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Abstract

The representations of real world objects based on
distances (dissimilarities) has proven to be more suit-
able than the classic feature-based ones for many pat-
tern recognition problems.

Measuring objects to obtain features is indeed
needed to represent them, but that process can be
costly, therefore selecting a reduced set of features
(prototypes in dissimilarity representations) can lead
to cheaper and faster solution of real life problems.
The way distances are computed (namely the metric
used) produces different representations of the same
objects, therefore as in many cases we (or experts)
cannot decide which approach is better, a combina-
tion of either dissimilarity representations or classi-
fiers built on each of them separately can be useful .
Although dissimilarity representations can be already
seen as a form of classifier combination (a combina-
tion of NN classifiers), in this paper we wanted to
investigate further this approach. The key point of
classifier combination lies either in a proper averag-
ing over different experts/sources or in a beneficial
integration of different and possibly complementary
approaches. Our aim in this paper is to investigate on
the possibility to combine different dissimilarity rep-
resentations of the same data, namely distances com-
puted segmenting images using various resolutions
(scales). And therefore using these multiple represen-
tations applying some prototype selection techniques
to build different simple classifiers (on the obtained
representation sets), and to employ then different clas-
sifier combination approaches.

1 Introduction

A representation of data different from a feature
based description is based on pair-wise comparisons

of objects namely distances or dissimilarities. In
many cases, distances are obtained directly from raw
or pre-processed measurements. There are many ar-
guments to choose dissimilarities in particular when
feature representations cannot be helpful in discrimi-
nating different classes of objects, or in case the ex-
perts are not able to define proper features, or the
data lies in high-dimensional spaces (too many fea-
tures/measurements). But also the intrinsic nature of
the problem at hand is quite relevant: for instance
measures of curves and shapes are good examples
of cases in which a dissimilarity representation might
perform better in the recognition tasks.

We have chosen a dissimilarity based approach in-
stead of a kernel based one (similarities) because it is
not therefore needed to deal only with squared matri-
ces, but indeed we look for reduced representations.
Dissimilarity representations also allows the use of
huge data, after a proper dimensionality reduction ob-
tained via prototype selection techniques, another ad-
vantage is the possibility to use a larger variety of dif-
ferent classifiers rather than only SVM ones. And the
constraint of fulfilling the Mercer’s theorem is not a
problem in this approach, therefore allowing for the
use of non-euclidean and even non-metric distances
that in many are able to better describe the data at
hand which can lie on non-euclidean manifolds.

We chose to combine different approaches based
on dissimilarities because experiments in Multiple
Classifier Systems as well as life experience show that
a proper fusion of complementary expertise leads to a
better understanding of the problem and, usually, to
reach better solutions.

In our paper we have selected a finite number of
representations based on different scales of the same
data and proposed three different methods for com-
bining them, obtaining a single representation with



two approaches (using distances computed on the ba-
sis of the same metric but with different parameters):

• formulating a function depending on these rep-
resentations (namely a weighted sum).

• concatenating (extending) the dissimilarity rep-
resentations and applying different prototype se-
lection approaches [1].

• combining different classifiers built on the vari-
ous representations of the given data.

With respect to the extended dissimilarity repre-
sentation and to the combination of classifiers built
on different representations it is important to under-
line the importance of finding effective ways to al-
lign the prototype selection along the different ma-
trices composing it, in order to minimize both the
costs involved in measurement and the computational
complexity that can easily grow whether different sets
(with respect to the the sub-matrices) are used instead
of employing a consistent selection approach.

2 Data description

For our experiments we have chosen to use dissim-
ilarity matrices from the H.Bunke’s “Chicken Pieces
Silhouttes Database”.

2.1 Chicken Pieces Silhouttes Database

The chicken pieces dataset contains several silhou-
ettes of chicken pieces. The contour line of each sil-
houette is extracted using an edge detector. Then the
resulting contour line is approximated by a sequence
of normalized vectors of constant length. A string
consisting of the angles between consecutive vectors
is constructed from this vector sequence , which leads
to a rotation-invariant cyclic string of relative angles
representing the original chicken piece silhouette. An
illustration of the processing steps can be found in fig-
ure 1. The distances between these strings have been
computed using an efficient cyclic string edit distance
algorithm to make them rotation-invariant edit dis-
tances.

This dataset consists of 446 images of chicken
pieces. Each piece belongs to one of five categories,
which represent specific parts of the chicken: wing
(117 samples), back (76), drumstick (96), thigh and
back (61), and breast (96). Each one of the given im-
age is in binary format containing the silhouette of a
particular piece. Pieces were placed in a natural way
without considering orientation. In figure 1 we can
see an example image of the wing class (a), edge de-
tection (b), and the edges approximated by straight
line segments of fixed length (c). Figure 2 shows the
results for segment lengths of 7, 10, 15 and 20 pixels.
The applied normalization valuen indicates that the

contour has been normalized to segments ofn-pixels
length. These segments could have been chosen as
symbols for the strings. But due to the following two
constraints:

• the figures have to be rotation invariant,

• there should be a mirror symmetry

better string representation has been used.
Therefore, the sequence of angles between the
segments were chosen as the string representation.
Additionally, the approximate algorithm of Bunke
and Buhler [2], which handles rotation invariance
and axis symmetry, was applied. Cost Functions:
The cost functions are defined as the angle difference
in case of substitution and as a constantk in case
of inserting or deleting a symbol. In the following
equation,α andβ are arbitrary angles, andε stands
for the empty symbol.ck(α → β) = |α-β| (angle
difference)
ck(ε → α) = k

ck(α → ε) = k

In this paper we used segment lenghts of
{20; 25; 29; 30; 31}with the valuek = 45.

3 Experimental setup

A dissimilarity representation of objects is based
on pairwise comparisons and is expressed e.g. as a
N × N dissimilarity matrixD(T,T), where each ele-
ment corresponds to a dissimilarity between a pair of
objects in the dataset T (as defined in the previous sec-
tions). Hence each objectx is represented by a vector
of proximitiesD(x,T)to the objects in T. A new exam-
ple z, represented byD(z,T), is classified to a specific
class if it is sufficiently similar to one or more objects
within the class.
Assume a representation setR := [p1, p2, ..., pn] as
a collection ofn prototype objects and a dissimi-
larity measured, computed or derived from the ob-
jects directly, their sensor representations, or some
other initial representation. To maintain generality,
a notation ofd(x, z) is used when objectsx and z
are quantitatively compared (namely a distanced be-
tween them is computed),d is required to be nonnega-
tive and to obey the reflexivity condition,d(x, x) = 0,

but it might be non-metric. An objectx is repre-
sented as a vector of the dissimilarities computed be-
tweenx and the prototypes fromR, i.e. D(x, R) =
[d(x, p1), d(x, p2), ..., d(x, pn)].
For a setT of N objects, it extends to anN×n dissim-
ilarity matrix D(T, R), which is a dissimilarity repre-
sentation we want to learn from.

The selection of a representation set for the con-
struction of classifiers in a dissimilarity space serves
a similar goal as the selection of prototypes to be used



Figure 1:Chicken pieces dataset: (a) silhouette image; (b) extracted contour line; and (c) normalized string

Figure 2:Segment lengths of 7, 10, 15, 20 pixels

by the NN rule: the minimization of the set of dissim-
ilarities to be measured for the classification of new
incoming objects.

In the experiments the distance matrices have been
handled as classic dataset having been divided into
two equal part and then used as design set aL and a
testing setS. The experiments have been performed
twenty times on randomly chosen training and testing
sets for each diastance matrix under analysis.
In each single experiment, the dataset was randomly
split into two equal-sized sets: the design setL and
the testing setS, L serves for obtaining both the
representation setRand the training setT. The size of
representation set has been varied from1% to about
70% of the design set with 15 steps in total. After
R is chosen, the training setT has been defined as a
submatrix of the design set made by the distances of
all the objects (present in design set) to the selected
prototypes. Each time a 2-fold cross-validation has
been applied by switching the role of the two sets (T
andS).

As it has been previously said in the introduction,
in this paper we have chosen to use different com-
bining approaches based on dissimilarity matrices,
namely:

1. A weighted sum of different dissimilarity repre-
sentations.

D(T, R)sum = Σk
i=1D

(i)(T, R)max

whereD(i)(T, R)max = αiD
(i)(T, R).

The weightsαi are computed in such a way that
the maximum distances are equal over all the

matrices. This scaling procedure has been ap-
plied to avoid that the combining method used
might be biased by representations with larger
distances.

2. Another approach used in this work is based on
a combination of the separate dissimilarity rep-
resentations into a bigger one containing all of
them. The result of this concatenation is called
an extended representation: Dext(T, R) =
[D(1)(T, R), D(2)(T, R), ..., D(k)(T, R)], as a
result this representation is akr-dimensions
space wherer is the size of the representation
set R, therefore the strategies used to select these
prototype sets play a key role and they will be
described later.

3. In our experiments we have also used a more
classical combining approach employing three
combining rules (mean, max, product) to normal
density based classifiers trained on each distinct
representationD(i)(T, R).

In our combining experiments we have used
the four representations ({20; 25; 30; 31} pixel
lenghts)around the “29” norm (with α = 45 which
is the cost function leading to the best classification
performances).

In all these three different combining methods
explained above we used a prototype selection
technique calledk-centresdescribed as follows:

Assume c classes:ω1, ..., ωc. Let T be a train-
ing set and letTωi

describe the training objects of the
classωi. This technique is applied to each class sep-
arately. For each classωi, it tries to choosek objects



such that they are evenly distributed with respect to
the dissimilarity informationD(Tωi

, Tωi
). The algo-

rithm proceeds as follows:

1. Select an initial setRωi
:= {p

(i)
1 , p

(i)
2 , ..., p

(i)
k }

consisting ofk objects, e.g. randomly chosen,
from Tωi

.

2. For eachx ∈ Tωi
find its nearest neighbor in

Rωi
. Let Jj , j = 1, 2, ..., k, be a subset ofTωi

consisting of objects that yield the same nearest
neighborp(i)

j in Rωi
. This means thatTωi

=

∪k
j=1Jj .

3. For eachJj find its centercj , that is the object for
which the maximum distance to all other objects
in Jj is minimum (this value is called the radius
of Jj).

4. For each centercj , if cj 6= p
(i)
j , then replacep(i)

j

by cj in Rωi
. If any replacement is done, then

return to (2), otherwise the procedureends. The
final representation setRconsists of all setsRωi

.

This technique has been applied to the three com-
bining methods explained above with a varying size of
the given prototype sets. In the case of theextended
this procedure cannot be used on the entire matrix
(since it’s not squared and therefore not symmetric),
therefore we employed thek-centresselection tech-
nique on each singleD(i)(T, T ), replicating each k
set of prototypes along eachD(i)(T, T ) namely al-
ligning then training and testing (on an indipendent
test set S) the used classifiers (LDC, QDC) on the
wholeD(i)(T, R) . Then we have computed a set of
prototypes (for each fixed size of T) in a different way
for each single combining method. Although our aim
is not to focus our research on the the prototype se-
lection techniques we have compared our results us-
ing the set of prototypes determined on the weighted
matrix and on each distinct matrix in the combining
approach leading to a total of four different strategies
applied on both the datasets at hand. To study the
differences of these approaches in particular between
the more classical one and the first two ones, we have
plotted the curves of the classification errors versus
the varying size of the representation set. The clas-
sifiers used in this work are the linear and quadratic
normal density based classifiers. After all computa-
tions the average classification error (for each single
configuration) and its related standard deviation have
been computed over the20 independent runs.

4 Results

We have therefore presented our results in the form
of curves showing the averaged classification error
(over a two-fold crossvalidation repeated 20 times).

In figure: 3 it is possible to compare the linear
density based classifier performances as a function
of the varying size of the representation sets for
a total of four cases. The first four plots norm-
{20; 25; 30; 31} are related to the “Chicken pieces
silhouettes databases” dataset with the cited norms
(and k=45). These represent the closest four rep-
resentations of the dataaround the best perfoming
norm: the29-pixels segmentation case (namely the
“Best” curve in the plot). In this figure (3) we have
also plotted the averaged classification errors for the
“weighted sum” and the “extended” dissimilarity rep-
resentation constructed concatenating the four non-
optimal ones andalligning the set of prototypes (for
each one of the four matrices) to the one obtained for
the “weighted sum” approach, therefore it has been
obviously rescaled (original version in fig: 5) to make
it comparable to the other experiments. Moreover we
have produced the plot related to the performance of
the combination (“mean ldc comb”)of normal density
based classifiers trained using the first four represen-
tations with a consistent protype selection (namely al-
ligned along all the four matrices).

Figure 3: Average classification error for the linear
density based classifier over a varying size of the rep-
resentation set

All the studied methods approach an error value
close to their overall minimum for a number of pro-
totypes nearly equal to50. It is pretty clear that
the weighted sum approach outperforms all the other
studied combining methods and in particular it is in-
teresting to notice that the related averaged classi-
fication error is significantly lower than its compo-
nents’ one and than the optimal one (29-pixels), also
the combining approach (“mean ldc comb”) leads bet-
ter performances than this29-pixels representation al-
though in this case these improvements are not as
clear as for the sum approach, while the “extended”
representation is not giving any improvement with re-
spect to its component. In figure: 4 are shown similar
plots as in the previous one, with the main difference
that the quadratic normal density based is used instead



Figure 4: Average classification error for the
quadratic density based classifier for the over a vary-
ing size of the representation set.

of the linear one. Since the dataset at hand is com-
posed of objects belonging to five different classes
(different chicken pieces) it is quite obvious that the
classification performances start to deteriorate much
faster (for smaller number of prototypes) than for the
linear case. Also for this classifier (quadratic) the
“weighted sum” method is prevailing over the other
studied approaches.

Figure 5:Average classification error (over 20 runs)
for the “extended” representation of the linear and
quadratic density based classifier as a function of the
representation set’s size.

The figure: 5 shows the plots related to the
“extended” representation using linear and quadratic
classifiers, in this case we are obviously interested
on the very first part of the plot that has been plot-
ted rescaled respectively in figures: 3 and 4. The
averaged errors of the combination of linear classi-
fier built on each single representation using three
different combining rules (mean, product, max) are
presented in figure: 6. Themeanresults have been
plotted in figure: 3 to show that this method can per-
form slightly better than each individual representa-

Figure 6:Average classification error (over 20 runs)
for the combined normal linear classifiers built on
each distinct matrix as a function of the representa-
tion set’s size, using three different combination rules.

tion composing the combination.

5 Conclusions

In this paper we have studied three different ways
of combining either representations or classifiers built
on those distinct representations. Our focus has been
put on investigating whether one of those methods
could lead to performance improvements while reduc-
ing the number of selected prototypes. We have stud-
ied the possibility of alligning the same set of pro-
totypes along all the given dissimilarity representa-
tions in order to further minimize both the measure-
ment (as these can be taken at once) and the com-
putational effort. Our results have shown a dram-
matic improvement of the classification accuracy us-
ing the simplest approach studied and also the mean
linear combiner based on the representationsalligned
on the “weighted sum” selected prototypes is lead-
ing to some (although much smaller) improvements.
Therefore could be of interest to further analyze the
reasons of this phenomena, whether it is peculiar of
this dataset and whether this behaviour could change
with respect of the prototype selection technique em-
ployed.
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