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Abstract
After years of hesitation neural networks are now widely accepted as im-
portant tools for pattern recognition. As their characteristics differ strongly
from the traditional techniques, neural networks have had a great influence
on the recent developments of non-neural classifiers as well. A summary
will be presented of the insights and fruits resulting from the neural network
hype with an emphasis on the recently developed support vector machines.

1 The Challenge
The purpose of this paper is to sketch the neural network contribution to the pattern rec-
ognition area. We will concentrate on feed-forward networks and pattern classifiers. As
this is not review paper the references will be mainly restricted to a few general books and
papers ([1]-[7]) that might be useful for further reading and to some contributions by the
authors and others that support the private observations and evaluations of the discussed
approaches.

The challenge for the pattern recognition researcher can be simply formulated as: de-
fine an automatic procedure that, given a collection of sets of different real world objects
is able to find the correct set for a new object. These sets are usually called classes and
their names labels. The procedure is a pattern classifier as it has to find the patterns dis-
tinguishing the classes from the given collection of examples, often referred to as the
training set: a collection of object with known labels. Examples of such pattern recogni-
tion problems are the recognition of apples and pears, gothic and roman churches, or more
applicable, handwritten characters, spoken words and microscopically observed biologi-
cal tissues and cells. Human beings are reasonably able to learn to recognize these types
of objects using relatively small sets of examples: tens to hundreds. How about an auto-
matic procedure?

It has been realized for a long time that a single, generally applicable pattern recogni-
tion system cannot work without any context information. For that reason the abstraction
has been made to represent objects by features: measurements from which an expert in the
application knows that they are useful for finding the patterns. The training set is herewith
reduced to a set of labeled points in a feature vector space and the pattern classifier to a
discriminant function defining or separating areas for different classes in this space.

There is a major problem with this approach: for some application areas no expert can
be found able to define a small set of good features. For instance, for the character recog-
nition problem many feature types have been proposed, cumulating in thousands of dif-



ferent features. As a direct consequence the question has to be faced: how does the size of
the feature space (its dimensionality) affect the generalization (performance) of a pattern
classifier? If also the possibility of patterns defined by nonlinear combinations of features
has to be included, the question can be reformulated as: How are the complexity and the
generalization capability of a classifier related?

This question cannot be answered without considering the size of the training set as
well. If we have an infinitely large set of examples the most complex classifier will de-
scribe the pattern better or equally good as more simple systems. For finite sample sizes,
however, very complex classifiers may also be able to find very detailed patterns, in fact
caused by the noise. These classifiers will have a bad performance. As a consequence,
more simple classifiers might perform better than more complex classifiers in case of fi-
nite sample size, see fig. 1. This phenomenon is known under various names in the pattern
recognition literature: peaking, the curse of dimensionality, Rao’s paradox and Hughes’
phenomenon.

For a given classifier a peaking per-
formance can only be avoided by a suf-
ficiently large sample size. For difficult
classification problems (those that need
complex classifiers) it appears some-
times to be necessary to have hundreds
of thousands of training objects. More
complex classifiers are caused, among
others, by growing feature sizes. It re-
mains counterintuitive that better object
descriptions, e.g. more pixels caused by
higher resolution images, may result in a worse performance and thereby demand more
object examples, see fig 2. We will return to this point at the end of the paper.

The classifier complexity still lacks a useful definition. For classifiers that are linear in
their parameters it can be defined as the number of degrees of freedom. Vapnik [4] has
given a definition for nonlinear classifiers as well, which is, however, related to a worst
case training set of unknown probability. Moreover, the above curves are problem depen-
dent. So what is really needed for an optimal classifier choice is some method that con-
nects the classifier complexity with the difficulty of the problem: the data complexity. This
is still an open issue.
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Fig. 1. The behavior of the classification error as a function of the classifier complexity
(e.g. feature size or number of degrees of freedom) and the size of the training set.
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Fig. 2. Higher resolutions may result in more
features and thereby in a worse performance.



This approach of estimating first the desired complexity (which includes the choice of
feature set) finally aims at an automatic procedure that chooses for a given problem the
best classifier (in some sense) and thereby constitutes a ‘super classifier’, which has to be
used for all pattern classification problems. Herewith the question is raised why we cannot
build directly a classifier that automatically adapts itself to the optimal complexity.

This point of view makes it necessary to reconsider the traditional optimization criteria
for classifiers. The two most frequently used are the error probability and the mean square
error. The first is based on some integration of the classification error and is directly re-
lated to what is considered as the performance of the final classifier. The second is based
on distance measures, which are usually easier to calculate and to optimize but which are
only indirectly related to the classifier performance. Both measures, however, do not in-
clude any complexity measure. Thereby they are not protected against peaking during the
optimization of a classifier with an adjustable complexity. A possibly third approach is the
minimization of the description length, which seems directly related to the complexity.
For a straight forward use of this approach it is necessary to fix the classification error.

In any discussion on comparing and selecting classifiers it is necessary to realize that
the overall performance of a classifier depends on the set of problems that is considered.
No classifier will be the best on any problem or on any set of problems. So it is necessary
to make a choice on a wide set of problems. See [2] for an example of such a study. In [11]
the problem of comparing classifier is discussed more extensively.

In the remainder of this paper the feed-forward neural network classifier is discussed in
the light of the above considerations. It will be summarized what can be learnt from this
classifier and these insights will be applied to the extension of traditional classifiers and
the development of new classifiers.

2 Neural Network Properties
The feed-forward neural networks that are dis-
cussed here are configured by single neurons such
as shown in fig. 3. Their inputs are linearly weight-
ed and summed. The result is mapped by a squash-
ing function on the (0,1) interval. Note that for
very small weights this function is almost linear
and that for very large weights it almost resembles
the step function.

An entire neural network with a single layer of
hidden neurons is shown in fig. 4. It has an input
for each feature and an output for each class. Clas-
sification is done by assigning the label of the
class with the highest output to the incoming fea-
ture vector. The number of hidden neurons can be
freely chosen and determines the maximum non-
linearity that can be reached. Almost any decision
surface can be constructed for sufficiently large
sets of neurons.

It is important to distinguish the architecture of a neural network from the way it is
trained. It has been shown in literature that almost any classifier can be mapped on a neural

x
1

x
n.......

f x w,( ) 1

1 e+
w– x w0–

-------------------------------=

Σ wi xi

f(x,w)

-w0

w0 →∞

0.5

0.5

0

1

f(x,w)

Fig. 3. A single neuron
(right) and its input-output
relation based on a sig-
moid function (above)



network. This shows that the architecture is very general and it is thereby not specific.
Consequently, from a scientific point of view a neural network implementation of an oth-
erwise trained classifier is thereby not of interest, it does not specifically contribute to a
better generalization.

The real interesting point is therefor the way neural net-
works are trained. If this makes use of the specific architec-
ture, we will call it a neural network classifier. If the training
is done otherwise it belongs to the large class of non-neural
classifiers and such methods are not considered in this section.
Specific neural network training procedures train the network
as a whole and iteratively minimize some error criterion based
on the network outputs and their targets (derived from the
class labels).

Traditionally the MSE criterion is minimized using a gradi-
ent descent technique resulting in the well-known error back-
propagation training rule. This rule is very slow and only
feasible by the heavily improved computer speed in the last
decade. Methods that use the second derivative in one way or
another (conjugated gradient, Levenberg-Marquardt) can be
much faster but might also yield instable results.

A number of observations can be made on the properties of
neural network classifiers. They are given here without much
argumentation:
1. The backpropagation rule and its derivatives very rarely finds the global minimum. The

computational effort as well as the large number of local minima in the error landscape
are prohibitive.

2. For almost all networks with more than one or two hidden neurons the global minimum
is undesirable as an unrestricted neural network classifier has a too large complexity for
most problems.

3. It can thereby be concluded that the traditional neural network classifiers work because
of the lousy performance of the backpropagation rule. Put it more friendly: this rule has
sufficiently built in regularization possibilities, most prominently its large computer de-
mand resulting in early stopping by an impatient analyst.

4. One of the most important reasons why
the optimization of complex nonlinear
machines like neural networks works, is
due to the tradition of starting with
small weights. This corresponds with
linear neurons (see fig. 3) and thereby
with an entire linear neural network.
Consequently, in the first step an opti-
mal linear solution is approximated,
thereafter, due to the growing weights,
the network represents a moderate non-
linearity. After that it stops at one of the
nearest local minima, see [9] for a more
extensive discussion.
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updates due to an increasing effective clas-
sifier complexity.



5. The above may also be formulated as: a neural network shows an increasing complexity
as a function of the training effort. This is illustrated by the behavior of the error as a
function of the training time, see fig. 5 compared with fig. 1.

6. Faster neural methods have less built in regularization and should therefor be more ex-
plicitly protected against overtraining, e.g. by the addition of noise or by weight decay.

7. Most neural networks are redundant: they have more neurons than needed for imple-
menting the final classifier. This redundancy, however, helps during the training proce-
dure.

8. The neural network solution is hardly ever the best classifier for a given problem. How-
ever, very often they do reasonably well. It has to be realized that due to the very large
set of possible neural network solutions, results highly depend on the skills of the ana-
lyst. A unique neural network classifier (like the well defined 1-nearest neighbor rule)
does not exist, see [11].

3 Further Observations
One of the most important lessons that can be extracted from the neural network invasion
that entered the pattern recognition area is that it appears to be possible to train large, com-
plex machines that often have more degrees of freedom than the size of the training set.
The widely accepted dogma, based on the work by Cover, that one should never do this
has therefore to be reconsidered.

A simplified version of the traditional argumentation is that a linear classifier in Rk,
having k degrees of freedom, is always able to separate perfectly an arbitrarily labeled
training set of n ≤ k training samples and has thereby no generalization capability. Com-
putations by Cover [8] and later by Vapnik [4] show that n >> k, e.g. n = 10k, in order to
get some generalization. In these studies it is not taken into account that in many applica-
tions it is known on apriori grounds that the classes are reasonably well separable. On the
same arguments as given for the linear classifier, the more complex and nonlinear neural
network classifier should not be used in small sample size situations, but appeared to give
good results in practice.

Stimulated by these observations the first author started to reinvestigate the linear clas-
sifier for n < k. One of the first things that could be observed is that an adaptation of the
traditional Fisher’s Linear Discriminant using a pseudo-inverse technique (the PFLD)
yields a surprising result for the separation of two 30-dimensional Gaussian distributions
[10], see fig. 6. The mean error peaks for n = k = 30. On the left side of this peak it pays
off to throw away a part of the training set at random. If this data set reduction is done
more systematically using some heuristic strategy (the Small Sample Size Classifier,
SSSC, [10]) an even better result can be obtained. This behavior can be understood by re-
alizing that for n < k the data is situated in a linear subspace, such that there is a preference
for directions with large variances. If these directions coincide with the class differences,
the additions of more samples, and thereby more feature directions will mainly introduce
more noise and will yield worse results. A series of experiments has shown that the above
behavior is not an artifact of the artificial example that was used, but also exists in real
world problems. A mathematical analysis of the phenomenon is undertaken by Raudys
and Duin [14].



It should be noted that in the step
from PFLD to SSSC a shift in crite-
rion has been made. Fisher’s discri-
minant is based on a MSE criterion.
In case of the PFLD this criterion is
still used but yields a zero MSE as
the number of parameters (the fea-
ture size) is larger than the sample
size. The SSSC now heuristically
minimizes the number of objects in
the training set under the condition
that still a zero MSE is obtained. So
this follows a minimum description
length (MDL) strategy.

More systematically this is done
by a recent proposal by Vapnik [5],
the Support Vector Classifier (SVC).
If the training set is given by a n×k matrix X the weight vector w for a linear classifier C(y)
for a new object vector y can be written as a linear combination of the original training set:

C(y) = wyT = αXyT (1)

The MSE solution of α for a given set of class labels (output targets) λ is:

, so (2)

C(y) =  = (3)

in which Kxy stands for the matrix of inner products between X and Y (or y). The FLD
and the PFLD can be written like this. If n <= k the MSE is zero. In the SVC the training
set X is reduced to a minimal set. Vapnik [5] uses a quadratic programming technique
which allows also nonzero MSE solutions and thereby training set sizes n > k. He also
shows that by replacing K by Kp a polynomial classifier is obtained having the same com-
plexity as the linear one!. This is due to the fact that the length of the parameter vector α
equals to size of the support set.

In [12] and [13] we proposed to replace the in-
ner product matrix by an arbitrary similarity ma-
trix based on direct measurements of object
(dis)similarities, resulting in a featureless ap-
proach to pattern recognition. This procedure
seems to be a good candidate to meet the chal-
lenge presented in the first section: higher image
resolutions now result in more accurate compu-
tations (of object similarities) only. The classifi-
er itself doesn’t change. As a result of the fixed
parameter size there are no problems with an in-
creasing complexity.

At this point in our discussion we report an in-
teresting perceptron study recently undertaken by Raudys [15]. His aim is to get a better
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understanding of the neural network learning behavior. In [9] we summarized this using
fig 7. Due to the small weight initialization a neural network starts as a linear system, for
growing weights the nonlinear part of the sigmoid function is used, see fig 3, and for very
large weights the sigmoid behaves as a threshold function that just counts the errors. Some
of Raudys’ observations will now be summarized and commented.

In order to study the linear initialization better, targets of 0.4 and 0.6 are used. Raudys
proves formally and experimentally that by this the perceptron has a MSE behavior and
approaches Fisher’s Linear Discriminant. If the targets are released to extreme values, e.g.
0.001 and 0.999 the outputs are allowed to use the nonlinear part of the sigmoid. As a re-
sult a minimum error probability behavior is found for just weakly overlapping classes:
the perceptron approaches the linear classifier that minimizes the apparent error.

If training is proceeded further the perceptron becomes insensitive for the most remote
objects and training becomes determined by the most nearby objects only. We suggest that
if at this point the weights of the most remote objects are set to zero, the perceptron might
be used to find a support vector classifier. So now we have a MDL solution. In the next
section an experimental examples is given. Raudys concludes that the target value is a
very important regularization parameter, in combination with the training time. It has to
be studied further how Raudys’ results should be extended to the nonlinear case for neural
networks with more layers.

A remarkable conclusion can be drawn from Raudys’ study. A neural network is not
just able to implement almost any classification function, but it can also be trained with
various strategies. We add to this conclusion that this neural network ability may only be
judged positively if it appears to be possible to formulate explicit rules how this has to be
done for an arbitrary problem. Otherwise this neural network ability remains hidden in the
skills of the analyst.

4 Experiments
In this section a number of character recognition experiments will be presented that illus-
trate the possibilities of some of the above discussed classifiers. In particular examples
will be given that support the following observations:
1. The nearest neighbor classifier is still alive and do-

ing well, even in comparison with the most ad-
vanced neural network procedures.

2. Support vector classifiers may perform very well.
3. Perceptrons are a good candidate for fast training of

support vector classifiers.
These experiments are partially published before [16],
[17]. They are based on one of the NIST databases
[18] from which we extracted 1250 samples for each
of the ten handwritten numerals 0, 1,..., 9. In the raw
data the characters are represented in binary 128 x 128
images. We used the normalization software supplied
with this dataset and applied it for position, size, angle and line-width, resulting in 16 x 16
gray value images. See fig 8 for some examples. The data was split into a fixed set of 250
characters per class for training and 1000 characters per class for testing. All experiments
were run only once, using constant subsets of 5 until 250 characters per class.

Fig. 8. Some examples of the used
16x16 character representations.



As a reference we computed first the (pseudo) Fisher’s linear discriminant (PFLD) and
the nearest neighbor rule (1-NN), see fig. 9. The PFLD shows the peaking behavior as dis-
cussed before, see fig. 6, for a sample size (10×25) that is about the feature size (256). The
nearest neighbor rule performs much better, indicating that nonlinear classifiers might be
useful. In the following figures the 1-NN error curve is repeated as a reference. For the
neural network experiments so called shared weights networks have been applied known
as “LeCun” (in our implementation 1361 neurons, 63660 connections and 9760 weights
and biases), see [19], its extension “LeNet” (4634, 94952, 6434), see [20] and the much
smaller “LeNotre” (394, 2210, 764), see [21]. Results are shown in fig. 10. For these sam-
ple sizes the 1-NN rule appears to perform better.

The training of these large neural networks is computationally very heavy. Moreover,
this also holds for the application of a neural network with many weights for the recogni-
tion of new objects. On both points SVC’s might perform better. In our experiments, how-
ever, the training of a SVC using the by Vapnik proposed quadratic programming
technique [5] took about 10 days on a Sun 200MHz Ultra-2 system for 250 objects per
class. On the other side, the resulting performances are very promising, see fig. 11, where
we show the results for classifiers upto degree 4.

Fig. 10. Various neural networks com-
pared with the nearest neighbor rule.

Fig. 9. Performance of the nearest rule (1-NN)
and the pseudo-Fisher liner discriminant.
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Fig. 12. Perceptron support vector classifier
compared with nearest the neighbor rule.
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Stimulated by the performance of Vapnik’s support vector technique and by Raudys’
observations on the general possibilities of the perceptron we developed a perceptron
technique for optimizing the SVC. For initialization the nearest mean classifier is used.
As targets we set 0.001d, in which d is the degree of the classifier and we trained for just
1000 epochs using batch training with step size 0.001. The computational effort is here-
with reduced to about 10% compared with the quadratic programming technique. Perfor-
mances, shown in fig. 12, are for large sample sizes just slightly worse or even better.

5 Discussion
Neural networks have highly stimulated the development of pattern classifiers. Their ar-
chitecture supports the implementation of almost any classification function. The wide set
of possibilities to train them allow for almost any training strategy. Even the most degen-
erated neural network, the single perceptron, can be trained according various strategies
like the minimization of the probability of error, the mean square error and the description
length by just playing with targets, step sizes and by neglecting small weights.

What has been learned from studying neural network training and behavior is that it is
possible to handle very large nonlinear machines using a large set of regularization tools
like early stopping, weight decay and noise injection. By this it is possible that neural net-
works much larger than necessary for the problem still find good solutions. So it is not a
necessary condition for obtaining generalization to have a sufficiently small machine that
by its nature damps all noise. By studying neural networks it can be observed that during
training the influence of remote objects is diminished. Inspired by this we developed a
support vector perceptron technique. The initial experiments reported here are stimulat-
ing. Support vector methods in general should be welcomed for their small dependency
on the feature size. They are thereby expected to suffer hardly or not at all from the peak-
ing phenomenon for increasing resolutions as shown in fig. 2.

The performance of neural network techniques themselves are always somewhat disap-
pointing in relation with their computational effort and compared with more dedicated
techniques and with its eternal competitor, the nearest neighbor rule.

We have now some powerful possibilities for attacking the very small sample size prob-
lem (sample sizes smaller than the dimensionality). On the other side, the large sample
size problem certainly needs some attention: Researcher like Le Cun [20] use larger and
larger networks in order to be able to use all separation possibilities offered by the data.
Support vector machines have difficulties to handle large datasizes simultaneously for
nonlinear classifiers. A solution might be the use of combining classifiers trained by mod-
erate sample sizes. This technique is widely studied now and it may be a fruitful option
for training support vector machines by large data sizes.
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