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Abstract—Texture is often considered as a repetitive pat-

tern and the constructing structure is known as texel. The 

granularity of a texture, i.e. the size of a texel, is different from 

one texture to another and hence inspiring us applying scale 

space techniques to texture classification. In this paper Gaus-

sian kernels with different variances (σ2) are convolved with 

the textures from Brodatz album to generate the textures in 

different scales. After some preprocessing and feature extrac-

tion using principal component analysis (PCA), the features 

are fed to a combined classifier for classification. The learning 

curves are used to evaluate the performance of the texture 

classifier system designed. The results of classification show 

that the scale space texture classification approach used can 

significantly improve the performance of the classification 

especially for small training set size. This is very important in 

applications where the training set data is limited. The applica-

tion of this method to ultrasound liver tissue characterization 

for discrimination of normal liver from cirrhosis yields prom-

ising results. 
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I. INTRODUCTION 

Liver disease is one of the most prevalent diseases in the 

world and an early diagnosis helps to prevent changing the 

state of the disease to a developed stage. Liver diseases are 

of two types: focal and diffused. In the former, only part of 

the liver is affected by a tumor while in the latter, the whole 

liver or at least one lobe is completely affected. In diffused 

liver diseases like cirrhosis, the texture of liver in ultrasound 

B-scan images is affected by the kind of pathology that 

makes it distinguishable from normal liver. However, the 

accuracy of the diagnosis by the sonologist based on quali-

tative criteria, i.e. visual inspection of the ultrasound images 

is low. Thus, computer aided texture classification systems 

can help to improve the diagnosis. In this paper we develop 

one algorithm for texture classification, which is proved to 

be efficient especially when just a small number of data 

samples is available for training and testing. 

There is a vast literature on texture analysis, as can be 

judged from the innumerable applications the texture analy-

sis has in various fields [1, 2].  

Texture analysis techniques are classified basically into 

four types of approaches: statistical [3], structural, trans-

form-based [4, 5] and model-based [1, 6, 7].  

In recent years, scale space theory has been recognized as 

the vital tool for texture analysis [8]. This is because texture 

displays a multi-scale property. Whatever may be the repre-

sentation, it is applicable in different scales. 

In this paper scale space theory is used to produce multi-

scale texture images. The patches are extracted from these 

textures and after feature extraction using principal compo-

nent analysis (PCA), the features are applied to some basic 

classifiers. The outputs of these basic classifiers are then 

combined using a fixed combination rule to classify the 

textures. The performance of the whole system is evaluated 

using learning curves for different learning set sizes. Finally 

the application of the method and its effectiveness to liver 

ultrasound tissue characterization is shown. 

II. SCALE SPACE TEXTURE CLASSIFICATION  

A texture classification system is typically consisting of 

several stages including preprocessing, feature extraction 

and classification [9]. Each stage is explained below in the 

context of scale space texture classification. 

A. Scale space analysis  

Texture is usually considered as a repetitive pattern and 

this constructing repetitive structure is of varying size in 

different textures. This inspires us to apply multi-scale tech-

niques in texture analysis. Here, scale space theory, which is 

biologically motivated based on the model of front end 

vision, is used for multi-scale texture classification. In scale 

space image analysis, 2-D Gaussian kernels as given in (1), 

with different variances (σ
2
) are convolved with the image 

to generate the image in different scales. This generates 

multi-scale images and each image emphasizes on details in 



the corresponding scale. The larger the Gaussian kernel 

variance (σ
2
), the more emphasis on coarser structures. 
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This is shown in Fig. 1 where a texture from Brodatz al-

bum is convolved with Gaussian kernel of varying variance. 

 

 

Fig. 1- Texture D11 of Brodatz album in 4 different scales.  

 

To discriminate two or more textures, we use the addi-

tional information provided in different scales to achieve a 

better performance (comparing to single scale). To this end, 

the patches are extracted from the textures in the original 

and other scale space. The size of the patch is an important 

factor that depends on the sizes of the texel and the applied 

Gaussian kernel. It also affects the dimensionality of the 

feature space as larger patches generate more features. This 

may impose problems with respect to the computation speed 

as well as to the necessary training set size. This is further 

explained in relation to feature extraction and classification.    

B. Feature extraction 

Working in high dimensional feature space usually im-

poses problems as we need more data samples for training. 

This phenomenon is called the curse of dimensionality. It 

may cause the peaking phenomena in classifier design [2]. 

There are two solutions to this problem. First, to increase 

the training set size and second to reduce the feature space 

dimension using feature selection/extraction techniques. 

Many feature selection/extraction techniques are addressed 

in the literature among which Principal Component Analy-

sis (PCA) is one of the most prevalent ones. 

In PCA, we consider a population of random vectors of 

the form: 

 

 

(2) 

The mean vector and covariance matrix of this random 

population can be calculated as follows: 

 

 

(3) 

 

 

(4) 

In PCA, the eigenvectors of the covariance matrix Cx are 

used to define a transform matrix A, the rows of which are 

made up of the eigenvectors weighted by decreasing magni-

tude of corresponding eigenvalue. Rotation of the input 

vectors to the eigenvectors yields an uncorrelated data set, 

i.e., its covariance matrix is a diagonal matrix.  

Feature extraction for the purpose of dimension reduction 

using PCA can be achieved by selection of only first few 

components (eigenvectors) corresponding to the largest 

eigenvalues. This preserves up to specified fraction of the 

variance in the original data set [9]. The main question is 

how many components are needed to guarantee that thereby 

sufficient information of the original data set is preserved in 

the transformed (uncorrelated) space. We answer this ques-

tion here in our multi-scale context of texture classification. 

By going to higher scales, i.e. convolving the image with 

the Gaussian kernel of larger variances, we lose the details 

and therefore we expect that fewer components are needed 

to preserve the information in the original random vector. 

This is shown in Fig. 2 by drawing the cumulative fraction 

of the eigenvalues, which also represent the fraction of the 

variance of the original data, in two scales for texture D11 

from Brodatz album. It is clear that as we go to higher 

scales, fewer components are required to preserve the same 

amount of variance of the original data. 
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Fig. 2- Cumulative fraction of eigenvalues (i.e., preserved variance) for 

texture D11 in the original space (top graph) and after convolving the 

texture with a Gaussian kernel of variance 9 (bottom graph). 

C. Classifier 

The next issue to address in this texture classification 

system is the classifier. We have so far produced the data in 

different scales and reduced the dimensionality of the fea-

ture space using PCA. As explained in the previous section, 

the feature space dimension will be different after applying 

PCA when we go from one scale to another.  

Based on this, parallel combined classifiers seem natural 

as they can be used for combining different feature spaces.  
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Combined classifiers are used in multiple classifier 

source applications like different feature spaces, different 

training sets, different classifiers applied for example to the 

same feature space, and different parameter values for the 

classifiers for example k in k nearest neighbor (k-NN) clas-

sifier. The block diagram of the parallel combined classifier 

used in this paper is shown in Fig. 3. There are two parame-

ters to be selected in this combined classifier, i.e. the type of 

the basic classifier and the combination rule. The selection 

of these two options is discussed in section IV. 

 
Fig. 3- Block diagram of the combined classifier used in this paper. 

III. EXPERIMENTS  

To verify the effectiveness of the proposed method, ex-

periments were performed on a supervised classification of 

some test images. The test images are from Brodatz album 

and some normal and cirrhosis B-scan ultrasound liver im-

ages shown in Fig. 4 and Fig. 5 respectively. The experi-

ments performed are explained separately for textures from 

Brodatz album and liver images.  

A. Experiments on textures from Brodatz Album 

 Preprocessing: The textures are convolved with 2D 

Gaussian kernels in 5 different scales. The scales (σ
2
/2) of 

the Gaussian kernels used in the convolution are 1.5, 3, 4.5, 

6 and 7.5. We add the original texture to this scale space to 

get a scale space texture of 6 scales.  

To make sure that for all textures the full dynamic range 

of the gray level is used contrast stretching is performed on 

all textures in different scales. Also, to make the textures 

indiscriminable to mean or variance of the gray level, DC 

cancellation and variance normalization are performed. 

 

  

  

Fig. 4- Textures D4, D9, D19 and D57 from 

Brodatz album used in the experiments. 

 

  

Fig. 5- A typical normal liver (left) and cirrhosis 

(right) B-scan image used in the experiments. 

 

Feature extraction: 1800 patches with size 18×18 are ex-

tracted from the textures in different scales. Then, PCA is 

used for the purpose of feature extraction. The number of 

components used for dimension reduction is chosen to pre-

serve 90% of the original variance in the transformed (re-

duced) space. This is between about 3 and 50 components 

in the highest and lowest scales.  

Combined classifier: A variety of basic classifiers and 

combining rules are tested to find the best one. Among the 

basic classifiers tested are some normal-based density clas-

sifiers like quadratic discriminant classifier (qdc), linear 

discriminant classifier (ldc), and nearest mean classifier 

(nmc). The Parzen classifier was also tested as a representa-

tive of non-parametric based density classifier. Six basic 

classifiers one for each scale are used. The mean, product 

and voting fixed combination rules as well as the nearest 

mean trainable combination rule are tested for comparison.  

Evaluation: The performance of the texture classification 

system is evaluated by drawing the learning curve for a 

variety of training set sizes. For each training set size, the 

remaining of the patches are used to test the system and 

hence the training and testing data are separate. The error is 

measured 10 times for each training set size and the results 

are averaged.  

B. Experiments on B-scan ultrasound liver images 

Normal liver and liver affected by cirrhosis are used in 

the experiments. The region of interest (ROI) is taken from 

the center of the image where the image is the most focused. 

The size of the ROI is 32×32. Here, only three different 

scales in addition to the original image are used and since 

Scale n 

Feature 

Space 

Combining Classifier  

Scale 2 

Feature 

Space 

Scale 1 

Feature 

Space 

Basic Classifier 2 

Basic Classifier n 

Basic Classifier 1 

M  M  

Fixed/Trainable 

Rules 

Combining 

Classifier 



the granularity of the texture is lower, lower scale values are 

used for the Gaussian kernel, i.e. 1, 2 and 3. The patches 

have the size of 6×6. 1000 patches are extracted from the 

liver images in different scales. Based on the results of 

texture classification on Brodatz album, the quadratic classi-

fier (qdc)is used as base classifier and the mean fixed com-

bination rule as combined. Evaluation is performed in the 

same way as for the experiments on Brodatz album. 

IV. RESULTS 

A variety of tests are performed using different parame-

ters as explained in the previous section. Among tested 

basic classifiers explained in the previous section, qdc per-

formed the best. This can be justified based on the feature 

extraction method used as PCA is a linear dimension reduc-

tion that performs integration in the feature space. Conse-

quently, the features tend to be normally distributed based 

on the central limit theorem. On the other hand, among 

tested combination rules, mean fixed rule performs the best. 

Fig. 6 displays the learning curves in single and multiple 

scales for the textures from Brodatz album. The peak of the 

curve is a result of peaking phenomena as explained in Sub-

section II-B. It is important to notice that multi-scale texture 

classification improves the performance of the classification 

significantly especially in low training set sizes which is 

very important in applications where training data set is 

limited like ultrasound liver tissue characterization. 

Fig. 7 displays the learning curves in single and multiple 

scales for liver images. Although the size of the training set 

is quite limited here, the performance is still remarkable that 

shows the effectiveness of the approach.  

V. DISCUSSION AND CONCLUSION  

Scale space theory, PCA and combined classifiers are in-

tegrated into a texture classification system. The system is 

very efficient especially in low training set size that the 

system can significantly improve the performance of the 

system comparing to single scale based on the information 

provided in multiple scales.  

Since in liver tissue characterization one major problem 

is limitation in image acquisition as the images should be 

standardized, this method can be very effective in this ap-

plication. Promising results obtained from applying the 

method to discriminate normal liver from cirrhosis.  

In this paper we only used intensity scale space for tex-

ture classification. As future work, we will also consider 

gradient scale space, i.e. derivatives of Gaussian kernel in 

different scales for generation of multi-scale texture.  
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Fig. 6- Learning curves for the classification of 4 textures from Bro-

datz album in single (thin curves) and multiple (thick curve) scales. 

0 30 60 150 450 700 900
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Training set size

A
v
e
ra
g
e
d
 e
rr
o
r 
( 
1
0
 e
x
p
e
ri
m
e
n
ts
)

 
Fig. 7- Learning curves for the classification of normal liver and 

cirrhosis in single (thin curves) and multiple (thick curve) scales. 
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