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Abstract

Sammon mapping comes from the area of multidi-
mensional scaling and is an important pattern re-
cognition tool. It is a nonlinear projection method,
which reveals the structure present in data. Sam-
mon mapping has two disadvantages. Firstly, it
lacks generalization, which means that new points
cannot be added to the obtained map without recal-
culating it. Secondly, because it operates on all in-
terpoint distances, the complexity of finding the
mapping is very high. The solution to the first prob-
lem is used in improving the speed of the algorithm.

To save computation time without losing the
mapping quality, we investigate three possible speed-
ups. They are hybrid methods being a combination
of Sammon mapping, based on a subset of points,
and respectively: triangulation, neural network and
our proposal, distance mapping. These approaches
are verified by some experiments, showing that dis-
tance mapping performs the best.

1 Introduction

Understanding data is often a difficult task, es-
pecially when it refers to a complex phenomenon
that is described by many variables. If the data
consists of one or two variables, many simple me-
thods are available, showing or emphasizing some
of the properties or relations between objects. But,
when multivariate data is examined, it is nearly im-
possible to comprehend its structure. This presents
a need for more sophisticated techniques.

The early stage of data analysis is to visualize
data on a plane or in a 3D space. By this, a re-
searcher hopes to gain some intuition about the
data and to understand the relations between ob-

jects, see the intrinsic structure or possible cluster
tendencies, etc. Techniques allowing to visualize
high-dimensional data in a low-dimensional space
are called projection methods. In this area, nonli-
near projection techniques play an important role.
They look for a nonlinear manifold imposing e.g.
the preservation of all (or some) interpoint distances
in the mapping.

Such techniques are powerful tools for data vi-
sualization and exploration, but as iterative pro-
cesses, they are time consuming. In this paper
we consider one type of such projections: Sammon
mapping [2, 8], which is a technique of high com-
plexity. We are interested in a significant speed-
up of this method. We investigate three possible
approaches: triangulation, artificial neural network
(ANN) and distance mapping in order to save com-
putation time.

The paper is organized as follows. Section 2 de-
scribes the idea of Sammon mapping and explains
its complexity. Section 3 presents the triangulation
and ANN methods and introduces distance map-
ping, all used for improving the speed of Sammon
projection. Section 4 describes datasets and per-
formed experiments and Section 5 shows results. In
Section 6 conclusions are drawn.

2 Sammon mapping

A researcher is often interested in mappings that
reveal the inherent structure in order to explore the
data, to find possible clusters, correlations or under-
lying distributions. Methods from the area of mul-
tidimensional scaling (MDS) [2] meet these needs.
During the mapping, the MDS projections aim to
preserve all interpoint distances and by this they re-
veal the structure present in the data. One of such
algorithms is Sammon mapping [2, §].



Suppose that we consider a set of n objects.
Each object is represented by one point in an m-
dimensional (high-dimensional) space. The aim
of Sammon mapping is to find n points in a d-
dimensional space (with d < m), in such a way
that the corresponding distances approximate the
original ones as well as possible. We denote:

e d;;,Vi,j =1,...,n- the distance between two
points in an m-dimensional space.

® 0;;,Vi,j=1,...,n - the distance between two
points in a d-dimensional space.

Without loss of generality, only projections onto a 2-
dimensional space are studied (d = 2), since our
interest is in data visualization.

There is a need for a criterion to decide whether
one configuration is better than another. For that
purpose, the error (stress) function E is considered,
which measures the difference between the present
configuration of n points in the d-dimensional space
and the configuration of n points in the original m-
dimensional space. The stress is given by the fol-
lowing formula:
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and yields in fact a badness-of-fit measure for the
entire representation. The stress range is [0, 1] with
0 indicating a lossless mapping.

2.1 A minimization problem

The problem of finding the right configuration in
a low-dimensional space is an optimization problem:
we are interested in obtaining such a configuration
that the stress function yields minimum. In general,
this optimization problem is difficult because of the
very high dimensionality of the parameter space.
The stress function is optimal when all the origi-
nal distances d;; are equal to the distances of the
projected points d;;. However, this is not likely to
happen exactly. Therefore, the found distances will
be distorted representations of the relations within
the data. The larger the stress, the greater the dis-
tortion.

To find a projected map, we start from the ini-
tial configuration of points (e.g. randomly chosen),
and then the stress is calculated by using equa-
tion (1). Next, the configuration is improved by
shifting around all points in small steps to approxi-
mate better and better the original distances (thus
decreasing the stress). This process is reiterated,
until the map corresponding to a (local) minimum
of the stress is found.

2.2 Algorithm complexity

The complexity of Sammon mapping is high, be-
cause the stress function is based on O(n?) dis-
tances. In order to speed up this mapping with-
out losing the projection quality, two possible ap-
proaches can be investigated. The first improve-
ment relates to a choice of suitable minimiza-
tion algorithm. Examples of such algorithms are
e.g. Pseudo-Newton, Conjugate Gradients or Scaled
Conjugate Gradients (SCG) [7]. In the earlier ex-
periments, we concluded that although the SCG
technique tends to be the fastest in many cases, the
Pseudo-Newton works well in general. Therefore, in
our study we limit ourselves to this algorithm.

The second improvement concerns the idea of
performing Sammon mapping only on a subset of
all points. The remaining points are then added to
the obtained map in a way that avoids stress distor-
tion. Our problem is that there is no generalization
in Sammon mapping. To solve this, three possible
approaches will be discussed next.

3 Fast variants of Sammon mapping

In this paper possible ways of significantly speed-
ing up the Sammon algorithm are studied. The gen-
eral idea is to use a subset taken from the original
points and project it by Sammon mapping. The re-
maining points can then be added to the existing
map. To reduce the problem complexity, we are in-
terested in a way of adding points, which requires
relatively little computation.

Unfortunately, Sammon mapping does not give
any mathematical rule or algorithmic procedure for
mapping previously unseen points. It means that
when a new point is to be projected, the entire map
should be recalculated. To solve this, some alter-
native ways of projecting new points can be con-
sidered. Three possible methods are investigated
and compared: the use of triangulation [1, 5], an
ANN [3] and distance mapping (to be introduced).

3.1 Triangulation

The triangulation method [1, 5] is based on the
observation that when a new object is projected, its
distances to two points (for 2D-mappings) previous-
ly mapped can be preserved exactly. If there are
n points in a m-dimensional space, then they can
be mapped in sequence on a plane in such a way
that (2n — 3) of the n(n — 1)/2 distances are ex-
actly preserved. This is a fast algorithm, since it
is non-iterative and preserves only some distances.
Figure 1 explains the triangulation algorithm. To
find the mapping X' of a point X, its distances
to points A and B in the original space, d4x and



Figure 1: An explanation of triangulation method.

dpx, have to be preserved. It allows to find a de-
sired value on a plane, for the distances between X'
and the mappings A’ and B’. The requirements can
result in no candidate points (if the circles do not
overlap), one candidate point (if the circles touch)
or two candidate points. In the first case a simple
linear interpolation weighed with dyx and dpx is
used; in the last case a third point C' decides which
candidate is chosen (see Figure 1). The point X} is
taken, as the distance between X} and C' approxi-
mates better the distance between X and C.

This hybrid method first creates a base from the
data by projecting p of the all n points (p < n) on
the plane, using the Sammon iterative technique.
The p projected patterns are then fixed and the re-
maining (n — p) points are projected sequentially,
using the triangulation method.

3.2 Artificial neural networks

Besides triangulation, one can use an ANN to
approximate a Sammon mapping. The training set
consists of the original, high-dimensional input sam-
ples. The target outputs are the Sammon map co-
ordinates. Although Mao and Jain [6] developed
a special-purpose training rule (SAMANN) for such
a network, it was shown [3] that normal networks
trained on a Sammon mapping generally outper-
form this SAMANN both in terms of stress and
computational cost.

A problem with using ANNs for Sammon map-
ping is that, in principle, the output of a Sammon
mapping is unbounded, whereas many ANNs use
sigmoid transfer functions which can only give out-
put in the range [0, 1].

One possible solution is to rescale both the
dataset and the map in such a way that the tar-
get outputs lie in the range of the output units.
However, it is not known beforehand whether the
Sammon map used to train the ANN accurately
represents the possible ranges; i.e., the part of the
dataset yet to be mapped may give large Sammon
map coordinate values.

A second solution is to use linear transfer func-
tion output units. Although ANNs containing these
units can be harder to train (since the error gradient
is not bounded as it is when using sigmoid transfer

functions), they can represent any R™ — R< map-
ping. We chose this solution in our experiments.

3.3 Distance mapping

Another possibility to save both memory and
computation time is distance mapping, which is our
proposal. It looks for a linear transformation of the
distance matrix in the high-dimensional space, so
that the low-dimensional Sammon configuration is
obtained. After determining that operator, it is ap-
plied to the distance matrix computed between new
points and old points (being in the Sammon map).

Let us denote the base of p points, chosen for
Sammon mapping, as Xpase € RP*™(p < n). The
corresponding distance matrix is Dpgse- The d-
dimensional Sammon result is denoted by the ma-
trixX Yoase € RP*4. The matrix Dpase as a distance
matrix is full rank, thus, by applying a linear trans-
formation V' € RP*? to this, the matrix Ypgse can
be found. The matrix V is defined as:

define V : Dpgse V = Yoase (2)

Having found the linear operator V, the new
(remaining) points can be added to the low-
dimensional map (denoted by Ypqse) as follows:

find Yne'w : Ynew = Dnew—to—base V; (3)

where the matrix Dyew—to—base € R P)*P is the
distance matrix consisting of all distances between
points from the sets: Xpase and Xpew-

4 Experiments

Considering the hybrid methods, there are two
important questions. The first one concerns the
necessary number of points used to build a base
for Sammon mapping. The second question is how
well these techniques perform. We will study their
performance by determining the number of float-
ing point operations (FLOPS) needed for the whole
mapping and the values of the stress measure.

4.1 Optimal size of a base

The optimal size of a base seems to be a crucial
question. We want to avoid large stress distortion,
but also allow a significant speed improvement of
the hybrid methods. To find a good trade-off be-
tween these two aspects, different base sizes were
investigated. All bases were chosen randomly.

Figure 2 presents results of distance mapping
with different base sizes for pump vibration dataset
(see Section 4.2). It is not surprising that the stress
measure after distance mapping is larger than for
Sammon mapping performed for all points. How-
ever, there is a general tendency of the stress to de-
crease when the number of points included in a base
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Figure 2: Distance mapping results for pump vibration data with bases (marked by stars) of different sizes.

is increasing. For a base of 250 points, the stress o (Clircle dataset: An artificial dataset consisting
(0.12763) seems to be close enough to the original of 200 points lying on 2 parallel circles in 3D.
one (0.11816). Visual judgment confirms that the e Iris dataset: A real dataset characterizing
resulting map (see Figure 2(d)) resembles the Sam- 3 species of iris flowers. In total, 150 obser-
mon map (see Figure 2(f)) quite well. vations are available. The iris flowers are de-
To make a proper choice, the curves of averaged scribed by 4 attributes.

(over all distances) Sammon stress for TRAINING o Pump vibration dataset: Pump vibration was
set (points chosen for a base for Sammon projec- measured with 3 accelerometers mounted on
tion), TESTING set (points added by distance map- a submersible pump which was operated in
ping) and ALL (all points) were studied. These 3 states: normal, presence of imbalance and
curves can be observed in Figure 3. We want to presence of bearing failure. The data consists
take this base size, for which all curve are enough of 500 observations with 256 spectral features
close to each other, which suggests that a good ge- of the acceleration spectrum (see [9]).
neralization is reached. For 250 — 300 points, being o Handwritten digit dataset: The digits were
50% — 60% of all points, the stress for all curves de- taken from NIST special database 3 [4]. The
creases significantly and takes more similar values. dataset consists of 2000 points equally dis-
Keeping in mind that the complexity of our problem tributed over ten possible classes. Each point
decreases quadratically with the number of points corresponds to a grey value image with 16 x 16
used for Sammon mapping, a choice of 50% of all pixels. Thus the data dimensionality is 256.
points to build a base, seems to be a reasonable e Borehole dataset: The borehole dataset is com-
one. Therefore, as a rule of thumb, we will consider posed of Samp]es taken from one hydrocarbon
a base of that size in our experiments. well. It consists of 11 petrophysical logs, 6 im-

age derive features and 2 core measurements.
This dataset includes 1001 points. It contains
information on 6 different facies (types of rock).

4.2 Datasets

] ] ) These datasets cover a wide dimensionality range,
The following five datasets were investigated: as there are examples of low, average and high di-



X 10’7 DISTANCE MAPPING; Pump vibration data; standardized
9 T T T T T T

— Averaged Sammon stress for TRAINING
—— Averaged Sammon stress for TESTING
Averaged Sammon stress for ALL

Averaged SAMMON stress
) ~
T
I

&

3
50 100 150 200 250 300 350 400 450 500
Number of points, from the total 500, taken for TRAINING

Figure 3: The averaged stress for distance mapping.

mensionality. They also contain different numbers
of points.

4.3 Experimental setup

All experiments concerning the hybrid methods
of Sammon and respectively: triangulation, an
ANN or distance mapping were performed for all
datasets. For each dataset, 10 random subsets
(bases), consisting of 50% of all original points, were
randomly chosen. Then, Sammon mappings were
done for each base. The points excluded from bases
were later added to the obtained configurations. All
routines were implemented in MATLAB.

4.4 Triangulation

The triangulation method does not need any
training. Points are added sequentially to the map
using the nearest neighbourhood relations in the
original space. Therefore, the time required for
adding points is only the time needed to apply this

mapping.
4.5 ANN architecture

Neural networks were trained on the 10 chosen
subsets (bases) of data. To get an idea of the va-
riability in network performance, for each of these
subsets 10 networks were trained. The used net-
work architecture consisted of m input units (where
m is the dimensionality of the original dataset), 2
hidden layers of 25 units with sigmoid transfer fun-
ctions each and an output layer containing 2 linear
transfer function units. The networks were trained
in MATLAB’s Neural Network Toolbox, using the
SCG training algorithm [7]. Training was stopped
when the MSE reached 1e—06 or after 10,000 steps,
whichever came first.

A problem arose with the digit dataset. The tar-
get outputs were very high, in the order of 1e03.

The ANNs are usually initialized with small weights
and may take quite a long time to reach these out-
put values. To facilitate training, target values for
this dataset were divided by 1e03.

Note that some ANNs did not converge at all (3%
of the ANNs trained on the iris dataset). Results
for these ANNs were not taken into account, since
they are not representative.

One could argue that the stopping criteria for
network training are a bit arbitrary. If training
were stopped when the gradient reached say 1e—04,
training times would be shorter. However, as ANNs
are trained using the MSE between target and ac-
tual outputs rather than the stress, it is hard to
predict what the resulting stress would be. In prac-
tice, one trains ANNs so that the MSE is as low
as possible. Calculating the stress during training
could give more insight into the relation between
the MSE and the stress, but also adds computa-
tional complexity.

4.6 Distance mapping

Training distance mapping can be understood
as determining the linear operator V' (see expres-
sion 2). This requires some computations, as it
means calculating the distance matrix and then
solving a linear, well-defined equation of order m.
Having found the matrix V', a mapping of new
points is then easily and cheaply performed.

5 Results

As discussed in Section 4.1, for our experiments,
a base consisting of 50% of all points were randomly
chosen. The performance of our methods is shown
in Table 1 and Table 2. Table 1 presents an averaged
number of floating point operations (FLOPS) with
their standard deviations for all considered datasets.
Some observations are:

e Both ANN and distance mapping require some
time for training. However, for ANNs the ave-
raged number of FLOPS is quite large and sur-
passes not only the number of FLOPS for dis-
tance mapping, but also for Sammon projec-
tion. In the aspect of adding new points, the
ANN and distance mapping perform similarly.

e Concerning the total amount of FLOPS needed
for all hybrid methods, one can easily observe
that the number of FLOPS performed for trian-
gulation and distance mapping is relatively the
same, and an order of magnitude less than
for Sammon mapping performed for all points.
The total number of FLOPS needed for the
ANN, because of its costly training, is at least
one order of magnitude higher than in case of
Sammon mapping for all points.



TABLE 1. Averaged number of FLOPS for mappings.

Number of FLOPS
Dataset || Method Sammon Training Applying Total
(base) mapping mapping
Sammon | 2.92e08 — — 2.92e08
Circle Triang. 2.19e07 £ 5.74e06 | —— 6.27e05 £ 2.33e04 | 2.25e07 £ 5.73e06
ANN 2.19e07 £ 5.74e06 | 3.20e09 + 1.68e09 | 1.69e05 3.22e09 £ 1.69e09
Distance | 2.19e07 £ 5.74e06 | 8.69e05 £ 7.87e02 | 1.68e05 2.29e07 £ 5.74e06
Sammon | 2.74e07 — — 2.74e07
Iris Triang. 7.89€06 £+ 1.78¢06 | ——— 4.76e05 £ 3.76e03 | 8.36e06 + 1.78e06
ANN 7.89€06 + 1.78e06 | 7.73e09 + 4.34e06 | 1.30e05 7.74e09 £ 6.12e06
Distance | 7.89e06 + 1.78e06 | 4.21e05 + 3.54e02 | 1.07¢05 8.42¢06 + 1.78¢06
Sammon | 3.36e09 — — 3.36e09
Pump Triang. 8.33¢08 £ 1.21e08 | ——— 1.32e08 + 1.38¢04 | 9.65e08 &+ 1.21e08
ANN 8.33e08 £ 1.21e08 | 1.05¢10 + 1.14e10 | 3.59e06 1.13e10 + 1.15€10
Distance | 8.33e08 +1.21e08 | 4.38¢07 + 4.78¢03 | 3.30e07 9.10e08 + 1.21e08
Sammon | 4.39¢10 — — 4.39¢e10
Digits Triang. 1.02e10 +2.13e09 | —— 2.08e09 £ 1.57e05 | 1.23e10 + 2.13e09
ANN 1.02e10 + 2.13e09 | 3.97e11 + 1.65el11 | 1.43e07 4.07ell1 £ 1.67¢ell
Distance | 1.02e10 £ 2.13e09 | 1.18e09 + 7.38¢04 | 5.19e08 1.19¢10 + 2.13e09
Sammon | 1.22¢10 —  — 1.22e10
Borehole || Triang. 2.61e09 + 7.44e08 | —— 5.05e07 £ 1.88e05 | 2.66e09 + 7.44e08
ANN 2.61e09 + 7.44e08 | 6.56e10 + 2.52e06 | 1.25e¢06 6.81e10 £ 7.46e08
Distance | 2.61e09 £ 7.44e08 | 9.76e07 £ 1.55e04 | 1.23e07 2.72e09 + 7.44e08
TABLE 2. Sammon stress for mappings.
Dataset Original Triangulation ANN mapping Distance mapping
Sammon
Circle 0.04329 0.04605 + 0.0024 | 0.04540 + 0.0016 0.04526 + 0.0015
Iris 0.00396 0.01197 +£0.0013 | 0.00777 & 0.0045 0.00603 £ 0.0007
Pump 0.11816 0.30136 + 0.0145 | 0.12200 £ 0.0011 0.12761 £+ 0.0020
Digits 0.12348 0.19844 +0.0033 | 0.13045 £ 0.0020 0.12846 + 0.0004
Borehole 0.07212 0.10918 + 0.0046 | 0.07993 + 0.0018 0.07636 + 0.0014

Table 2 presents an averaged stress calculated for
Sammon and other hybrid methods for all datasets.
Comparing the stress values between Sammon and
its variants, a few conclusions can be drawn:

e Firstly, for the circle dataset, all stress mea-
sures are similar to each other. This is an ar-
tificial, non-complex dataset and locally linear,
therefore all mappings perform well.

e Secondly, in case of real datasets, more diffe-
rences can be observed. The ANN and distance
mapping give similar stress measures, which are
close to the original one. Therefore not much
map distortion is caused either by the ANN or
distance mappings. However, ANN mapping
needs a large amount of time for training the
network, which exceeds the time needed for the
original Sammon mapping, so there is no speed-
up to be gained by using an ANN.

e Finally, the triangulation method definitely
gives the worst stress values.

Figure 4 presents some examples of the original
Sammon and the hybrid methods. Points marked
by stars belong to a base (and were projected by
Sammon mapping), while points marked by squares
correspond to new points, added to the existing
map. Visual judgment confirms also that the maps
obtained for ANN and distance mappings resemble
the original ones quite well.

6 Conclusions and discussion

In order to speed up Sammon mapping without
losing map quality, we considered and compared
a combination of Sammon mapping, based on a sub-
set of points, with three other methods: triangu-
lation, an ANN and distance mapping. The last



approach was introduced in this paper.

As a rule of thumb (as discussed in Section 4.1),
for Sammon mapping, we chose a random base con-
sisting of 50% of all points.

We investigated the performance of the methods
by the experiments (described in Section 4) per-
formed on five different datasets, which leads us to
the following conclusions:

1. Both triangulation and distance mapping re-
quire similar amount of time for adding points,
but triangulation gives larger map distortion
(confirmed by both the larger stress values and
visual judgment).

2. Although the networks approximate the Sam-
mon mapping quite well, the computational
cost required for training them is very high.

3. Therefore, distance mapping is the only recom-
mended method in order to save both compu-
tation time and preserve the mapping quality.

One can also think of fine-tuning the final configu-
ration by applying a few more iterations of Sammon
mapping. However, in our experience the stress and
the obtained configuration change only very little.

Sammon mapping itself does not allow for adding
new points to the existing configuration. When new
points appear in the original data, the whole map
should be found again, which is a big disadvantage
of this projection, as it requires many computations.
A smart way of adding new points, which is pro-
posed by us, seems to minimize this inconvenience.
Distance mapping does not only allow for general-
ization, but it is the reasonable solution of impro-
ving the speed of Sammon mapping. Therefore, we
solved two problems.

6.1 Further research

There are two issues for further study. Firstly,
distance mapping might be improved further by
reducing the considered distance matrix Dpgse €
RP*P needed for determining the linear operator V'
(see equation 2), to a matrix D} ___ € RP** (k < p).
This would make the matrix V' be a solution in the
least square sense, which might generalize better.

Secondly, Sammon mapping is described by mini-
mization of the stress function given by equation 1.
However, this is a special case of more general stress
function expressed as:

n—1 n
1
Fs = DD DI LA D> 88 (6 —di)

j=i+1%; =1 j=i+1

withp=..-2,-1,0,1,2,....

Our results suggest that distance mapping can be
also considered as a reasonable way both to genera-
lize and to speed up any projection defined by the
Egs function.

Acknowledgments

This research was performed as part of a project for
Shell (SIEP), under project no. TN-97-036. It was
partly supported by the Foundation for Computer
Science in the Netherlands (SION) and the Dutch
Organization for Scientific Research (NWO).

References

[1] G. Biswas, A.K. Jain, and R.C. Dubes. Evalu-
ation of projection algorithms. IEEE Transac-
tions on Pattern Analysis and Machine Intelli-
gence, 3(6):701-708, 1981.

[2] I. Borg and P. Groenen. Modern Multidimen-
sional Scaling. Springer-Verlag, New York, 1997.

[3] D. de Ridder and R.P.W. Duin. Sammon’s map-
ping using neural networks: a comparison. Pat-
tern Recognition Letters, 18(11-13):1307-1316,
1997.

[4] D. de Ridder, A. Hoekstra, and R.P.W. Duin.
Feature extraction in shared weights neural net-
works. In E.J.H. Kerckhoffs, P.M.A. Sloot,
J.F.M. Tonino, and A.M. Vossepoel, editors,
Proceedings of the 2™ annual conference of the
Advanced School for Computing and Imaging,
pages 289-294. ASCI, ASCI, 1996.

[5] R.C.T. Lee, J.R. Slagle, and H. Blum. A trian-
gulation method for the dequential mapping of
points from n-space to two-space. IEEE Trans-
actions on Computers, C-26:288-292, 1977.

[6] J. Mao and A.K. Jain. Artificial neural networks
for feature extraction and multivariate data pro-
jection. IEEE Transactions on Neural Networks,
6:296-317, 1995.

[7] M.F. Mgller. Efficient Training of Feed-Forward
Neural Networks. PhD thesis, Computer Science
Department, Aarhus University, 1993.

[8] J.W. Sammon Jr. A nonlinear mapping for data
structure analysis. IEEE Transactions on Com-
puters, C-18:401-409, 1969.

[9] A. Ypma, E. Pekalska, and R.P.W. Duin. Do-
main approximation for condition monitoring.
In B.M. ter Haar Romeny, D.H.J. Epema,
J.F.M. Tonino, and A.A. Wolters, editors, Pro-
ceedings of the 4*" annual conference of the
Advanced School for Computing and Imaging,
pages 257-263. ASCI, ASCI, 1998.



SAMMON; 2 parallel circles in 3D SAMMON,; Iris dataset SAMMON mapping

15 . . 70 . . S 25
£00000000004 M 20t 09 500 £6%, 4
) o, | o R IR
00000000004 o o 150 0,800 o % ° 1
oo<>°° Ooo%o o% N oy 3 . . @Oo%o%o %0 00280%80%80§
©0 00, 601 ° + o o 0,700, o 00 PO g0 O 2 R %
05 2°% B o o0 ° © 10 g%ooo& OO% S o ooo% g%% “Ogo go og’ig il
0, N o 0 0
8 ??) 550 © g w7+ 000% st %4 %% %&f 02%000%0§ o"%%og(‘f’ogo
8 ° Lt O 0 09 0908 00% ® 0° 50,8 820,990
0 Fob 4.0 RS wgh” R ST RRIACH I
$ s0- Q%-;? LN N . or 85 %°% 8, 00%500%%0%,
+ o [¢]
$ o g% s G 0% sl IR 8080 g0 Oog()g(?%o
-0.5 g 4 oo, LR A Ogo%oo o Co
oo o 4 t CY EETER N SR 780 0%
of o 45 + K + o 00 K00
§ 000, o° K R S g s 10+ b8 0508,
%, ©90000000000° 50° S LT o LT %3 50 B
1 %00, 0900%° 1 4 °° ! -15t RS S 3 eteee
0000000000000° N . 20 RAEAE:
o . _o0b
-1 . . . . . 3 . . . . . . . .
'35 -1 -05 0 0.5 1 15 30 40 60 80 100 -20 -10 0 10 20
STRESS: 0.04329 STRESS: 0.00396 STRESS: 0.11816
(a) Sammon for circle data (b) Sammon for iris data (c) Sammon for pump data
TRIANGULATION; 2 parallel circles in 3D TRIANGULATION; Iris dataset TRIANGULATION; Pump vibration dataset
1 . . . . . 70 . . . : :
A% &g
040 ¥* *Ben, ot o
et ", 65t E B 30
e & S | o+ . ’
- an g ., - 3 %0 et 20
g 4*0o0ooo N o 60} s 0 ¥ 9 Bq *
0 ; Py # . 5
X, f ’SE q;?w Lt * e, o o o
g 4 550k | Byt oo, 10 o
¥ M Ty o w o “:;D + @ oo
-05 5 i * e e >
. ¥ o * % B L o
ab I 50F &5 . *Du; S 0 ?@f"“; ;
o ab & ¥ * B " an
-1 gy grg oot T ’ « L. -10 :
v o E
D**
-15 *DD*”N“H”**D* i a0t o . R -20
-30 B
_ . . . . . 3 . . . . . . .
s -1 -0.5 0 0.5 1 15 30 40 60 80 100 -40 -20 0 20 40
STRESS: 0.0485 STRESS: 0.0107 STRESS: 0.2786
(d) Triangulation (e) Triangulation (f) Triangulation
ANN; 2 parallel circles in 3D ANN; Iris dataset ANN; Pump vibration dataset
1 . . . : . 70 . . . 25 . . . .
R
****D*Dw - *D*Dn* | R 20k . et Dﬂ:*ug*? g, 1
s06g , ] 65 Sl T
0.5 587G, o h 2 B " & o 5
° 1 s ° P 15¢ RS P 1
g L o srr P ¢ ooen
1 % 60 e % 5 * o, o oy o 98
0 S A s, % s 10+ PR L S i
i o ﬁ? =% o e Taeo® PRI TC
f g H 551 , 24t G et 5t L Tene r Tog M Ee
Fd i ¥ &5 woby e R A M R
-0.5 i 5 i a;%* .8 D&*% o ot *%ﬁ;ﬂ . L *D*D“E P *D*Ju |
% 3 50F o * St * ¥ % K P P, 37
) . kS PR & * e F* o * Yoyt o x
% ok s LA v, -5t + et g Fet BT,
1 Y . o I f0o o % o, 8 B B
. *rxx030%0) PrI R T Mia s M L L
*a I o -10F T .2 4" 5By P E
*og o *Sf& E) Slon as
o o*9 ] o o
-15 KT a0k “ 5 _1s} H * 55%;@&3% ,
*
_o0l ,
_ . . . . . 3 . . . . . . .
s -1 -0.5 0 0.5 1 15 30 40 60 80 100 -20 -10 0 20
STRESS: 0.0483 STRESS: 0.0059 STRESS: 0.1232
(g) ANN mapping (h) ANN mapping (i) ANN mapping
DISTANCE; 2 parallel circles in 3D DISTANCE; 2 parallel circles in 3D DISTANCE; Pump vibration dataset
1 70 25 . . . ,
**D*D**DDD*DDDDD*D*D*DD o " 20F P 1
05 = " 1 st o Lt e T
¥ poooo*oy o & o* o Foo
ra .. o 15 o optame 1
E o 5 %, ¥ . PO Wk ok TogPh o O [
0 i e fo% 0 L e e, T RIS g ]
Sp ¥ . . R o e Tk A
£ h i L5 LT s EREY ML IA
% ¥ i & £3 70 T ¢ TolEng® o gh
-0.5 % g i 550+ , St ° o7 o o, LER TG by
5 % ¥ g e e # o or . . P oHab s For 1
) $ . & e, o NERRIETRN =
%, o & -2 N *o% el PR g o+ O By 4 |
-1 ", By, e £ 1 sof u*:% RN 5 AT
* #0200 o o o q, o e P
g o s.00 " oo -10t i Tl
*o - . Fo e . :gg\:u%ﬁd; R
o o*0 i L o o
-15 AT IU 45 . R _15 M ;ﬂ:x;yi f
8 '
_ool ,
-2 40 *
-15 -1 -05 0 0.5 1 15 20 40 60 80 100 -20 -10 0 10 20
STRESS: 0.0482 STRESS: 0.0066 STRESS: 0.1284

(j) Distance mapping (k) Distance mapping (1) Distance mapping

Figure 4: Examples of Sammon projected datasets and the mappings obtained by using hybrid methods.



