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Abstract. Classification problems can be found in 
any research area, and one of its most essential facts 
is trying to have a representation of the data where 
can be resumed as much useful information as 
possible. In the specific case of chemical spectral 
data, although they are typically plotted as functions 
of wavelengths, product concentration, etc. they 
traditional representation is through a set of different 
features, ignoring important aspects as their 
functional nature i.e. connectivity between the 
measured points, shape, etc. Two approaches have 
been proposed to represent the spectral data: 
Functional Data Analysis and Dissimilarity 
Representation. These take into account the 
functional information and intrinsically constitute a 
reduction of the high-dimensionality of this data.  In 
this paper, in order to show how the accuracy of the 
classifiers may be better when using these two 
approaches, we made a comparison of the realization 
of four classifiers on the two different 
representations and the traditional feature 
representation of four spectral chemical data. 

1. Introduction 

With the development of instrumental analysis 
equipments in the last years, the chemometricians 
have been provided of a lot of data. These have been 
very helpful to solve specially classification 
problems that before were very difficult to confront, 
e.g. recognition of persons by their DNA, types of 
drugs, types of soils and others. For the purpose of 
classifying these data many algorithms have been 
proposed: k-Nearest Neighbor (k-NN) [8], Normal 
density based linear/quadratic classifiers 
(NLC/NQC) [9], [24] and Support Vector Machine 
(SVM) [7], etc. But most of them are traditionally 
applied to a feature representation of the spectra, by 
which they are expressed as a set of different 
features (variables), disrespecting their functional 

nature, the continuity that exists between the values 
in the real curves. 

With the aim of taking into account this important 
information about the spectral data, and therefore 
improving the results of the analysis made on it, the 
Functional Data Analysis (FDA) [23] has been 
proposed. FDA is an extension of the traditional 
multivariate analysis for data with a functional 
nature (functional data (FD)), and is based on the 
idea of considering the observed spectra as a 
continuous real-valued function instead of an array 
of individual observations. Among the goals of FDA 
mentioned in reference [23] are: to represent and 
transform the data in ways that aid further analysis, 
to display the data so as to highlight various 
characteristics and to study important sources of 
patterns and variations among the data. This is why 
several classical multivariate statistical methods 
have been extended to FD. 

Recently, it has been introduced by Pekalska et al. 
[19], what is known as Dissimilarity Representation 
(DR). Although it is based in a different philosophy 
to FDA’s, it also incorporates important information 
for the description of the data as connectivity, shape 
of the spectra, etc. This representation was mainly 
thought for classification; it is based on the idea that 
as classes are conformed by a set of similar objects, 
the proximity between them plays an important role 
in this type of problems. The DR consists basically 
in the representation of the objects by its 
dissimilarities with respect to the other objects, and 
the classifiers may be built on the dissimilarity space 
generated by a representation set, or in a feature 
space where the dissimilarity data is isometrically 
embedded. In this paper we will work with the first 
technique mentioned. It is worth to tell that any 
traditional classifier that works on feature spaces can 
be also used on the dissimilarity space. 



As there is not a general dissimilarity measure for 
all types of data, the dissimilarity measure selected 
allows emphasizing the information that would be 
very useful to classify a particular type of spectra (in 
this case), e.g. connectivity, peak positions, shape, 
etc., which is one of the principal advantages of the 
DR. The use of DR is especially advantageous with: 
1) spectral data, 2) when vector representations of 
objects live in a high dimensional space and 3) when 
the number of examples is very small [19], and these 
last two elements turn out to be the major problems 
when working with spectroscopic chemical data. 

The goal of this paper is to show some of the 
advantages of the FD and DR representation for 
spectral data and how they may improve (sometimes 
substantially) the classification results obtained with 
the traditional feature representation. With this 
purpose, we will make a comparison of the 
performance of 1-NN, RNLC, RNQC (regularized 
versions of NLC and NQC) and SVM classifiers on 
the feature, FD and DR representations of four 
chemical spectral datasets. 

The paper is organized in the following way. In 
Chapter 2, it has been made sort of a state of the art 
of what has been done on these approaches. Chapter 
3 is dedicated to the essential things of the theory of 
Functional Data Analysis and Dissimilarity 
Representations. In Chapter 4, the description of the 
analyzed datasets can be found, as well as a relation 
of the methods and tools used. The results of the 
comparison between the different approaches and 
the discussion made around it are presented in 
Chapter 5. Finally, in Chapter 6, there are the 
conclusions to which we have arrived in the 
confection of the article. 

2. Related work 

Although DR and FDA are young techniques, 
they are having a very good acceptance in Pattern 
Recognition and Chemometrics applications 
respectively. FDA started to deploy with Ramsay 
and Dalzell [22] and coined by Ramsay and 
Silverman [23] where they expose many examples 
and methods for this analysis. Most of them are 
extensions of classical multivariate methods as for 
example: Principal Component Analysis (FPCA) 
[26], linear discriminant analysis [4], [10] and 
canonical correlation analysis [12]. The Functional 
PCA was the first method extended to FDA and it 
demonstrates the way in which a set of functional 
data varies from its mean, and, in terms of these 
modes of variability, quantifies the discrepancy from 
the mean of each individual functional datum. In the 
case of linear modeling there has been a large 
application in regression, generalizing to FD some 

dimensionality reduction approaches for linear 
regression e.g. Principal Component Regression 
(PCR) and Partial Least Squares (PLS) [2],[20], and 
also for classification as Linear Discriminant 
Analysis (LDA) [4], etc. More recently, a number of 
estimation methods for functional nonparametric 
classification and regression models have been also 
introduced. Namely, estimators based on functional 
data adaptations of classical neural networks [25], 
K-Nearest Neighbor classifier (k-NN) [5], kernel 
classifiers [1], [3], [8], and in Reproducing Kernel 
Hilbert Spaces (RKHS) [21] - the latter including 
Radial Basis Function (RBF) methods. Based on the 
RKHS have been proposed the extension of SV 
methods for classification [29] and regression [11] in 
functional spaces. 

DR was introduced by Pekalska et al. [19] as a 
new approach that links the structural and statistical 
approaches. It is also inspired in the concept of 
kernels, as a way of handling the problem with 
indefinite kernels that can appear when working 
with some dissimilarity measures [16]. This type of 
representation can have several applications but the 
main researches have been done on classification 
[15], [17]. As was said before, the main advantages 
of this approach have been seen on sensory data, 
such as spectra and this has also been argued in [13], 
[14], where some dissimilarity measures for this 
specific type of data are also proposed. 

3. Theory 

3.1 Functional Data Analysis 

In spectral chemical data as Near-Infrared, Ultra-
Violet, etc., each spectrum is a function that maps 
the wavelengths of the illuminating light to the 
corresponding absorbencies of the studied samples; 
however, these spectra are usually observed and 
recorded discretely and so analyzed with 
multivariate data analysis techniques which consider 
the spectrum as high-dimensional vectors of 
different but high-correlated variables. So, when 
working with this type of representation many 
practical problems can be encountered as the 
characteristics of the real nature of the data are not 
taken into account. 

On the other hand, if the algorithms work on the 
functional spaces, it can also lead to theoretical and 
practical difficulties as these have infinite 
dimensions. The idea of FDA is to retrieve the 
intrinsic characteristics of the underlying function 
from the discrete functional data, so the observations 



can be seen as continuous single entities, instead of 
sets of different variables. 

To deal with the infinite dimensional problem, 
most of FDA methods have been constructed on two 
general principles: filtering and regularization. In the 
filtering approach, the idea is to use representation 
methods that allow working in finite dimension. 
This is the way of approximation that is used here. 

The first thing to do is to choose a proper family 
of basis functions matching best the underlying 
function (s) to be estimated. Of an existing variety of 
bases: Fourier series, polynomial, wavelet and 
splines; the basis of B-splines [30] seems to be most 
appropriate for spectrometric data, as they accurately 
represent one of the main characteristics of this type 
of data, smoothness. They are also very easy to 
compute. To make this basis of B-splines  

with the number of basis functions, a number of 
knots between the start and end wavelengths are 
defined, and a B-spline is run from one knot to 
another; the different splines overlap. 
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where  , the B-spline weights (coefficients) 
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ijx  is an element of the matrix conformed by a 
set of spectra relating the ith sample with the jth 
wavelength. The expression in Eq. 2 corresponds 
then to minimizing the vertical distance between the 
observed spectral information and the fitted curve.  

The function will be explained then by the 
coefficients and the methods will take these as the 
new representation of the data instead of the original 
data points. 

3.2 Dissimilarity Representation 

The Dissimilarity Representation (DR), based 
on the fact that the classes are conformed by objects 

that have similar characteristics, proposes to work 
on the space of the proximities between those 
objects, instead of the space defined by their 
characteristics (features), as it is usually done. 

data characterist

entative objects 
from the classes, called prototypes. 

The D

The first thing here is to select a suitable 
dissimilarity measure for the problem at hand, a 
measure that is appropriate for comparing objects 
given the known ics. Next, a 
representation set ),...,,( 21 npppR  has to be 
selected, which is a set of repres
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D X and 
R can be completely different sets. There are many 
approaches to select the prototypes of the 
representation set [18]. 

os

dissimi

aces can be also used on the 
dissimilarity space. 

4 Material and methods 

M will be made for 3 
chemical spectral datasets.   

In DR there are three main approaches. The first 
one addresses the given dissimilarities directly. The 
second is based on an approximate embedding of the 
dissimilarities into a (pseudo)Euclidean space and at 
last, the so-called dissimilarity space approach 
which is the one prop ed to be used here. The 
dissimilarity space  ⊆  n is generated by the 
column vectors of the dissimilarity matrix, where 
each dimension corresponds to the larity 
between the objects and a prototype ),( npd ⋅ . As 
the dissimilarities are computed to the representation 
set, even when this set is conformed by all the 
objects, it constitutes already a dimensionality 
reduction especially in spectrometric data, as one of 
the main problems of this type of data is the large 
number of variables and small number of samples 
(objects). Therefore it can be less computationally 
expensive. Besides, any traditional classifier that 
works on feature sp

In order to evaluate the performance of different 
classifiers using the three different representations of 
the data, a comparative study with four of them: 1-
NN, RNLC, RNQC and SV

 



The experiments were all performed in Matlab. 
For the case of FDA was used the FDAFuns 
toolbox. For the DR and classification of the data 
wa

ts and the degree of 
the spline was chosen using leave-one-out cross 
va

 
regularization parameters of RLNC and RQNC an 
au

measures) and feature 
representation with the four classifiers was done by 
using the classification error. 

4.

spectra are preprocessed; each 
spectrum is reduced to zero mean and unit variance 
on the set of spectra. 

s used the PRTools toolbox. 

For FDA representation each spectra was 
represented by an nth order B-spline approximation 
with p basis functions. The optimal values for the 
number of B-spline coefficien

lidation on the training set.  

For the classification of the data we used four 
classifiers: 1-NN, RNLC, RNQC and SVM. For the 
four datasets it was ran a 10 times k-fold cross 
validation using the dissimilarity matrix of the 
training set as input data. For this cross validation 
procedure were used 4-folds, 6-folds and 10-folds 
for Tecator, Wine, Oil and GadoiFish data sets 
respectively. The dissimilarity measures used are 
City Block and Euclidean distances.  For the SVM 
classifier was used the linear kernel. To find the

tomatic regularization process was done. 

In order to obtain the final prediction error, an 
independent test set was used. The comparison of 
the accuracy among the models obtained for the 
FDA, DR (two dissimilarity 

1 DataSets 

We used three different datasets. The first one, 
named Tecator, comes from the food industry [28] 
(shown in Fig. 1). It consists of 215 near infrared 
absorbance spectra of meat samples (objects), 
recorded on a Tecator Infratec Food and Feed 
Analyzer. Each observation consists of a 100 
channel absorbance spectrum (variables) in the 850-
1050 nm wavelength range, and is associated to a 
content description of meat sample, obtained by 
analytic chemistry. The classification problem 
consists of separating meat samples into two classes. 
To the first class belong the samples with a high fat 
content (more than 20%), and the samples with a 
low fat content (less than 20%) conform the second 
class. From the 215 spectra, 43 are kept aside as 
testing set and the 172 remaining samples are used 
for training. Original 

Fig. 1. Near-Infrared absorbance of meat samples. 
Tecator dataset. 

The second dataset shown in Fig. 2, is named 
Wines [31] and is a set of 44 Red wines (objects), 
produced from the same grape (100% Cabernet 
Sauvignon), harvested in 4 geographical areas 
(Argentina, Chile, Australia, South Africa) which 
would be the classes conformed in this problem. The 
wine samples have been analyzed using a FT-IR 
commercial WineScan instrument provided by 
FOSS Analytical A/S (932-4999 nm), for a total of 
842 (variables) wavelengths analyzed. The 
classification problem consists in defining to which 
of the four geographical areas each sample belongs. 
For the training set will be used 30 samples and 14 
for testing. 

Fig. 2. FT-IR spectra of red wine samples. Wines 
dataset. 

The third data consists of oil samples that were 
analyzed using three analytical techniques: Gas 
chromatography (GC), Mid-Infrared (MIR) and 
Near Infrared (NIR) [27]. We will only use here the 
MIR one shown in Fig. 3. The samples have three 
different origins (classes): A, B and D. There are 44 
samples available for training and 27 for testing, 
with 571 variables measured. 

Fig. 3. Mid-Infrared spectra of oil samples. Oil 
dataset. 



The fourth dataset shown in Fig. 4 is named 
GadoiFish [31]. It consists of 694 near magnetic 
resonance (NMR) spectra of fish samples (objects) 
of four species: whiting, haddock, saithe and cod 
(classes). The NMR relaxations were measured at 18 
points spread throughout the whole fish with a 
Maran Benchtop Pulsed NMR analyzer operating at 
23.2 MHz and equipped with an 18 mm variable 
temperature probe head. The receiver delay was set 
to 6 s. Transverse relaxations were measured using 
the CPMG sequence. For each measurement eight 
scans were performed with 1024 echoes and tau at 
500 ms. Only even echoes were recorded of which 
only every second were used. This gives 256 echoes 
(variables) for each sample. All measurements were 
performed at 4°C. The fish were introduced into the 
NMR probe by placing samples of 2-4 g into glass 
tubes that matched the inner diameter of the 18 mm 
NMR sample tubes. The classification problem 
consists in defining to which of the four species 
(classes) each sample belongs. For the training set 
will be used 400 samples and 294 for testing. 
Original spectra are preprocessed; each spectrum is 
reduced to zero mean and unit variance on the set of 
spectra, as is suggested in literature for NMR 
spectra. 

 

Fig. 4. Near Magnetic Resonance of fish samples. 
GadoiFish dataset. 

5 Results and discussion 

 In this section, the classification results for the 
experiments on all datasets by using the three 
representations, for the specified classifiers: 1-NN, 
RNLC, RQDC and SVM will be shown. 

For the functional approach, the leave-one-out 
error calculation leads to the selection of an optimal 
basis of 48-splines of order 4 for Tecator. The cross-
validation error for the rest of the datasets also 
leaded to the selection of 100-splines of order 4 for 
Wines, 100-splines of order 6 for Oil, and 16-splines 
of order 6 for GadoiFish dataset. Since for Tecator 
dataset the shape of the spectrum appears to be so 
relevant, all the calculations for the FD were made 
on its second derivative. For the other three datasets, 
the calculations were made on the raw data and also 

on its second derivative. For the DR, the 
representation set  will be equal 
to the training set.  

),...,,( 21 npppR

Table 1. Classification error of the test set of Tecator 
dataset for the three representations of the data with the 
different classifiers. 

Representations 1-NN RNLC RNQC SVM 
Feature 
 

0.023 0.023 0.070 0.069 
 

FD                       
 

0.01 0.023 0.047 0.023 

DR(CB) 
 

0.046 0 0 0 

DR(E) 
 

0.023 0 0 0 

Table 2. Classification error of the test set of Wines 
dataset for the three representations of the data with the 
different classifiers. 

Representations 1-NN RNLC RNQC SVM 
Feature 
 

0.214 0.543 0.440 0.5 
 

FD                      
 

0.143 0.265 0.296 0.5 

FD(2nd D) 
 

0.357 0.467 0.353 0.486 

DR(CB) 
 

0.357 0.167 0.195 0.429 

DR(E) 0.429 0.115 0.186 0.357 

Table 3. Classification error of the test set of Oil dataset 
for the three representations of the data with the different 
classifiers. 

Representations 1-NN RNLC RNQC SVM 
Feature 
 

0.074 0.77 0.037 0 
 

FD                       
 

0.074 0 0 0 

FD(2nd D) 
 

0.33 0.074 0.148 0.037 

DR(CB) 
 

0.148 0 0.037 0 

DR(E) 
 

0.22 0.074 0.11 0 

Table 4. Classification error of the test set of GadoiFish 
dataset for the three representations of the data with the 
different classifiers. 

Representations 1-NN RNLC RNQC SVM  
Feature 
 

0.548 0.534 0.710 0.575 
 

 

FD                      
 

0.487 0.422 0.435 0.418  

FD(2nd D) 
 

0.550 0.512 0.621 0.479  

DR(CB) 
 

0.527 0.418 0.599 0.415  

DR(E) 0.548 0.558 0.537 0.450  



As can be seen in the tables above, most of the 
time, for most of the classifiers, the classification 
results improve by using the DR and FD 
representation of the data. Besides, both of them 
intrinsically make a dimensionality reduction. This 
is an important issue for spectral data, as they 
usually present the problem of ill-conditioned 
matrix, too much variables and a few samples. 
Nevertheless, for the fourth dataset there is no 
dimensionality reduction in the DR, as we are using 
the whole set of samples as representation set and 
this data matrix is unlike the others because it has 
more objects than variables.  

It also shows that, the advantages of utilizing 
these representations depend on how the 
characteristics that contribute more to the 
classification of the spectra are measured. For 
example, in FDA, the use of the second derivative is 
suggested when the shape of the spectra is what 
matters, such is the case of Tecator (Table 1). But in 
spectra where the changes are mainly in the peak´s 
intensity, and there is merely a variation in the 
shape, as is the case of Wines, Oil and GadoiFish 
data sets (see Fig. 2, Fig.3 and Fig.4), the effect of 
the derivative application can be the opposite, the 
classification results can be worst due to a loss of 
information, or in the best case there might be no 
change (see Table 2 and Table 3).  

In the case of DR, the results also depend on 
whether a suitable dissimilarity measure is used for 
the specific problem. In this paper we used two of 
the most common dissimilarity measures and also 
proposed for spectral data in [13], [14]. The results 
with the DR have outperformed the obtained with 
the feature representation in most cases, although the 
used measures might not be the most proper for 
these datasets; further researches must be done to 
select them. In general, for the four datasets very 
good results are obtained with the RNLC classifier 
on the DR. It can be explained by the fact that this 
classifier is optimal for data normally distributed 
and, according to the Central Limit Theorem applied 
to dissimilarities, when the dissimilarity measures 
are based on sum of differences (as is the case of 
Euclidean and City Block); the data tends to be 
approximately normal distributed. Nevertheless, the 
performance of all RLNC classifier in the feature 
representation of Oil dataset is not good, it can be 
due to that classes are not linearly separable; there is 
an overlapping between the samples of class A and 
B. The RNQC’s performance is also good, and 
should be even better than the RNLC’s, but when 
the representation set is the same training set, its 
accuracy may be worst. The exposed before about 
the distribution of the dissimilarity data for the used 
measures, might be the same reason of why 
sometimes the classifiers accuracy based on the DR, 

outperform the results obtained on the FD 
representation.  

The results of 1-NN classifier on the DR are not 
as expected in most cases, but it can be due to the 
use of a bad dissimilarity measure. However, as 
usually happens, the RLNC/RQNC and SVC 
constructed on the DR outperform the k-NN based 
on the same representation set. Nevertheless, in 
GadoiFish dataset the behavior of all classifiers is 
almost the same and the error rates are high in 
general, which gives the idea that there could be 
some problem with the data. All of these results 
point out the importance of choosing the more suited 
dissimilarity measure for the problem at hand. It is 
of a high significance, how well i get to explain the 
influential characteristics of the curve by the 
measure, in order to obtain a better and more reliable 
classification of the data. For the spectral data, the 
characteristics can depend on the instrumental 
source, etc., a deeper investigation most be done on 
this issue. The SVM classifier also performs very 
well for all representations, but slightly more 
accurate for the DR than for the other two. 

6 Conclusions 

We presented two alternative representations for 
spectral chemical datasets, in order to improve the 
classification results of this type of data. The 
functional representation takes into account the 
functional nature of the data, as it considers the 
observed spectra as continuous real-valued functions 
by approximating it with splines. The DR makes use 
of the physical knowledge of the spectral 
background of the data by modeling their relations 
in a dissimilarity representation. Comparisons were 
made by classifying four chemical spectral datasets, 
expressed by their feature representation and the two 
alternatives mentioned. It was shown by the 
experiments that, with the studied representations 
the classifiers accuracy can be improved, sometimes 
substantially in dependence of how well the 
spectrum gets to be described by them. But it also 
shows that the use of either one or the other, as well 
as the classification results, depends on the spectra´s 
characteristics and the information that influences 
more the discrimination between the classes. For the 
case of functional representation, it is necessary to 
be careful with the use of derivatives; in some cases 
it can cause the loss of information. These two 
alternative approaches might be further improved by 
studying the modeling of the spectra and their 
dissimilarities. 
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