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Abstract

Although Multi-response Linear Regression (MLR)
has been proposed as a trainable combiner to fuse
heterogeneous base-level classifiers into an ensemble
classifier, thus far it has not yet been evaluated ex-
tensively. In this paper, we employ learning curves
to investigate the relative performance of MLR for
solving multi-class classification problems in compar-
ison with some other combiners. Meanwhile, several
strategies (namely, Reusing, Validation and Stacking)
are considered for using the available data to train
both the base-level classifiers and the combiner. The
experimental results show that due to the limited com-
plexity of MLR, it can outperform the other com-
biners for small sample sizes when the Validation or
Stacking strategy is adopted. Therefore, MLR should
be a preferential choice of trainable combiners when
solving a multi-class task with small sample size.

1 Introduction

Classifier combination strategies, often termed as
ensemble classifiers, currently have received much at-
tention in pattern recognition and machine learning

communities due to their potential to significantly im-
prove the generalization capability of a learning sys-
tem. These techniques have been proved to be quite
versatile in a broad range of real applications such as
remote sensing data processing, gene expression data
analysis, face recognition and so on [1–3].

In general, the task of constructing an ensemble
classifier [4, 5] can be broken into two steps: genera-
tion of multiple base-level classifiers and combination
of their outputs. Up to now, many approaches for cre-
ating a diverse set of base-level classifiers as well as
for fusing their predictions have been proposed [6–
15]. In the present study, we will mainly study the
case of employing trainable combiners to combine
the predictions of heterogeneous base-level classifiers
that are obtained by applying some different learning
algorithms to the same data set [5, 9–15].

With respect to trainable combiners, we are faced
with the following problem: how to utilize the avail-
able data to train the models for both levels, the
base-level classifiers as well as the combiner? Thus
far, three strategies (that is, Reusing, Validation and
Stacking) [16] have been proposed and they will be
briefly described in Section 2.

In recent years, multi-response linear regression
∗An extended version of the paper has been accepted by MCS2009 Workshop



(MLR) has been recommended as a trainable com-
biner for merging heterogeneous base-level classi-
fiers. So far, there have been some variants of it
[9, 10, 12, 13, 17] and the approach proposed in [10]
may be the prominent one which has been shown to be
effective for handling multi-class problems [12]. To
the best of our knowledge, however, the previous re-
searchers only considered the situation that the train-
ing set size is supposed to be fixed and the Stacking
method is employed to construct its meta-level data
(namely, the data for training the combiner).

In order to evaluate the trainable combiner MLR
extensively, in this paper we employ learning curves
to investigate the relative performance of MLR for
solving multi-class classification problems in compar-
ison with other combiners FLD (Fisher Linear Dis-
criminant), DT (Decision Template) and MEAN. At
the same time, several strategies are considered for
using the available data to train the base-level classi-
fiers and the combiner. The experimental results show
that for small sample sizes, MLR can generally out-
perform the other combiners when the Validation or
Stacking strategy is adopted. Meanwhile, the Reusing
strategy should be avoided as much as possible any-
way. When the sample size is large, however, there is
little difference between the compared combiners no
matter what strategy is employed to form the meta-
level data.

The remainder of the paper is organized as fol-
lows. Section 2 briefly introduces the working mech-
anism of MLR and some feasible strategies to utilize
the given data to derive both base-level classifiers and
combiner. In Section 3, the experimental results ob-
tained on some multi-class data sets are presented and
discussed. Finally, the main conclusions are summa-
rized in Section 4.

2 MLR and Strategies to Use the Train-
ing Data

2.1 Working mechanism of MLR

Denote by L = {(yn,xn)}N
n=1 a given set con-

sisting of N examples, where yn is a class label taking
value from Φ = {ω1, ω2, · · · , ωm} and xn ∈ Rd is
the feature vector of the nth example. Suppose that a
set C = {C1, C2, · · · , CL} of L base-level classifiers
is generated by applying the heterogeneous learning

algorithms A1,A2, · · · ,AL to L . When applying
Ci(i = 1, 2, · · · , L) to classify an example x, the
output of it is assumed to be a probability distribution
vector

PCi
(x) = (PCi

(ω1|x), PCi
(ω2|x), · · · , PCi

(ωm|x))T ,

(1)
where PCi(ωj |x) indicates the probability that x be-
longs to class ωj as estimated by the classifier Ci. To
simplify the notations, we abbreviate the above for-
mula as

Pi(x) = (P i
1(x), P i

2(x), · · · , P i
m(x))T , i = 1, 2, · · · , L.

Furthermore, we define P(x) as an mL-dimensional
column vector, namely,

P(x) = (PT
1 (x),PT

2 (x), · · · ,PT
L(x))T . (2)

Based on the intermediate feature space consti-
tuted by the outputs of each base-level classifier, the
MLR method [10] firstly transforms the original clas-
sification task with m classes into m regression prob-
lems: the problem for class ωj has examples with re-
sponses equal to one when they indeed have class la-
bel ωj and zero otherwise. For each class ωj , MLR
constructs a linear model through selecting only the
probabilities P 1

j (x), P 2
j (x), · · · , PL

j (x) as the pre-
diction variables,

LRj(x) =
L∑

i=1

αi
jP

i
j (x), j = 1, 2, · · · ,m, (3)

where the coefficients {αi
j}L

i=1 are constrained to be
non-negative and the non-negative-coefficient least-
squares algorithm described in [18] is exploited to es-
timate them. When classifying a new example x, all
the values of LRj(x) for each of the m classes are
computed and x is then assigned to the class ωk that
has the greatest value.

2.2 Strategies to use the training data

In order to train the combiner MLR, that is, to
estimate the coefficients {αi

j}L
i=1 in formula (3), we

must construct the meta-level data firstly. In practical
applications, however, we are only given a single set
L which should be used to train the base-level clas-
sifiers as well as the combiner. In this situation, there
are mainly three feasible approaches – Reusing, Vali-
dation and Stacking – to make full use of L to form
an ensemble classifier.



The Reusing strategy simply applies the given
learning algorithms A1,A2, · · · , AL to L to train the
base-level classifiers C1, C2, · · · , CL which are then
used to predict the objects in L to form the meta-level
data. Since the same set L is utilized twice to derive
both base-level classifiers and combiner, the obtained
combiner will inevitably be biased.

The Validation strategy splits the training set L

into two disjoint subsets, one of which is for deriv-
ing the base-level classifiers C1, C2, · · · , CL and the
other one is for constructing the meta-level data.

As for the Stacking strategy, it takes advantage
of the cross-validation method to form the meta-level
data. Firstly, the training set L is partitioned into K

disjoint subsets L1,L2, · · · ,LK with each of them
having almost equal size and roughly preserving the
class probability distribution in L . In order to ob-
tain the base-level predictions on examples in Lk,
say, L ′

k = {(yi,PT (xi))|(yi,xi) ∈ Lk}, the learn-
ing algorithms A1,A2, · · · ,AL are applied to the set
L \Lk = {L1, · · · ,Lk−1,Lk+1, · · · ,LK} to de-
rive the classifiers {Cj,k}L

j=1 which are then used to
predict the examples in Lk. After repeating this pro-
cess K times (once for each set Lk), we can obtain
the final meta-level data set L CV =

⋃K
k=1 L ′

k. The
readers can refer to [5, 9, 10, 16] for more details
about this technique.

It is worthwhile to mention that for a new ex-
ample x, there may be two different ways to con-
struct the input P(x) of the combiner trained by the
Stacking method. The Stacking I method, commonly
utilized by many researchers [9, 10, 12, 13, 19], is
to retrain the base-level classifiers C1, C2, · · · , CL

on the full training set L to produce P(x). The
Stacking II method, proposed in [16], applies all
the classifiers {Cj,k}L

j=1
K
k=1 which are trained in

the process of cross-validation to predict x. For
each base-level classifier, it firstly averages the pre-
dictions that are obtained in each fold, namely,
C̄j(x) = (1/K)

∑K
k=1 Cj,k(x). Then, the in-

put of the trained combiner is formed as P(x) =
(C̄T

1 (x), C̄T
2 (x), · · · , C̄T

L (x))T where C̄T
i (x) (i =

1, 2, · · · , L) is an m× 1 vector.

3 Experimental Studies

Since learning curves can give a good picture
to study the performance of an algorithm at various
sample sizes, in this section we employ them to in-
vestigate the relative performance of MLR for solv-
ing multi-class classification tasks in comparison with
several other combiners. Furthermore, each of the dif-
ferent strategies described in subsection 2.2 will be
considered here to utilize the given set to train the
base-level classifiers and the combiner.

3.1 Experimental settings

We conducted experiments on a collection of 10
multi-class data sets from the UCI repository [20].
The data sets and some of their characteristics (num-
ber of examples, input attributes, classes and the con-
sidered training and test sizes per class) are summa-
rized in Table 1. This selection includes data sets from
a variety of fields and each set contains approximately
equal number of objects per class.

Table 1. Summary of the data sets used in the experiments.

Training size Test size
Data set # Examples # Input Attributes # Classes (Per class) (Per class)

Abalone 4177 10 3 5,10,20,30,50,80,100 500

Cbands 12000 30 24 10,20,30,50,80,100 100

Digits 2000 240 10 5,10,20,30,50,80,100 50

Letter 20000 16 26 10,20,30,50,80,100 200

Pendigits 7494/3498 16 10 5,10,20,30,50,80,100 3498(total)

Satellite 6435 36 6 5,10,20,30,50,80,100 500

Segmentation 2310 19 7 5,10,20,30,50,80,100 100

Vehicle 846 18 4 5,10,20,30,50,80,100 50

Vowelc 990 12 11 10,20,30,50 30

Waveform 5000 21 3 5,10,20,30,50,80,100 500

Here, we totally considered 4 different types of
base-level classifiers and 4 different combiners which
were selected as follows. These classifiers and com-

biners were implemented based on our own codes
together with routines available in version 4.1.4 of
PRTools [21], a Matlab Toolbox specialized for sta-



tistical pattern recognition.

Classifiers





Fisher linear discriminant (fisherc),

Parzen density classifier (parzenc),

Nearest neighbor (knnc),

Logistic linear classifier (loglc);

Combiners





Multi-response linear regression (MLR),

Decision template (DT),

Fisher linear discriminant (FLD),

MEAN.

In order to constitute the intermediate feature
space in a homogeneous way, the outputs of each
base-level classifier were scaled to fall into a [0,1] in-
terval. Furthermore, the parameters included into the
base-level classifiers and the combiners were all taken
to be their default values in PRTools. In the process of
employing each strategy described in subsection 2.2
to utilize the available data to train base-level clas-
sifiers and combiners, the Validation method uses a
50%/50% split and the two Stacking methods employ
10-fold cross-validation to form the meta-level data.

To see clearly the behavior of different combin-
ers at various sample sizes, we estimated the learning
curves in the following way. For each data set (ex-
cept for “Pendigits”) listed in Table 1, a training set
and an independent test set with desired sizes were
randomly sampled. As for the “Pendigits” data set
which has separate training and testing data, all of its
testing data were used as the test set. On each of the
obtained training set, the base-level classifiers and the
combiner were constructed according to each of the
strategies described in subsection 2.2. The trained
combiner was then executed on the test set and the
estimated classification error was taken as a measure
to evaluate its performance. It should be noted that
all steps required for building the base-level classi-
fiers and the combiner, including the cross-validation
procedure utilized by the Stacking method, were per-
formed on the training set only. For each obtained
training set size, the above process was repeated 10
times and the obtained results were averaged.

3.2 Results and discussion

For each combiner, we plotted the mean of the test
errors over 10 replications as a function of the sample

size. Meanwhile, the standard deviations were also
shown to compare the performance of each combiner
more detailedly. Due to the limited space of this pa-
per, the learning curves were only given for “Cbands”,
“Digits” and “Satellite” data sets (Figs. 1-3) out of the
10 investigated ones and the plots displayed here were
representative of all the cases studied. Additionally,
the remaining plots are available from the authors.
With regard to each data set, the scales of the axes
for the plots which were obtained by each strategy to
use the given data (except for the Reusing method on
“Digits”) have been adjusted to be identical to facili-
tate the comparisons. From these plots, the following
observations can be made:

• For small sample sizes, MLR can generally out-
perform the other combiners when the Validation
or Stacking method is adopted. However, the su-
periority of MLR is not very obvious when the
classification task has many classes (“Cbands”)
or high dimensionality of the input space (“Dig-
its”), which may be caused by the inadequate di-
versity among the linear models established by
MLR.

• When the sample size is large, there is little
difference between the compared combiners no
matter what strategy is used to form the meta-
level data.

• The Reusing strategy should be avoided as much
as possible anyway except for large sample sizes
because the test errors corresponding to it are
generally larger than those obtained by using the
Validation or Stacking technique.

• Some combiners are observed in Fig. 2 to ex-
hibit a dramatic error in some situations, which
may be caused by the bad performance of base-
level classifier fisherc or combiner FLD when the
training set size is comparable to the dimension
of the feature space and this phenomenon has
also been indicated by other researchers [16, 22].

• For each combiner, the results obtained by Stack-
ing II are slightly better than those derived by
Stacking I. The reasons for this may be explained
as follows. It should be noted that the only dif-
ference between these two methods lies in the
way to construct the input of the trained com-
biner when classifying a new example x, that is,
Stacking I uses the original full training set to



retrain the base-level classifiers which are then
utilized to predict x whereas Stacking II em-
ploys the mean combiner to fuse the predictions
for each base-level classifier that are obtained in

each fold of the cross-validation method. Thus,
Stacking II benefits from more robust base-level
classifiers [16].
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Fig. 1. On “Cbands” data set, learning curves for the compared combiners when different strategies are utilized to train

base-level classifiers and combiner.

In order to assess the relative performance of the
compared combiners on the used 10 data sets, Ta-
ble 2 provides some comparative summaries of the
mean test errors for the combiner MLR in compari-
son with other ones. For each considered sample size,
the geometric means of error ratios and significant
Wins-Losses of MLR compared with other combin-
ers at each considered sample size were listed here
and these statistics were computed in the following
way. Take the notation “MLR/FLD” as an example,
at each sample size we firstly computed the error ra-
tio of MLR to FLD on each data set, and then calcu-
lated the geometric mean of the obtained error ratios
across all the data sets. Therefore, the value smaller
than 1 indicates the better performance of MLR. With
respect to the Win-Loss statistic, a paired t-test was
utilized to check whether the performance of MLR is

significantly better than that of the other ones at the
significance level 0.05 for each combination of data
set and sample size and the numbers listed in the ta-
ble should be read as the number of data sets on which
MLR performs significantly better than FLD. For in-
stance, MLR behaves significantly better than FLD on
9 data sets and never losses to FLD when the sam-
ple size per class is 10 and the validation strategy is
adopted.

From the results reported in Table 2, we can draw
almost the same conclusions as those obtained from
the previous figures. Furthermore, it can be found that
for large sample sizes, FLD performs slightly better
than MLR when the Validation or Stacking method is
used, which may be due to the fact that in these cases
there are enough data for FLD to behave well.
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Fig. 2. On “Digits” data set, learning curves for the compared combiners when different strategies are utilized to train

base-level classifiers and combiner.

3.3 Complexity analysis

Now let us analyze the complexity of each consid-
ered combiner in terms of the number of parameters
to be estimated to investigate the reasons for the good
performance of MLR.

Apparently, the combiner MEAN have not any pa-
rameters to estimate since it simply averages the prob-
ability distributions predicted by each base-level clas-
sifier and assigns x to the class having the largest
probability.

With respect to the combiner MLR, since it needs
to establish m linear models and each of them has
L parameters, so there are totally mL parameters re-
quired to be estimated.

If we use P
k

= (P 1
k,1, P

1
k,2, · · · , P 1

k,m, P 2
k,1, P

2
k,2,

· · · , P 2
k,m, · · · , PL

k,1, P
L
k,2, · · · , PL

k,m)T to denote the
mean vector of class ωk in the intermediate feature
space, the combiner DT estimates the class label of x
as

ωdt(x) = argmin
1≤k≤m

L∑
i=1

m∑
j=1

[P i
k,j − P i

j (x)]2

= argmin
1≤k≤m

||Pk −P(x)||2.
(4)

Thus, we have to estimate m2L parameters in this
case.

As for the combiner FLD, it decides the class label
of x as

ωfld(x) = argmin
1≤k≤m

(P
k −P(x))T Σ−1(P

k −P(x)),

(5)
here Σ indicates the sample estimate of the mL×mL

covariance matrix supposed to be common for each
class. Since PRTools utilizes one-against-all strat-
egy to implement the combiner FLD when solving a
multi-class task, it needs to estimate m(mL(mL+1)

2 +
2mL) parameters in total.

Based on the above analysis, we can see that the
compared combiners can be ordered from simple to
complex as MEAN, MLR, DT and FLD. Thus, one
of the reasons for the better performance of the com-
biner MLR at small sample sizes may be attributed to
its limited complexity.

4 Conclusions

In this paper, we utilized learning curves to inves-
tigate the relative performance of MLR for solving
multi-class problems in comparison of other trainable
combiners FLD, DT and the fixed combiner MEAN.
The Reusing, Validation and two versions of Stack-
ing method were respectively considered for using the
given data to train the base-level classifiers as well
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Fig. 3. On “Satellite” data set, learning curves for the compared combiners when different strategies are utilized to train

base-level classifiers and combiner.

as the combiner. The experimental results show that
MLR can outperform the other combiners for small
sample sizes when Validation or Stacking method is
employed. Meanwhile, the Reusing strategy should
be avoided as much as possible anyway. When the
sample size is large, however, there is little differ-
ence between the compared combiners no matter what
strategy is employed to form the meta-level data. As
for the two Stacking methods, Stacking II may be pre-
ferred over Stacking I for its robustness and relatively
smaller computational cost.
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[13] S. Džeroski, B. Ženko, Is combining classifiers
with stacking better than selecting the best ones?
Machine Learning, 54(3): 255-273, 2004.

[14] S. Raudys, Trainable fusion rules: I. Large sam-
ple size case. Neural Networks, 19(10): 1506-
1516, 2006.

[15] S. Raudys, Trainable fusion rules: II. Small
sample-size effects. Neural Networks, 19(10):
1517-1527, 2006.

[16] P. Paclı́k, T.C.W. Landgrebe, D.M.J. Tax, R.P.W.
Duin, On deriving the second-stage training set
for trainable combiners. In: Oza, N.C., Polikar,
R., Kittler, J., Roli, F. (eds.) MCS-2005. LNCS,
vol. 3541, pp. 136-146. Springer, Heidelberg,
2005.

[17] M. Liu, B.Z. Yuan, J.F. Chen, Z.J. Miao, Does
linear combination outperform the k-NN rule?
In: 8th International Conference on Signal Pro-
cessing, vol. 3. IEEE Press, Beijing, 2006.

[18] C.J. Lawson, R.J. Hanson, Solving Least
Squares Problems. SIAM Publications, Philade-
phia, 1995.

[19] D.H. Wolpert, Stacked generalization. Neural
Networks, 5(2): 241-259, 1992.

[20] UCI machine larning respository,
http://www.ics.uci.edu/˜mlearn/MLRespository.html

[21] R.P.W. Duin, P. Juszczak, P. Paclik, E. Pekalska,
D. Ridder, D.M.J. Tax, S. Verzakov, PRTools4.
A Matlab Toolbox for Pattern Recognition. Delft
University of Technology, Delft, 2007.

[22] C. Lai, Supervised classification and spatial de-
pendency analysis in human cancer using high
throughput data. Ph.D Thesis, Delft University
of Technology, 2008.


