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Abstract

We propose a novel algorithm for extracting sam-
ples from a data set supporting the extremal points
in the set. Since the density of the data set
is mot taken into account, the method could en-
able adaptation to gradually changing data char-
acteristics (e.g. machine wear). Using knowl-
edge about the clustering structure of the data (0b-
tained with multidimensional scaling techniques),
the complexity of the solution can roughly be de-
termined.

1 Introduction

The condition of mechanical machinery can be
monitored by measuring the vibration behaviour
of its rotating parts [6]. Automatic recognition
of machine wear and failure calls for methods
that can deal with small sample sizes in high-
dimensional spaces, undersampled fault classes
and dynamically changing environments. Since
normal behaviour will probably be determined
by a few calibration measurements of extremal
operating conditions (e.g. when putting the ma-
chine into practice), an accurate but parsimo-
nious description of the borders of the domain
in the feature space indicating normal behaviour
is expected to emerge.

Failure detection can be performed by approx-
imating the normal domain and rejecting samples
not matching with this description. The rejection
threshold should vary with the local resolution in
the description [11]. Moreover, machine wear will
usually be visible as a gradual shift of the borders
of the admissible domain up to a point where a
fault can be diagnosed (and this domain will con-
sequently be labelled as faulty).

Conventional classification methods assume

well-defined, static classes, while the problem of
tailoring the complexity of the solution to a cer-
tain problem (e.g. choosing the number of hid-
den units in a neural network) is error-prone in
cases with small sample sizes in high-dimensional
spaces (curse of dimensionality). Moreover, tack-
ling the former problem by taking a constructive
approach can lead to an inherently difficult subset
selection problem [12]. Recently proposed sup-
port vector methods circumvent these problems
by editing the data set in a clever way, and ex-
pressing the solution in terms of the remaining
(supporting) samples.

Inspired by this idea, we develop a novel
method for the extraction of objects in a data
set that describe the domain of the set in a par-
simonious manner, without taking the density of
the set into account.

2 Domain approximation with sup-
port objects

In Vapnik’s support vector classifier, the optimal
separating hyperplane for two separable classes of
data {z;,s = 1,...,l} labeled by y; € {£1} is
given by [9, 10]

l

@) = sgn(Y awi(z-z)+b) (1)

i=1

The coefficients «; can be computed by a
quadratic minimization procedure, and turn out
to be nonzero only for the samples near the clas-
sification border (i.e. on the margin), the support
vectors (fig. 1, dark objects).

Using Mercer’s theorem, it can be derived [9]
that a dot-product in a transformed space (ob-
tained by some nonlinear mapping ®) can be



Figure 1: Support vector classifier

expressed as the application of a corresponding
kernel k(-) in the original space (®(x) - ®(y)) =
k(x,y). By replacing the dot-product in (1) by
the more general similarity measure k(-), discrim-
inants of arbitrary complexity can be obtained.

Extending this idea, one could use an arbi-
trary (non-analytic) similarity measure by look-
ing upon the m x m distance matrix D =
d(xi,%;),4,j = 1,...,m of a data set of size m
as a set of m samples in an m-dimensional space
[2]: there exist many situations where it is diffi-
cult to design a suitable similarity measure, but
distances between objects can be derived intu-
itively. This approach suffers from the problem
that we end up in a situation where we have as
many samples as we have features, where the ex-
pected generalization error shows a peak. As a
remedy, both the number of features or the num-
ber of samples can be reduced. When the rows
in the distance matrix are considered as samples,
and the columns as features, reducing the number
of samples (data editing) results in a matrix with
for each remaining sample (the support objects)
the distances to each of the original objects.

2.1 Support objects algorithm

Consider a data set X = {x;},i = 1,...,l. For
domain approximation, every object in the sup-
port set J = {y; € X},j =1,...,kk <lis
now given a receptive field in R™ of radius r. A
sample x; in X lies in the receptive field R, of a
support object y, when p = arg min; d(x;,y;)
and d(x;,y;) <.

We could choose the set of k support objects
J such that corresponding radius r(J) is mini-
mized, while all original objects are captured by
some support object’s receptive field (fig. 2, black
objects), i.e.

J = arg ming, r(Sk) (2)

where |Si| = k, S € 2% i.e. Sy a subset of X
of length k£ and the corresponding receptive field

radius r(Sg) is given by

r(Sk) = maz;d(x;,y;),%i € Rj,y; € Sk

3)

Note that in this method, the problem of optimal
subset selection is present. One could propose
to use a greedy forward selection method for this
purpose, but it is well-known that this will prob-
ably not lead to the global optimum.

<

Figure 2: Approximation with support objects

We propose a variant of the k-means clustering
algorithm, adapted for the domain approximation
problem. In the basic approach, different trials
are repeated with different random choices for the
initial subset. During the algorithm, each support
object represents the center of the samples in its
receptive field. If a better center can be found
within its receptive field (i.e. such that the radius
can be decreased, or relazed), swap the former
and the latter objects, until the subset can’t be
improved any more. Ultimately, the best subset
over all trials is retained. We refer to this first
attempt as the kcenters algorithm.

2.2 Improvements of the basic

method

The support set size k is also a parameter to
be optimized, which makes a combined forward-
backward search (e.g. used in branch-and-bound
feature selection) difficult. However, we can use
the following successive approximation scheme:

SUCCAPP (dataset) :

k = 0; Jupdated = [];
while not done do
increase k; Jinit = Jupdated;
determine point p most remote to its
receptive field center;
add p to the initial support set Jinit;
Jupdated = succ_kcenters(Jinit, dataset);
end;



Here, succ_kcenters(Jinit, dataset) de-
notes the kcenters algorithm performing just one
trial, while initialization is done with the subset
Jinit. As convergence criterion we choose the rel-
ative improvement in radius increasing the sup-
port set from size k to k + 1.

Second, we propose a modification aiming at
varying tolerance depending on the local resolu-
tion. It makes sense to increase the tolerance
to new samples for parts of the data with larger
interpoint distances (i.e. local resolution), and
vice versa. Prior to successive approximation, the
distance from each point to its nearest center is
normalized by the distance to the point’s nearest
neighbouring point (not necessarily a support ob-
ject). Hence, the optimization is done w.r.t. the
characteristic distance in a receptive field. This
has the effect of penalizing outlying subclusters in
a receptive field (e.g. occurring because the sup-
port set size is smaller than the number of clus-
ters in the data). This approach to a character-
istic distance assumes homogeneously distributed
samples in a receptive field, which will be true for
high-dimensional spaces. After optimization of
the global radius (now in terms of each receptive
field’s characteristic distance or local resolution),
the radii in the original metric can be computed
by multiplying with the local resolution. We es-
timate the “unfolding resolution” by taking the
distance (in the original metric) of the most re-
mote point in a receptive field (in the original
metric) to its nearest neighbour (in the receptive
field).

Note that there is a trade-off between complex-
ity of the solution (support set size) and general-
ization capability (figure 3):

Figure 3: Trade-off between tolerance (left) and
complexity (right)

Underfitting occurs when there are a small num-
ber of support objects (large receptive fields,
yielding too much tolerance), while overfitting oc-
curs when nearly each sample in the data set is a
support object (small receptive fields, hardly tol-
erance to new objects). Estimation of an appro-
priate support set size can be done using the data
clustering structure. High-dimensional data sets

can be visualized using multidimensional scaling.

3 Multidimensional scaling tech-
niques

Suppose that we consider n vectors in a m-
dimensional space: z1,%2,...,Z, (stored in ma-
trix X € R**™). Our aim is to find n vectors
in a d-dimensional space: yi1,¥2,...,Yn (stored
in matrix Y € R"*9) in such a way that each
vector y; is the lower-dimensional image of z; for
i =1,2,...,n. We are interested in a mapping
that preserves the inherent structure of the data.
We consider three methods for multidimensional
scaling.

3.1 Classical scaling

Suppose that we have the coordinate matrix X €
R*>*™ _ Knowing that distances do not change
under translations, we assume that Y has col-
umn means equal to 0. Then the square distance
matrix D? of size n can be computed as follows:

D?=c1"+1c —2X X'

where 1 is a vector of ones, ¢ is a vector with
diagonal elements of matrix Bp = XX' and
(*)' denotes transposition. It can be shown that
Bp = —%JDQJ, where J is the centering matrix:
J =1I-L11". We know that Bp is symmetric
and has non-negative eigenvalues. Then we can
find the factorization of Bp by eigendecomposi-
tion:
Bp = QAQ' = (QA%)(QA?)’

where () is an orthogonal matrix, Az isa diago-

1
nal matrix with diagonal elements \7. Hence, we
have the equation:

XX'=Bp = (QA7)(QA?)

It can be proved that X and QA% differ only by
rotation, so we can take:

X = QA2

In the method of classical scaling, we are given
the square dissimilarity matrix A% and we want
to find a configuration {y;}?, in a (lower di-
mensional) d-space. The matrix A is treated
as if it was the square distance matrix D? for
the configuration {y;}? ;. Then we compute the
matrix Ba and perform an eigendecomposition.
The result in the d-dimensional space is a matrix
Y € R**¢ given by:

Y = QuA2
where A4 stands for the first d eigenvalues greater
than zero and @4 stands for the first d columns
of matrix Q.



3.2 Sammon and Kruskal mapping

In Sammon mapping, the inter-point distances
between vectors in the lower-dimensional space
are approximating the corresponding distances in
the (original) m-space. We need a criterion for
deciding whether one configuration is better than
another. For this purpose one considers the error
function E (Sammon’s stress) that measures how
well the present configuration of n points in the
d-space fits the n points in the m-space:

1
B P

Jj=i+1 “ i=1 j=i+1
We start from an initial configuration of vec-
tors {y;}?~, (e.g. randomly chosen or by tak-
ing d columns of matrix X with maximum vari-
ances) and calculate the stress. Next, we adjust
the vectors in order to decrease the stress. We
use e.g. a steepest descent algorithm to search
for the minimum of the stress function. Having
found the configuration in the d-space after i-th
iteration, the new set at time ¢ + 1 is given by:

Ypg(i + 1) = ypa (i) — alpy(i), 0<a <l

) 82 E(i) ) ‘
A
val?) 5ypq / ‘ <5ypq

The idea of Kruskal mapping is similar to Sam-
mon mapping: the inter-point distances in the
lower-dimensional space approximate the corre-
sponding distances in the m-dimensional space,
but now we suppose that the original distances
are transformed by some (monotonic, increasing)
function and may be represented by the distances
in the d-space.

where:

4 Experiments

Pump vibration was measured with three ac-
celerometers mounted on a submersible pump
(fig. 4) that was operating in three states: nor-
mal, presence of imbalance and presence of bear-
ing failure [4]. Moreover, the bearing failure was
measured at three different operating speeds. An
increasing component in the acceleration spec-
trum at machine running speed is indicative of
an imbalance, whereas bearing failures give rise
to high-frequency modulations involving bearing
geometry related fault frequencies, that can be
resolved with envelope detection [6].

4.1 Analysis of vibration data

However, in [13] it was shown that taking a few
principal components of the acceleration spec-
trum already suffices for accurate recognition,

i

Figure 4: Landustrie DECR 20-8 submersible
pump

which indicated a low intrinsic dimensionality.
This can be understood from the fact that a vi-
bration signal x can be modeled as a harmonic
series s plus additive white noise e. Now the
principal eigenvectors of the correlation matrix
R, = E[xx!] span the signal subspace [7], which
is probably low-dimensional. Due to nonlineari-
ties and crosstalk during machine operation the
data might reside in a nonlinear subspace, but
since in previous experiments the linear approxi-
mation turned out to be already quite descriptive,
a 256-points acceleration spectrum was obtained
as feature vector and normalized w.r.t. mean and
standard-deviation for further processing.

SAMMON MAPPING; vibration data — 256 features; initialization: linear projection
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Figure 5: Sammon mapping of vibration data

We use the mapping methods presented above,
in order to visualize the low-dimensional image of
the original data and have an idea about its in-
herent high-dimensional structure. The data set
consists of 500 vectors with 256 spectral features,
including 3 non-overlapping classes. The result of



a Sammon mapping is presented in figure 5 (other
methods show similar results). From this figure
obtained we observe 3 non-overlapping clusters,
so we can conclude that in the original space those
clusters also appear.

Let us also consider another data set, obtained
by taking the 100 first principal components of
as 256-dimensional spectral feature set, now in-
cluding 5 classes (normal, imbalance and bearing
failure at three machine operating speeds). The
mapped data obtained with classical scaling is
presented in figure 6.

CLASSICAL SCALING; vibration data - 100 features; distance: Euclidean
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Figure 6: Visualization with classical scaling

For the other methods, the results are compara-
ble. Again we observe 3 non-overlapping clusters.
However, one of them now consists of 3 different
overlapping subclusters, i.e. bearing failures at
slightly different machine running speeds).

4.2 Evaluation of successive ap-
proximation algorithm

We investigated the performance of the succes-
sive approximation algorithm in domain descrip-
tion and novelty detection. First, we compared
the algorithm to the kcenters algorithm with ran-
dom initialization and arbitrary choice of support
set size. Using the spectral features data set,
we monitored the final radius of the surrounding
spheres as a function of the number of spheres.
The minimization was done in the original metric
(no correction for local resolution), and we tried
the kcenters-algorithm with both 1 and 5 trials.
In fig. 7 the successive approximation algo-
rithm (the bottom line) can be seen to yield
smaller final radius (vertical axis), while the ra-
dius is monotonically decreasing with support
set size (horizontal axis). The radius obtained
with 1 trial random initialization fluctuates ran-
domly around the 5 trial random initialization
results. It is clear that the stabilizing effect of

learning curves; spectral features (n,d) = (500, 256)
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Figure 7: Succ. approximation vs. random ini-
tialization

more trials is at the expense of increased com-
puting time, whereas successive approximation
needs for each support set size only one run of the
algorithm. Moreover, using more spheres leads
to significant improvement with successive ap-
proximation, whereas the random case reaches a
plateau. This suggests that there is a relatively
homogeneous distribution of distances in high-
dimensional spaces, since the sphere radius can
constantly be relaxed. With increasing support
set size, the probability that a random initial sub-
set guess is adequate decreases, hence the radius
will be less improved using random initialization.

optimal support set size; (n, d) = (250, 2)

10r
—— successive approx
9 ---- random init (fg)
8
7
6
@
=]
5 5
]
4
3l
ol
1t
o [
0 50 100 150 200 250

size support set

Figure 8: Determination of optimal support set
size

Using data consisting of the first two principal
components of the previous data set, we repeated
the previous experiment (now with 15 trial ran-
dom initialization). Again (fig. 8), the successive
approximation algorithm proved superior, but the
difference is much smaller. Due to the three clus-
ters in the data, combined with small dimension-
ality of the space, a sudden decrease in the ra-
dius occurs with three spheres (to a very small
value). Moreover, the clusters are already rep-
resented adequately by the spheres, resulting in



only marginal improvement in radius using more
spheres.

4.3 Generalization to novel data

Next, we checked the capability of algorithm for
incorporating gradually changing data. From the
256-dimensional principal components data set,
new data sets with gradually changing domain of
support were constructed by generating new sam-
ples out of the old ones based on distances and
directions of the nearest neighbours of samples in
the original set. Here, the offset of a new sample
from its corresponding original sample is Gaus-
sian distributed with zero mean and with stan-
dard deviation s times the mean signed differ-
ence between the point under consideration and
its nearest neighbours in the original set. For s
running from 0 (original set) to 5, different vali-
dation sets were contructed. To track generaliza-
tion, an independent test set of the same origin
as the original set was used.
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Figure 9: Rejection of novel data with successive
approximation algorithm

It was observed that increasing feature size and
support set size decreased generalization drasti-
cally (i.e. test samples and validation data for
moderate values of s were frequently rejected).
Results for sensible values of dimensionality (7)
and number of spheres (15) are shown in fig. 9.
The first set is the train set, the second set the
test set, and sets 3 to 7 are validation sets with
s =1,...,5. Since the domain is fitted as tight
as possible, a test set already shows some rejec-
tions. Then the rejection rate increases with the
amount of novelty, up to a point where always
a certain fraction of the new samples lies some-
where on the original domain (the distribution of
the offset has zero mean).

Results with correction for local resolution were
still not satisfactory (fig. 10 ). Final radii vary
with local resolution, but are quite large, proba-
bly because of the nonsymmetric scaling back and
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Figure 10: Rejection with correction for local res-
olution

forth into the original metric.

5 Discussion

We proposed a novel algorithm for the extraction
of objects capturing the data set using multidi-
mensional spheres with minimal radius. The al-
gorithm was demonstrated to be an adequate and
efficient way for approximating the domain of a
dataset. For data with low intrinsic dimensional-
ity, the use of spheres may hamper practical uti-
lization, since tolerances in singular directions are
equal to tolerances in relevant directions, lead-
ing to frequent acceptation of non-matching data
points. For low-dimensional spaces, insight into
the clustering structure may aid in choosing the
right support set size.

Optimization could be performed w.r.t. the
characteristic distances in a receptive field, en-
abling adaptation of radii to the local resolution.
However, the current way of scaling distances
back and forth w.r.t. the original metric yields
quite large values for final radii.

Moreover, a predefined tolerance specifying the
admissible amount of novelty should be incorpo-
rated in the method, since the proper rejection
threshold will typically vary with each practical
application. Automatic complexity control could
then be based on this predefined tolerance level.

Since the density of points is never used in the
algorithm, but the description is made on the ba-
sis of border points, the algorithm bears potential
for on-line learning.
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