
Feature scaling in support vector data description

P. Juszczak∗, D.M.J. Tax†, R.P.W. Duin∗

∗Pattern Recognition Group, Department of Applied Physics, Faculty of Applied Sciences,
Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

†Fraunhofer Institute FIRST.IDA
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Abstract

When in a classification problem only samples of
one class are easily accessible, this problem is called
a one-class classification problem. Many standard
classifiers, like backpropagation neural networks, fail
on this data. Some other classifiers, like k-means
clustering or nearest neighbor classifier can be ap-
plied after some minor changes. In this paper we fo-
cus on the support vector data description classifier,
which is especially constructed for one-class classi-
fication. But this method appears to be sensitive to
scaling of the individual features of the dataset. We
show that it is possible to improve its performance by
adequate scaling of the feature space. Some results
will be shown on artificial dataset and handwritten
digits dataset.

1 Introduction

In the problem of one-class classification, one
class of the data, called the target set, has to be dis-
tinguished from all the other possible objects, called
outliers. This description should be constructed such
that objects not originating from the target set are not
accepted by the data description. It is assumed that
almost no examples of the outlier class are available.

In general, the problem of one-class classification
is harder than the problem of normal two-class classi-
fication. For normal classification the decision bound-
ary is supported from both sides by examples of each
of the classes. Because in the case of one-class classi-
fication only one set of data is available, only one side
of the boundary is covered. On the basis of one class
it is hard to decide how tight the boundary should fit
around the data in each of the directions.

The absence of example outlier objects makes it

also very hard to estimate the error that the classifier
makes. The error of the first kindEI , the target ob-
jects that are classified as outlier objects, can be es-
timated on the training set. The error of the second
kind EII , the outlier objects that will be classified as
target objects, cannot be estimated without assump-
tions on the distribution of the outliers. As long as
we do not have example outlier objects available, we
assume therefore that the outliers are uniformly dis-
tributed in the feature space. This directly means, that
when the chance of accepting an outlier object is min-
imized, the volume covered by the one-class classifier
in the feature space should be minimized.

Using the uniform distribution for the outlier ob-
jects, implicitly assumes that the objects are repre-
sented by ’good’ features. This means that outlier ob-
jects will be around the target class and not inside it.
When it appears that there is still some overlap be-
tween the target objects and outlier objects, the repre-
sentation of the objects should be changed such that
the distinction becomes easier.

In this paper we show a few simple possibilities for
rescaling the features in order to improve the distinc-
tion between the target and the outlier class for sup-
port vector data description (SVDD) classifier. The
performance of the classifier depends on representa-
tion of the data. For some one-class classifiers this
relation is strong: for instance in the mixture of Gaus-
sians, SVDD, k-centers, k-means, nearest neighbor-
hood for others like PCA, auto-encoder, diabolo net-
work, normal density estimator this relation is weak
[1]. The former classifiers are scale dependent and
the second group of classifiers are scale independent.
This means if we rescale the feature space the perfor-
mance of the classifier for the first group significantly
changes.

What do we mean by a good representation of the
feature set in the case of the SVDD? It appears that



the SVDD is written in terms of a few objects in the
training set, the so-called support vectors (SVs). The
number of SVs indicates how complicated the bound-
ary is around the target set. For spherical representa-
tions of the data the number of support vectors is 3 or
in some cases 2. This type of the boundary also min-
imizes the error of the second kindEII , the outlier
acceptance.

We applied three different types of scaling to ob-
tain the most appropriate spherical shape of the target
set:

1. scaling by variance - the features in each direc-
tion is divided by its variance

2. scaling by domain - all features are scaled to
range [0, 1],

3. scaling to minmax - the minimum of the maxi-
mum value of feature in all directions is assigned
as the radius of the sphere R, next the features are
scaled to the range[0, R].

We describe these methods in more detail and their
mathematical description in the next section. The ef-
ficiency of appropriate rescaling the feature space is
shown on a artificial datasets and a real world hand-
written digits dataset. The results are presented in the
section Experiments.

2 Theory

Now we would like to give a short description of
the SVDD. For more information we refer to [2, 1].
In the SVDD the data is enclosed by a hypersphere
with minimum volume. By minimizing the volume
of the feature space, or equivalently minimizing the
radiusRwe hope to minimize the chance of accepting
outlier objects. So in analogy to the support vector
classifier [4] we can define the structural error:

Estruct(R, a) = R2 (1)

wherea is the center of the sphere and equation (1)
has to be minimized with the constraint:

|xi − a|2 ≤ R2, ∀i (2)

To allow the possibility of outliers in the training
set, we can introduce slack variablesξ, and minimize
the following error function:

E(R, a, ξ) = R2 + C
∑
i

ξi (3)

whereC gives the tradeoff between the volume of the
data description and the errors it is making on the tar-
get data.

So we constrain the solution such that almost all
objects are in the sphere:

|xi − a|2 ≤ R2 + ξ ξ ≤ 0, ∀i (4)

By introducing the Lagrange multipliersα, γ and
constructing the Lagrangian from equation (3) ac-
cording to constraints (4) one obtains:

L(R, a, ξ, α, γ) = R2 + C
∑
i

ξi

−
∑
i

αi(R2 + ξi− (xi · xi − 2a · xi + a · a))

−
∑
i

γiξi

(5)

Setting partial derivativesR, a, ξ of L(R, a, ξ, α, γ)
to 0 gives the constraints:∑

i

αi = 1 (6)

a =
∑
i

αixi (7)

0 ≤ αi ≤ C (8)

Applying equations (6-8) to equation (5) we obtain an
equation for the error L:

L =
∑
i

αi(xi · xi)−
∑
i,j

αiαj(xi · xj) (9)

The minimization of the error function (9) with
the constraint (8) is a well-known problem called the
quadratic programming problem and standard algo-
rithms exist.

Finally the function that describes the boundary
decision for one-class classification problem it can be
state as:

fSV DD(z, α,R) = I(|z − a|2 ≤ R2)

= I((z · z)− 2
∑
i

αi(z · xi)

+
∑
i,j

αiαj(xi · xj) ≤ R2)

(10)

wherez is a new test object andI is a function defined
as:

I(A) =

{
1 if A is true

0 otherwise
(11)

Support vectors are those elements of the dataset for
whichα > 0. For all othersα = 0. When the func-
tion fSV DD is calculated for a new objectz only sup-
port vectors are non-zero elements in the sums.



The hypersphere is a very rigid boundary around
the data and often does not give a good description
of it. The idea of support vector data description is
to map the training data nonlinearly into a higher-
dimensional feature space and construct a separating
hyperplane with maximum margin there. This yields
a nonlinear decision boundary in the input space. By
the use of a kernel function, it is possible to compute
the separating hyperplane without explicitly carrying
out the map into the feature space. Introducing a ker-
nel function

k(xi, xj) = (Φ(xi) · Φ(xj)) (12)

one can avoid to compute the dot productxi · xj . A
kernel function is any kind of a function that obeys
Mercer’s Theorem [3]. The most often used kernels
are:

1. the polynomial kernel:

K(xi, xj) = [(xi · xj) + 1]d (13)

whered is the degree of polynomial

2. the radial basis function (RBF) e.g.:

Kγ(|xj − xi|) = exp

(
|xj − xi|2

s2

)
(14)

3. the sigmoid kernel, a combination of sigmoid
functionsS(u):

K(xi, xj) = tanh(k(xi · xj) + c) (15)

satisfies Mercer conditions only for some values of
parametersk, c [4].

In our experiments we are using the Gaussian ker-
nel of the form (14). This kernel is independent of
the position of the data set with respect to the origin,
it only uses the distance|xi − xj | between objects.
For the Gaussian kernel no finite mappingΦ(xi) of
an objectx can be given. The fact thatK(xi, xj) =
Φ(xi) · Φ(xi) = 1 means that the mapped object
x∗i = Φ(xi) has norm equal to 1. Because of that,
both the Lagrangian (9) and the discriminant func-
tion (10) simplify. Now we have to minimize the La-
grangian:

L = −
∑
i,j

αiαjK(xi, xj) (16)

to evaluate if a new objectz is a target or an outlier,
formula (10) can be rewritten as:

fSV DD(z, α,R) =

I

(∑
i

αiexp

(
−|z − xi|2

s2

)
>

1
2

(B −R)2

) (17)

whereB = 1+
∑
i,j αiαjK(xi, xj) only depends on

the support vectorsxi and not on the objectz.
We applied three different types of rescaling the

feature space to obtain the most appropriate spherical
shape of the target set:

1. scaling by variance - the features in each direc-
tion l are divided by their varianceσl in this di-
rection.

x̂l,m =
xl,m
σl

, ∀
m=1...n

∧ ∀
l=1...k

(18)

wherex̂l,m is a scaled feature,n is a number of
samples in the training set andk is a number of
dimensions of a feature space.

2. scaling by domain - all feature are scaled to
range [0 1]

x̂l,m =
∣∣∣∣ xl,m
max
m

(xl,m)

∣∣∣∣ ∀
m=1...n

∧ ∀
l=1...k

(19)

wheremax
m

(xl,m) is the maximum value of the

data in thel direction.

3. scaling to minmax - minimum of the maximum
value of features in allk directions is assigned as
the radius of the sphere R. All other features are
then rescaled to the range[0R].

x̂l,m =
∣∣∣∣ xl,m
min
l

(max
m

(xl,m))

∣∣∣∣ ∀
m=1...n

∧ ∀
l=1...k

(20)

Now we rewrite equation (17) for the rescaled data

fSV DD(ẑ, α′, R′) =

I

(∑
i

α′iexp

(
−|ẑ − x̂i|2

s2

)
>

1
2

(B′ −R′)2

) (21)

Where ˆ - indicates values directly rescaled by
equations (18 - 20) and′ - indicates changed values af-
ter rescaling. By minimizing the volume of the target
set we minimize the structural errorEstruct in equa-
tion (1).

3 Experiments

In this section we want to evaluate how well the
rescaling procedures work on an artificial and a real-
world data. We start with describing artificial data.

Higleyman (a normally distributed two dimension
data with different covariance matrices Highleyman
classes are defined by N([1 1],[1 0; 0 0.25]) for class
A and N([2 0],[0.01 0; 0 4]) for class B) , difficult (a



EII [0.01] EII [0.1]
Higleyman

0.51 (0.06) 0.38 (0.06)
difficult 2D

0.80 (0.21) 0.18 (0.07)
difficult 5D

0.93 (0.12) 0.30 (0.07)
difficult 10D

0.93 (0.11) 0.42 (0.07)
banana

0.38 (0.05) 0.04 (0.04)

Table 1: The error of the second kindEII for SVDD
with the error of the first kindEI set to 0.01 in first
column and 0.1 in the second. In brackets the standard
deviation.
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Figure 1: A scatterplot of the banana shape data dis-
tribution

normally distributed data overlapping on one of the
side with equal covariance matrices of their distribu-
tion, two, five or ten dimensional) and banana shape
(a scatterplot is shown in figure 1) data sets [1] are
used in the experiments. Those data sets were chosen
as representations of different distribution of the tar-
get set to verify performance of our rescaling methods
on various shapes and dimensions of the target data.

Each set contains 500 target and 500 outliers ob-
jects. For the training set 250 of target objects are
drawn and the remainder (including outliers) are used
for testing. Two SVDD’s were trained, with two dif-
ferent thresholds on the fraction rejection: 0.01 and
0.1. It means that the error of the first kindEI should
be 0.01 and 0.1 respectively. This fraction of the data
is related to the number of support vectors. Experi-
ments were repeated 100 times. The means and stan-
dard deviations (in brackets) for the error of the sec-
ond kindEII are shown in table 2. Table 1 shows as a
reference the results for the SVDD classifiers for the

same parameters and data without rescaling the fea-
ture set.

The value of the error of the first kindEI for
the data before and after rescaling was obtained with
small deviation (0.1 of its value) for all classes and for
clarity were not included in the tables.

Fixing the error of the first kind, we observe the
influence of rescaling the feature set on the classifi-
cation performance by the change in the error of the
second kind - outliers accepted. The table 2 shows re-
sults for rescaled distributions of the data mentioned
above for three scaling methods. Numbers in bolds
indicate in what cases the errorEII was decreased af-
ter rescaling for the particular class. The fact that we
have chosen a particular value forEI means that the
total error is decreased.

method EII [0.01] EII [0.1]
Higleyman

variance 0.45(0.05) 0.41 (0.05)
domain 0.77 (0.04) 0.63 (0.07)
sphere 0.46(0.05) 0.40 (0.06)

difficult 2D
variance 0.42(0.14) 0.25 (0.10)
domain 0.46(0.12) 0.30 (0.08)
sphere 0.40(0.14) 0.27 (0.08)

difficult 5D
variance 0.44(0.11) 0.25(0.07)
domain 0.41(0.11) 0.30 (0.07)
sphere 0.42(0.12) 0.28(0.08)

difficult 10D
variance 0.50(0.12) 0.42 (0.10)
domain 0.45(0.12) 0.37(0.09)
sphere 0.50(0.13) 0.40(0.10)

banana
variance 0.38 (0.05) 0.04 (0.05)
domain 0.35(0.06) 0.28 (0.05)
sphere 0.38 (0.05) 0.04 (0.02)

Table 2: The error of the second kindEII for rescaled
data, the error of the first kindEI set to 0.01 in first
column and 0.1 in the second. In brackets the standard
deviation. The numbers in bold point show an im-
provement of the performance after scaling the data.

Summarizing, we checked the influence of scal-
ing on the performance on SVDD classifier with: dif-
ferent data distributions, with different number of di-
mensions and different number of SV which is related
to EI .

The same procedure was applied to real-word
dataset handwritten digit images. The data used in
experiments was taken from the Special Database 3
distributed on CD-ROM by the U.S. National Insti-
tute for Standards and Technology (NIST) [5] and
preprocessed to 16x16 images NIST16 database. The



Figure 2: Examples of handwritten digits from
NIST16 database.

NIST16 database contains 2000 images of 10 classes,
each class-digit is represented by 200 images, figure
3 shows examples of the data. SVDD was trained on
every 10 situations when one of the digits is a target
class and others are outliers. We use images directly
as the 256 dimensional data set.

class EI EII
0 0.03 (0.02) 0.81 (0.14)
1 0.04 (0.01) 0.97 (0.14)
2 0.02 (0.02) 0.91 (0.05)
3 0.03 (0.02) 0.59 (0.15)
4 0.02 (0.02) 0.84 (0.06)
5 0.03 (0.02) 0.95 (0.03)
6 0.03 (0.02) 0.70 (0.10)
7 0.03 (0.02) 0.76 (0.10)
8 0.02 (0.02) 0.90 (0.06)
9 0.03 (0.02) 0.90 (0.06)

Table 3: Classification results for the NIST16 digits,
where each digit is considered the target class once.
EI - error of the first kind,EII - error of the second
kind.

variance
class EI EII

0 0.11 (0.04) 0.05(0.03)
1 0.06 (0.04) 0.08(0.04)
2 0.16 (0.05) 0.13(0.06)
3 0.20 (0.05) 0.08(0.04)
4 0.14 (0.05) 0.17(0.04)
5 0.21 (0.06) 0.08(0.03)
6 0.12 (0.04) 0.07(0.04)
7 0.09 (0.03) 0.09(0.04)
8 0.17 (0.05) 0.21(0.04)
9 0.14 (0.04) 0.05(0.02)

domain
class EI EII

0 0.11 (0.04) 0.09(0.05)
1 0.08 (0.04) 0.08(0.04)
2 0.15 (0.06) 0.32(0.09)
3 0.17 (0.06) 0.20(0.07)
4 0.13 (0.04) 0.26(0.05)
5 0.18 (0.05) 0.20(0.06)
6 0.14 (0.04) 0.12(0.04)
7 0.11 (0.04) 0.13(0.04)
8 0.16 (0.05) 0.35(0.06)
9 0.13 (0.04) 0.12(0.04)

minmax
class EI EII

0 0.10 (0.04) 0.03(0.02)
1 0.07 (0.04) 0.10(0.06)
2 0.12 (0.05) 0.14(0.06)
3 0.14 (0.04) 0.08(0.04)
4 0.12 (0.04) 0.21(0.03)
5 0.16 (0.05) 0.10(0.03)
6 0.12 (0.04) 0.05(0.03)
7 0.08 (0.04) 0.08(0.03)
8 0.15 (0.05) 0.22(0.06)
9 0.13 (0.04) 0.06(0.03)

Table 4: Results for one-class digits classification
problems with rescaled by three linear methods fea-
ture space,EI - error of the first kind,EII - error
of the second kind. The numbers in bold point show
an improvement of the performance after scaling the
data.

The training and the test set are constructed as fol-
lows: for the training set a half of target data was
taken (100 images) and for the test set all other classes
plus 100 images from target class. The fraction re-
jection for SVDD was set to0.05 what means that
we expect that0.05 ∗ 100 = 5 data points will be
lying on the boundary. PCA with a set of variance
thresholds was applied (0.8, 0.9, 0.95, 0.99) to reduce
the dimension of the feature space. Results for the
threshold equals 0.95 are included in table 3. (The
SVDD performed the best for the variance threshold
of 0.95.) Because the PCA was taken on nine differ-
ent target sets, digits in this case, different number of
dimensions were obtained when0.05 of the variance
was retained. On average, the dimensionality was 72
so we reduce our space from 256 to about 72.

The results for the handwritten digit recognition
for the same threshold for the fraction rejection and
PCA with rescaled data are shown in table 4. This
data was used to test the behavior of the scaling meth-
ods for unknown distributions of the target data, with
many feature dimensions. We includedEI in the ta-
bles, because, unlike for the previous experiments on
the artificial data, this timeEI considerably changes
its value after rescaling.
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Figure 3: Differences in shapes of the SVDD classifier trained on no-rescaled and rescaled (minimax, domain,
variance) data: the continuous line - SVDD trained on no-rescaled data, dashed line - SVDD trained on rescaled
data

From the results in tables 1 - 2 we cannot dis-
tinguish which scaling method is the best, they are
performing quite similar. But we can say that in al-
most every example the errorEII is smaller after scal-
ing then before. Some ofEII errors rise, this phe-
nomena can be explained as follows: imagine a sinu-
soidal shape boundary separating two classes. If we
divide it along longer axis (frequency of the sinusoid
arise) more support vectors are needed to describe this
boundary. When we fix the number of support vectors
by specifyingEI , we lack of the sufficient number
of support vectors to describe the more complicated
boundary. In that case the boundary cannot be fol-
lowed and the error increases.

From results in tables 3 - 4 some regularity can be
observed. In general, the minmax method causes the
smallest rise in the errorEI while scaling by variance
decreasesEII . This regularity was obtained for a par-
ticular distribution of the data and can not be general-
ized for other distributions.

All rescaling procedures used in this paper are
based on the same principles. Rescale the feature
space such that the target distribution is more spher-
ically distributed and the areas which do not contain
target data are easily separated from the target class.

The rescaling methods perform well for data with
ellipsoidal shapes or with directions with a different
length from the means (the Mahalanobis distance)
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Figure 4: Receiver-operating characteristic curves for different scaling methods for banana shape data (on the
right) and handwritten digits (on the left) when a digit 2 is a target set

to the decision boundary circumscribes data in the
feature space. An example of classifiers trained on
two-dimensional rescaled and no rescaled Highleman
classes, connected into one target class, are shown in
the figure 3. The tighter boundary around the target
set was obtained after rescaling features. On these
examples we can explain results of our experiments
on hand-written digits. By finding the more narrow
boundary around a target set we can minimize the er-
ror of outlier acceptance and only if we don’t have
a good representation of a target set in a training set
some target elements in a test set will be classified as
outliers andEI will be larger after rescaling. For some
data with the derivation equals in each direction from
its mean and areas do not contain target data inside the
boundary describes it, see figure 1, our three rescaling
methods do not perform well on this example (figure
4) because all of them will produce the same shape
of the target distribution in the rescaled feature space
only with the smaller volume. For this kind of distri-
bution some non-linear scaling should be applied to
obtain a more uniform data distribution.

The figure 4 shows ROC curves [6] for SVDD
trained on banana shape dataset and handwritten digit
with ’2’ as a target set. ’Target accepted’ and ’outlier
rejected’ can be obtained respectively:1−EI , 1−EII .
From the first figure no improvement can be observed
between presented rescaling methods and no-rescaled
SVDD. From the second figure ROC curves for clas-
sifiers trained on rescaled data are shows a large de-
crease ofEII error with a small increase ofEI at the
same time.

4 Conclusions

In this paper we presented some simple methods of
rescaling the feature space to optimize the boundary

around a training set of objects in one-class classifi-
cation problem. We introduced simple linear meth-
ods to obtain more spherical distribution of the tar-
get set to minimize chance of a target rejection and
an outlier acceptance. We verified those methods on
the one-class classifier SVDD. Experiments on artifi-
cial and some real-world data suggest that scaling to
domain, variance and minmax method decrease the
error on the outlier data in most cases. In the future
we will study more sophisticated methods of rescal-
ing the data, we will also verify the performance of
other one-class classifiers.
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