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Abstract. The ways distances are computed (the metric used) or mea-
sured (by mean of different sources) enable us to have different rep-
resentations of the same objects. Therefore we need either to make a
selection or to combine them. A combination of differently measured
(or computed) dissimilarities can occur at different stages of a pattern
recognition system, e.g. using the outputs of classifiers built on each of
them separately but also by combining the various dissimilarity directly.
The key point of classifier combination lies either in a proper averag-
ing over different experts/sources or in an integration of different and
hopefully complementary approaches. In this paper we want to focus on
possible ways of merging different sources of informations given by dif-
ferent dissimilarity representations. The combination step is employed
in a selection or weighted average of the data used for our classifica-
tion task. A simple averaging of these matrices is shown ([1], [2], [3]) to
allow for classification accuracies that outperform the single ones. We
compare this approach here with a dissimilarity forward selection and
other techniques based on the learning of weights of linear and quadratic
forms. The more advanced forms of combination of such multiple repre-
sentations can lead to a better representation of the underlying data and
therefore better classification accuracies but this does not hold always.
Our general conclusion is that combining given distance matrices before
any training stage is apparently always worthwhile.

1 Introduction

One of possible representations of data that differ from a feature based descrip-
tion is based on pair-wise comparisons of objects namely distances or dissimi-
larities.

In many cases, distances are obtained directly from raw or pre-processed
measurements. Dissimilarities may be chosen when feature representations can-
not be helpful in discriminating different classes of objects, or in case the experts
are not able to define proper features, or the data lies in high-dimensional spaces
(too many features). But also the intrinsic nature of the problem at hand is quite
relevant: for instance measures of curves and shapes are good examples of cases
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in which a dissimilarity representation might perform better in the recognition
tasks.

Dissimilarity representations allow the use of huge data, after a proper di-
mensionality reduction obtained via prototype selection techniques. Another ad-
vantage is the possibility to use a larger variety of different classifiers rather than
only SVM ones as the constraint of fulfilling the Mercer’s theorem is not a de-
mand in this approach, it thereby allows the use of non-euclidean and even
non-metric distances.

Combining dissimilarity representations (and kernels) has already received
some attention in the literature as researchers realized that different dissimilarity
measure may emphasize different types of information of objects and classes to be
distinguished. [4], [5] and [6] studied combination of kernels for use by support
vector machines. [7] and [8] studied to optimization of distance measures in
feature space. In this paper however we focus on given dissimilarity matrices, as
they may arise in practical applications, and study just the (weighted) average
of them judged by the performance of the linear SVM in dissimilarity space [9]

Although dissimilarity representations can already be seen as a form of clas-
sifier combination namely a combination of NN classifiers, in this paper we want
to focus our study on possible (feasible) tecniques designed in order to gain from
the combination of different dissimilarities. In a previous stuy on this topic [1]
we have compared different ways of combining dissimilarities obtained from dif-
ferent measurements of the same underlying data. The method that did show
the best classification accuracy (with respect to the linear normal density based
classifier) was based on the sum of normalized matrices. This is the equivalent
of a weighted sum where the used weights are the normalization factors. The
experimental results of the mentioned papers triggered some questions that are
listed below:

– Is averaging dissimilarity matrices always helpful, and if not is it possible to
define conditions (on the measured data, on the distance metrics involved,
on the combining weights) to be fulfilled in order to increase the accuracy
of our designed classification system.

– Is it possible to define a general optimization procedure in order to select
sets of weights that maximize our performance measure.
These issues will be fully discussed in the following sessions, but our main
focus in this work has been on the last point which is related to solving
convex and non-convex optimization problems with the aim of finding set of
weights able to outperform our previously attained results.

2 Combining dissimilarities

A weighted sum of different dissimilarity representations.

Dsum = Σk
i=1ωiD

(i) (1)

The weights ωi are computed in such a way that the maximum distances are
equal (to 1) over all the matrices. This scaling procedure has been applied to



avoid that the combining method used might be biased by representations with
larger distances. This simple averaging scheme has been compared with other
methods used to determine the weights of a linear combination of dissimilarity
matrices as in the previous expression.

2.1 Forward selection

The dissimilarity forward selection approach gives binary weights as output. The
first matrix is selected with respect to the leave-one-out nearest neighbour error
computed on the training set (the entire square matrix), the following is the one
that summed to the first minimize the criterion. The procedure goes on until
the nn error computed on the obtained summed matrix start rising.

2.2 Optimization

In this section we will give a brief overview of the techniques used in order to
find the weights of our linear combination of distance matrices. In order to solve
the folowing optimization problems the conjugate gradient method [10] has been
employed.

2.3 Fisher

This procedure makes use of a kind of Fisher criterion in the dissimilarity space
that resemble a method that is often used in kernel combination: the kernel
alignment [11]. The objective function to be minimized is given by the following
expression:

F (ω1, ω2, ..., ωK) = log(
Σ(xi,xj)∈SΣkωkd

2
k(xi, xj)

Σ(xi,xj)∈DΣkωkd
2
k(xi, xj)

) (2)

where S = {(xi, xj)|ci = cj} and D = {(xi, xj)|ci 6= cj} and K is total num-
ber of available matrices and therefore weights to be found

From equation (2) it is possible to see how this criterion resembles the Fisher
criterion in a dissimilarity space where the objective function we want to mini-
mize is the log of the ratio between the sum of distances ”within” class and the
sum ”between” class. This method emphasizes the compactness of within class
distributions and therefore tends to suffer from multimodal data distributions.

2.4 MCML and NCA

In the optimization procedures MCML [12] and NCA [13] the elements of the
matrix of a Mahalanobis distance between the orginal ones are determined. The
approaches used in this work are instead based on the computation of the weights
of a linear combination of squared distances, therefore these the diagonal versions
of the mentioned methods. This variation leads to a much lighter computational



load and it has also been proven to be provide sufficiently good results [14].
Both methods make use of a conditional distribution such that the probability of
selecting an object xj as a neighbour of the given xi is p(j|i). This distribution
p(j|i) is computed as the following function of the weighted sum of squared
distances.

p(j|i) =
exp(−Σkωkd2

k(xi, xj))
Σt6=iexp(−Σkωkd2

k(xi, xt))
, p(i|i) = 0 (3)

Since a distribution p0(j|i) = 1 if (xi, xj) ∈ S and p0(j|i) = 0 if (xi, xj) ∈ D
represents the ideal one, the MCML algorithm minimizes the KullbackLeibler
divergence [15] between these two distributions (p(j|i) and p0(j|i) ) given the
semi-positive definiteness of weight matrix (in our setting: weights larger or equal
to zero).

F (ω1, ω2, ..., ωK) = ΣiKL[p0(j|i)|p(j|i)] (4)

The Nearest Component Analysis method is based on the maximization of
the following function:

F (ω1, ω2, ..., ωK) = Σilog(pi) (5)

where pi = Σj∈ci
p(j|i). This method optimizes a continuous version of leave

one out kNN algorithm, and as MCML is non parametric. But it is not convex
as MCML and therefore there is no guarantee that a gradient method (like the
conjugate gradient) will converge to a global solution.

3 Data description

In this section we will give a brief description of the data used for our experi-
ments:

– Chicken pieces silhouettes dataset [16]
– Biological data [17]
– Flowcytometry
– M-feat

3.1 Chicken pieces silhouettes dataset

subsectionChicken Pieces Silhouttes Database The chicken pieces dataset con-
tains several silhouettes of chicken pieces. The contour line of each silhouette is
extracted using an edge detector. Then the resulting contour line is approximated
by a sequence of normalized vectors of constant length. A string consisting of
the angles between consecutive vectors is constructed from this vector sequence
, which leads to a rotation-invariant cyclic string of relative angles representing
the original chicken piece silhouette. The distances between these strings have
been computed using an efficient cyclic string edit distance algorithm to make
them rotation-invariant edit distances.



This dataset consists of 446 images of chicken pieces. Each piece belongs to
one of five categories, which represent specific parts of the chicken: wing (117
samples), back (76), drumstick (96), thigh and back (61), and breast (96). Each
one of the given image is in binary format containing the silhouette of a particular
piece. Pieces were placed in a natural way without considering orientation. The
applied normalization value n indicates that the contour has been normalized to
segments of n-pixels length. These segments could have been chosen as symbols
for the strings. But due to the following two constraints:

– the images have to be rotation invariant,
– there should be a mirror symmetry

better string representation has been used.
Therefore, the sequence of angles between the segments were chosen as the string
representation. Additionally, the approximate algorithm of Bunke and Buhler
[16], which handles rotation invariance and axis symmetry, was applied. Cost
Functions: The cost functions are defined as the angle difference in case of sub-
stitution and as a constant k in case of inserting or deleting a symbol. In the
following equation, α and β are arbitrary angles, and ε stands for the empty
symbol. ck(α→ β) = |α-β| (angle difference)
ck(ε→ α) = k
ck(α→ ε) = k

3.2 Data description of protein pairs kernels and dissimilarity
matrices

The objects in this dataset are protein pairs, these are obtained converting fea-
tures on individual proteins into features on pairs of proteins. Using Pearson
correlation for the mRNA expression vectors. Protein sequence kernels are con-
verted in two different ways: using a protein similarity kernel (a linear kernel on
sequence kernels), and using a pairwise kernel on sequence kernels. In total, we
have P = 49 kernels. The class labels needed to create a train and test-set were
extracted from the MIPS yeast complex database. Category 550, which covers
complexes determined by high-throughput experiments, was excluded because
these high-througput experi- ments are used as features.

In this dataset there are two types of similarity measures:

– LKC (Linear Kernel Combination)

kLKC(xi, xj) = ΣP
p=1ωpkp(xi, xj)

where P is the number of kernels combined. As adding kernel functions kp
amounts to concatenating their individual kernel spaces, the inuence of each
individual kernel space can be changed (scaled) by its corresponding kernel
weight ωp . For this combination method, the RBF kernel has been used to
represent the feature vectors as well as the pairwise kernels.
Here, feature vectors are represented by linear kernel functions.



Kernel weights and hyperparameters were optimized using the CMA- ES soft-
ware. Each kernel weight optimization is stopped using CMA-ES after 2500
function evaluations (i.e. cross-validations). Optimizations of hyperparameters
are stopped after 250 function evaluations. The authors have provided 5 dif-
ferent sets of weights namely belonging to local optima obtained through the
optimaization procedure.

Since these kernel are positive semi-definite we derived the related eu-
clidean distance defined as:

d(X,Y ) =
√
K(X,X) +K(Y, Y )− 2K(X,Y )

and we used it to compute a set of 5 dissimilarity matrices. For computational
reason we decided to compute 1200 order matrices with a half of the objects
belonging to the positive class and the others to the negative taking into account
the original priors of the given dataset.

3.3 Flowcytometry data

The data used for the research were contained in four datasets provided by
Dr.Marius Nap and Nick van Rodijnen from Pathology Department of “De
Wever Hospital”, Heerlen, The Netherlands. Each dataset is made by 833 pat-
terns (samples of tissue) described by 256 features: the wavelength channels of
flowcytometer, divided in three classes (as described above) labelled: aneuploid,
diploid and tetraploid. The first and last two histogram bins which contain only
noise have not been taken into account, this leads to have a reduced number of
feature (252 channels). Each value of the datasets represents the number of cells
of the tissue sample that have been recognized through the particular wavelength
which is the corresponding feature.

Making the histograms’ information rescaling invariant In this work a
simple procedure has been used to compute rescaling invariant distance matri-
ces. These matrices are actually built in such a way that each distances between
two objects is computed as the minimum of squared distances between a his-
togram Hk and all the possible rescaling (with a correction factor αi ) of all the
remaining n− 1 histograms.

αi = αmin +
i

h
(αmax − αmin)

with i ∈ [1...imax] and h = cost

If we consider X(k) a continuous function as a polynomial interpolant start-
ing from {k,Xk} data points, then the function X̃(k) = γX(αik) is the outcome
of a rescaled X(k) with the parameters αi and γ that lead to a horizontal and
vertical rescaling. Then we can consider X̃k as the discrete version of the rescaled
function X̃(k) and then consider it as an histogram. The correction factor αi



varies accordingly as described above, and induces an horizontal stretching to
the histogram’s shape, the γ parameter is used to fullfill the unit area constraint
then it is equal to the inverse of the rescaled histogram’s area.

γ =
1

Σn
k=1|Xk|

Given Xk and Yk two histograms the squared euclidean distance is defined
as follows:

d2
2 = ‖Xk − Yk‖22 = Σn

k=1[Xk − Yk]2

The rescaling invariant distance is defined as:

dinv(Xk, Yk) = min[d∗(Xk, Yk), d∗(Yk, Xk)]

where d∗(Xk, Yk) = minαi
[d2

2(X̃k, Yk)]

This nonnegative function dinv(Xk, Yk) describing the “rescaling invariant
distance” between pairs of histograms taken from a given set satisfies the con-
ditions to be a metric for the histograms’ space.

3.4 M-feat

This dataset consists of features of handwritten numerals (‘0’–‘9’) extracted from
a collection of Dutch utility maps. Six different feature sets are extracted and
stored separately.

1. 76 Fourier coefficients of the character shapes.
2. 216 profile correlations.
3. 64 Karhunen-Loeve coefficients.
4. 240 pixel averages in 2 x 3 windows.
5. 47 Zernike moments.
6. 6 morphological features.

This public domain dataset can be obtained from the UCI repository [18]. We
used Euyclidean distances in each of the 6 feature spaces.

4 Experimental setup

We have conducted our experiments using the four datasets mentioned above
and applying five different combination techniques (the four mentioned before:
Forward selection, NCA, MCML, Fisher and the simple normalized sum) com-
pared with the best performing individual ones. The performance measure used
in our experiments has been the classification error of a linear support vector
machine ([19]; [20]) in the dissimilarity space. For each one of the four datasets
used we have applied a two fold crossvalidation repeated 40 times, in each run of
this process we have splitted our data in a training and a test, the weights have
been determined using the optimization procedures (and the binary weights of



the Forward selection approach) on the training set. It is important to underline
that in the case of the optmization procedures (NCA, MCML and Fisher) the
weights have been internally (in the routines) normalized with the Froebenious
norm. The linear support vector classifier has been trained on the determined
train sets and the phase has been employed making of the test sets computed
with the weights previously computed on the train sets. The mentioned parti-
tioning of the datasets has been carried out consistently for all the used methods,
this means that in each run of our procedure the same portion of data has been
used as train set and the remaining for testing for each of the six settings. It is
very important to underline that the best individual ones heve not been selected
on the basis of the test set error but on a 40 times 2-fold crossvalidation em-
ployed on the training set used also for the other described settings. This gives
a less optimistic but definititely more realistic error estimation with respect to
the indivual matrices.

5 Results

Our experimental results are provided in the form of the following tables (1,
2, 3). They show the classification errors using a linear support vector machine
(libsvm with default parameters), the given values are the means (and standard
deviations) of the classification errors computed as described previously by two-
fold crossvalidation repeated 40 times for the four given datasets making use of
six different approaches. These results show that for all the studied datasets the
five methods that make use of combinations of the given matrices outperform
the BIO (Best Individual Ones) that shows the error for the best dissimilarity
matrix according to the test set.

The binary weights computed by the forward selection lead to classification
accuracies very close to the best ones. In the case of the chicken pieces (table
1) and in particular for the full collection of 44 chicken pieces matrices (table
2) this procedure scores even not significantly different from the best one. For
the cases of the mfeat and the flowcytometer datasets the NCA and MCML
optimization methods are outperforming the NS (Normalized Sum) while this
does not happen for the chicken pieces and bio datasets. For these two cases
the Fisher method scores equivalent to NCA and MCML. This suggests that
the data distributions suffer less from multimodality. For the first two datasets
the Fisher technique is much worse than the other methods. These results might
therefore suggest that for multimodal data distributions a normalized sum can
be a better (and faster) choice than more sophisticated (and computationally
expensive) optimization tasks.

In order to test further the performances of the studied optimization tech-
niques we have added a magnified (with a factor of 200) random distance matrix
to the previous ones for each dataset and run our experiments with the same
settings as before. From table 3 we can see that obviously the BIO results are
still in line with the previous ones, and the NS performances are in this case
heavily deteriorated. It is also clear that the NCA and MCML techniques are al-



ways better than the other approaches (with the exception of BIO); at the same
time we can see that the Fisher method is always the worse. In this noisy setting
the simple Forward selection based on the leave one out NN error is leading to
results characterized by a very high variance.

In figure 1 we show the classification errors (top) for the Bio data using
NCA (left) and MCML (right) compared with the normalized objective function
value (bottom) as a function of the number of iterations using a vector of ones
(in this case 5), corresponding to equal weights, for initialization. This example
shows that for these two methods the classification error does not decrease as the
objective function values. This further explains the results previously described
(worse than NS as from 1).

Table 1. Classification errors (standard deviations) for the four datasets using six
methods, the first one BIO (Best Individual Ones) is only meant to show the property
of the analyzed datasets

Combining methods

Datasets BIO FS NS NCA MCML Fisher

m feat 3.6 (0.6) 2.3 (0.4) 2.1 (0.5) 1.9 (0.5) 1.9 (0.5) 3.2 (0.6)
flow cyto 31.3 (2.2) 13.9 (2.4) 12.3 (1.5) 11.8 (1.4) 12.0 (1.4) 16.7 (2.1)
chicken pieces 8.1 (2.1) 5.5 (2.2) 5.3 (1.8) 5.5 (1.8) 5.5 (1.8) 5.8 (2.2)
Bio data lkc 7.9 (1.7) 7.2 (1.4) 5.9 (1.1) 7.0 (1.2) 7.0 (1.1) 6.8 (1.3)

Table 2. Classification errors (standard deviations) for the full chicken pieces dataset
(44 matrices)

Combining methods

Datasets BIO FS NS NCA MCML Fisher

chicken pieces 44 8.3 (2.1) 5.7 (1.9) 5.8 (2.1) 5.7 (2.1) 5.8 (2.2) 7.1 (2.8)

Table 3. Classification errors (standard deviations) for the given datasets with addi-
tional noise

Combining methods

Noisy data BIO FS NS NCA MCML Fisher

m feat 4.2 (0.8) 12.7 (15.7) 10.2 (1.5) 3.0 (0.5) 3.0 (0.5) 12.8 (9.1)
flow cyto 30.9 (1.8) 28.4 (15.9) 44.3 (0.9) 20.5 (2.0) 22.3 (2.3) 39.7 (7.3)
chicken pieces 8.3 (2.0) 13.8 (20.7) 39.6 (4.3) 11.7 (2.5) 12.8 (2.6) 37.2 (14.7)
Bio data lkc 8.9 (1.6) 12.1 (7.0) 18.6 (1.9) 10.8 (1.4) 10.7 (1.4) 20.0 (6.9)
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Fig. 1. Classification error and value of objective functions (NCA left and MCML
right) as a function of the number of iterations starting from weights equal to one (NS)
computed on the Bio dataset

6 Discussion and Conclusion

Previous works in the field of combining dissimilarity representations ([1], [2],
[3]) suggest that a simple averaging of the matrices can lead to classification per-
formances that outperform the results of the individual ones. This was reported
with respect to linear and quadratic classifiers (in some cases also regularized) on
dissimilarity representations obtained with different prototype selection meth-
ods.

In this paper we presented a further analysis, considering weighted aver-
ages of dissimilarity matrices. Now a SVM was used so that regularization and
dimension reduction effects could be avoided. It was found that the original con-
clusions are still valid: averaging of different dissimilarity representations of the
same objects may show considerable improvements of the classification perfor-
mances. Optimizing the weights may improve the results further. A fast and



simple procedure to select the most significant dissimilarity matrices hardly ever
outperforms averaging all matrices.

A significant aspect of the presented procedure is the normalization of the
dissimilarities. In this study this is done by the largest distance. In other exper-
iments we normalized by the average dissimilarity, which is less outlier sensitive
and showed similar results.

The main aim in this work was to compare the simple procedure of averag-
ing matrices with other more sophisticated techniques based on the learning of
weights in linear and quadratic forms using optimization algorithms. We have
seen that a normalized sum of given matrices can be outperformed by optimiza-
tion techniques like NCA and MCML. From the experimental results it appears
that this does not hold for multi-modal data distributions. In case of particu-
larly noisy data NCA and MCML are showing the best performances for all the
studied datasets.

This work a study of combining different sources of information namely dis-
similarity matrices originating from different measurements or form different
computations of them. We have shown that combining before the training stage
generally helps and that using techniques previously used for metric learning [14]
these linear combinations can lead to even better results. In the future we will
investigate further the influence of the multi-modality of the data distributions.
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