, a much broader data descrip-
tion is obtained. The error on the target set com-
pletely vanishes, but a large fraction of the outlier
data is accepted (and thus the error on the out-
lier data Eout is large). These results show, that
when only boundary objects are available, it is
still possible to find a one-class classifier but that
it is not wise to use the heuristic error to optimize
the parameters fT and ν.

Similar results can also be observed for the sec-
ond image (not shown here). The results on image
1, are completely different though. The results on
the first image show very poor performance (not
shown in a table). It appears that when about
13% of the target class is rejected, 95% of the out-
lier class is accepted(!). Both the minimization of
Λ as the hand-optimized fT and ν totally fail. The
fact that such a high fraction of the outlier obects
is accepted, shows there is large overlap between
the two classes. It appears that the target class is
distributed over a wide range in the feature space,
while the outlier class is much tighter clustered.

In figure 6 the resulting segmentations on the
three images is shown. The upper left picture
shows the output of the SVDD trained on the tar-
get class of image 1. It suggest that the outlier
class is even better characterized than the tar-
get class. The upper right shows the output on
the SVDD trained on the outlier data of image 1,
and reasonable results are obtained. This result
confirms the idea that the target data is at the
extremities of the feature space, while the outlier
data is clustered at one point (almost). Finally,
the lower two images are the outputs for image
2 and 3, and here good classification results are
obtained.

To investigate the quality of the results ob-



Table 2: Performances on image 3 using a trainingset of 400 patches (size 16 × 16). The number of
features was reduced by PCA. Results are averaged over five runs and multiplied by 100.

fT ν Λ∗ Etar Eout Etot

PCA to 90% of variance, image 3
λ = 1 7.70 (2.92) 2.46 (1.76) 4.60 (3.20) 3.94 (1.69)

λ = 1000 7.00 (1.14) 2.19 (0.52) 3.91 (1.01) 3.38 (0.56)
0.00 0.00 9.89 (0.82) 1.30 (0.79) 5.35 (0.82) 4.09 (0.46)
0.00 0.10 11.23 (3.30) 4.88 (1.54) 1.78 (0.75) 2.75 (0.16)
0.00 0.20 21.54 (1.60) 11.50 (1.60) 0.40 (0.19) 3.85 (0.43)
0.10 0.00 10.76 (6.54) 0.93 (0.36) 6.49 (2.27) 4.76 (1.50)
0.10 0.10 11.61 (0.28) 4.82 (1.64) 1.83 (0.71) 2.76 (0.08)
0.10 0.20 21.40 (0.34) 13.32 (1.56) 0.13 (0.06) 4.24 (0.46)

PCA to 75% of variance, image 3
λ = 1 23.90 (4.75) 12.52 (4.26) 1.86 (1.05) 5.18 (0.79)

λ = 1000 21.68 (8.94) 11.73 (5.98) 4.03 (5.80) 6.43 (2.21)
0.00 0.00 21.97 (23.49) 0.66 (0.31) 20.15 (3.91) 14.09 (2.60)
0.00 0.10 77.42 (143.65) 3.39 (1.00) 7.12 (1.61) 5.96 (0.97)
0.00 0.20 21.18 (0.45) 11.23 (1.32) 2.64 (0.77) 5.31 (0.35)
0.10 0.00 8.65 (4.36) 0.70 (0.49) 20.94 (5.15) 14.65 (3.41)
0.10 0.10 12.28 (1.63) 3.89 (0.49) 6.67 (0.71) 5.81 (0.46)
0.10 0.20 22.02 (1.61) 10.76 (1.79) 2.88 (0.81) 5.33 (0.26)

Table 3: Performances on first image using 400 training objects drawn from the boundary of the object.
The complete 256-dimensional feature space is used.

fT ν Λ∗ Etar Eout Etot

Boundary data, image 3
λ = 1 8.40 (1.13) 0.00 (0.00) 58.97 (2.83) 40.63 (1.95)

λ = 1000 8.36 (1.42) 0.00 (0.00) 56.64 (3.44) 39.03 (2.37)
0.00 0.00 8.15 (1.72) 0.00 (0.00) 58.40 (4.06) 40.24 (2.80)
0.00 0.10 13.10 (0.52) 0.00 (0.00) 45.64 (2.83) 31.45 (1.95)
0.00 0.20 22.45 (0.76) 0.07 (0.09) 30.78 (1.13) 21.23 (0.78)
0.00 0.30 32.00 (0.68) 0.33 (0.29) 20.84 (2.53) 14.46 (1.71)
0.10 0.00 7.10 (0.88) 0.00 (0.00) 59.87 (3.74) 41.25 (2.57)

tained by the SVDD, we compared it with a sim-
ple unsupervised clustering on features obtained
by Gabor filtering [3]. The images were filtered
using twelve Gabor filters. For each filter an en-
ergy was computed and thus each pixel was char-
acterized by twelve measurements. Pixels from
the complete image were clustered in two classes
using unsupervised k-means clustering. In figure
7 the labeling results are shown. Except for the
first image, the SVDD (trained on just the target
set) shows comparable or better results than the
k-means clustering.

5 Conclusion

The Support Vector Data Description is made
to separate one class of data from the rest of the

feature space. In the basic form, the user has to
supply two parameters, indicating the important
scale in the data and the fraction of objects which
is expected to be outlier, or which are not repre-
sentative for the description of the data. In this
paper we investigated if it would be possible to
automate the optimization of the two parameters
without the use of example outlier objects. For
this the heuristic error criterion (13) is defined.

The heuristic error works when a reasonable
training distribution is used and the fraction of
outlier objects is not too large. When the frac-
tion of outliers, or what appears to be outlier,
is too large, this will be considered target data.
Without further knowledge, this is therefore just
accepted as target data. The results are also very
poor, when the target data is scattered over the



Figure 6: Output of SVDD with optimized s and ν
for (from upper left to lower right) image 1, image
1 trained on the outlier class, image 2 and image
3. A light grayvalue indicates that the pixel is
near the center a of the SVDD hypersphere (and
thus classified as target object by the SVDD).

complete feature space and is not clustered. This
is not a failure of the heuristic error, but because
the data does not fit the basic assumption by the
SVDD (namely that similar objects are near in
the feature space). We can therefore conclude,
that when relatively good target data is present
(representative training set with a small fraction
of outlier objects) this heuristic error gives a good
data description, without the optimization of free
parameters.
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