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Abstract. For high-dimensional classification tasks, such as face recog-
nition, the number of samples is smaller than the dimensionality of the
samples. In such cases, a problem encountered in Linear Discriminant
Analysis-based (LDA) methods for dimension reduction is what is known
as the Small Sample Size (SSS) problem. A number of LDA-extension
approaches that attempt to solve the SSS problem have been proposed
in the literature. Recently, a different way of employing a dissimilarity
representation method was proposed [18], where an object was repre-
sented based on the dissimilarity measures among representatives ex-
tracted from training samples instead of the feature vector itself. Apart
from utilizing the dissimilarity representation, in this paper, a new way
of employing a fusion technique in representing features as well as in
designing classifiers is proposed in order to increase the classification
accuracy. The proposed scheme is completely different from the conven-
tional ones in terms of the computation of the transformation matrix as
well as the selection of the number of dimensions. The present experimen-
tal results demonstrate that the proposed combining mechanism works
well and achieves further improved efficiency compared with the LDA-
extension approaches for well-known face databases involving AT&T and
Yale databases. The results especially demonstrate that the highest ac-
curacy rates are achieved when the combined representation is classified
with the trained combiners.

1 Introduction

Over the past two decades, numerous families and avenues for Face Recognition
(FR) systems have been developed. This development is motivated by the broad
range of potential applications for such identification and verification techniques.
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Recent surveys are found in the literature [1] and [2] related to FR. As facial
images are very high-dimensional, it is necessary for FR systems to reduce these
dimensions. Linear Discriminant Analysis (LDA) is one of the most popular
linear projection techniques for dimension reduction [3]. The major limitation
when applying LDA is that it may encounter what is known as the Small Sample
Size (SSS) problem [4], [5]. This problem arises whenever the number of samples
is smaller than the dimensionality of the samples. Under these circumstances,
the sample scatter matrix can become singular, and the execution of LDA may
encounter computation difficulties.

In order to address the SSS issue, numerous methods have been proposed in
the literature. One popular approach that addresses the SSS problem is to intro-
duce a Principal Component Analysis (PCA) step to remove the null space of
the between- and within-class scatter matrices before invoking the LDA execu-
tion. However, recent research reveals that the discarded null space may contain
the most significant discriminatory information. Moreover, other solutions that
use the null space can also have problems. Due to insufficient training samples,
it is very difficult to identify the true null eigenvalues. Since the development
of the PCA+LDA [3], other methods have been proposed successively, such as
the pseudo-inverse LDA [6], the regularized LDA [7], the direct LDA [8], the
LDA/GSVD [5] and the LDA/QR [9]. In addition to these methods, the Dis-
criminative Common Vector (DCV) technique [10], has recently been reported
to be an extremely effective approach to dimension reduction problems. The de-
tails of these LDA-extension methods are omitted here as they are not directly
related to the premise of the present work.

Recently, a new paradigm to pattern classification has been proposed
[11] - [13] based on the idea that if “similar” objects can be grouped together
to form a class, the “class” is nothing more than a set of these similar objects.
This methodology is a way of defining classifiers between the classes. It is not
based on the feature measurements of the individual patterns, but rather on
a suitable dissimilarity measure between them. The advantage of this is clear:
As it does not operate on the class-conditional distributions, the accuracy can
exceed the Bayes’ error bound. Another salient advantage of such a paradigm
is that it does not have to confront the problems associated with feature spaces
such as the “curse of dimensionality”, and the issue of estimating large numbers
of parameters. Particularly, by selecting a set of prototypes or support vectors,
the problem of dimension reduction can be drastically simplified.

On the other hand, combination systems which fuse “pieces” of information
have received considerable attention because of its potential to improve the per-
formance of individual systems. Various fusion strategies have been proposed
in the literature and workshops1 - excellent studies are found in [14], [15], and
[16]. The applications of these systems are many. For example, consider a de-
sign problem involving pattern classifiers. The basic strategy used in fusion is to
solve the classification problem by designing a set of classifiers, and then combin-
ing the individual results obtained from these classifiers in some way to achieve

1 http://www.diee.unica.it/mcs/home.html
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reduced classification error rates. Therefore, the choice of an appropriate fusion
method can further improve on the performance of the individual method. Vari-
ous classifier fusion strategies have been proposed in the literature. The decision
rules commonly used are Product, Sum, Max, Min, Median, and Majority vote
rules. Their details can be found in [14] and [15].

Motivated by the methods mentioned above, a combined dissimilarity-based
scheme is investigated to solve the SSS problem in FR.

Recently, Kim [18] experimented the utilization of the dissimilarity represen-
tation as a method for solving the SSS problem. Apart from utilizing the dissimi-
larity representation, in this paper, a new way of employing a fusion technique in
representing features as well as in designing classifiers is proposed. The combined
dissimilarity-based scheme is completely different from the conventional ones in
terms of the computation of the transformation matrix and the selection of the
number of dimensions. A problem that is encountered in this paper concerns solv-
ing the SSS problem when the number of available facial images per subject is
insufficient. For this reason, all samples are initially represented with different
dissimilarity measures2 among the samples instead of the feature vectors them-
selves. However, in facial images there are many kinds of variations, such as pose,
illumination, facial expression, and distance. To overcome this problem, an object
is classified with a combined classifier designed in the dissimilarity space.

In some cases, newly generated features based on a certain feature combi-
nation could be more informative compared to the original features. To obtain
more powerful representation, in this paper, the dissimilarity representations are
first combined into new ones by building an extended matrix or by simply aver-
aging them. Then, the object is classified by invoking a group of dissimilarity-
based classifiers as the base classifiers designed in the newly created dissimilarity
space. The final decision is obtained with a fixed or trained combiner which is
applied to the outputs of the base classifiers. The details of these classifiers are
included in the present paper. The present experimental results for well-known
face databases demonstrate that the proposed combining mechanism works well
and achieves further improved efficiency results compared with the conventional
LDA-extension approaches.

Two modest contributions are claimed in this paper by the authors:

1. This paper lists the first reported results that reduce the dimensionality
and solve the SSS problem by resorting to the combined dissimilarity-based
classifiers. Although the result presented is only for a case when the task
is face recognition, the proposed approach can also apply to other high-
dimensional tasks, such as information retrieval and bioinformatics.

2. The paper contains a formal algorithm in which, to improve classification
performances for high-dimensional tasks, a fusion strategy in representing
features as well as in designing classifiers is employed. The paper also

2 Here, dissimilarity representations are measured with Euclidean-based metrics, such
as the Euclidean distance and the regional distance, with the intent of simplifying the
problem. The details of these measures will be included in the present paper.
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provides experimental results by which the rationale of the dissimilarity-
based scheme for employing the fusion technique is proven to be valid.

To the best of the authors’ knowledge, all of these contributions are novel to
a field of high-dimensional classification such as image recognition. This paper
is organized as follows: An overview is initially presented of the dissimilarity
representation in Section 2. Following this, the algorithm that solves the SSS
problem by incorporating the use of dissimilarity representation and a fusion
strategy is presented. Experimental results for the real-life benchmark data sets
are provided in Section 3, and the paper is concluded in Section 4.

2 Combining Dissimilarity-Based Classifiers (DBCs)

2.1 Foundations of DBCs

Let T = {x1, · · · , xn} ∈ �p be a set of n feature vectors in a p-dimensional
space. Assume that T is a labeled data set so that T can be decomposed into,
for example, c disjoint subsets {T1, · · · , Tc} such that T =

⋃c
k=1 Tk, Ti ∩ Tj =

φ, ∀i �= j. The goal is to design a DBC in an appropriate dissimilarity space
constructed with this training data set and to classify an input sample z into
an appropriate class. To achieve this, first of all, a prototype set of class ωi,
Yi =

{
y1, · · · , ymi

}
, m =

∑c
i=1 mi, is extracted from the training data, Ti.

Every DBC assumes the use of a dissimilarity measure, d, computed from the
samples, where d(xi, yj) represents the dissimilarity between two samples, xi

and yj . The dissimilarity computed between T and Y leads to a n × m matrix,
D(T, Y ), where xi ∈ T and yj ∈ Y . Consequently, an object xi is represented
as a column vector as following:

(d(xi, y1), d(xi, y2), · · · , d(xi, ym))T
, 1 ≤ i ≤ n. (1)

Here, the dissimilarity matrix D(·, ·) is defined as a dissimilarity space on which
the p-dimensional object, x, given in the feature space, is represented as an m-
dimensional vector d(x, Y ), where if x = xi, d(xi, Y ) is the ith row of D matrix.
In this paper, the column vector d(x, Y ) is simply denoted by d(x), where the
latter is an m-dimensional vector, while x is p-dimensional.

From this perspective, it becomes clear that the dissimilarity representation
can be considered as a mapping by which x is translated into d(x); thus, m is
selected as sufficiently small (m << p), what is being worked in is essentially a
space with much smaller dimensions. Based on this consideration, the mapping
could be considered as a way of solving the SSS problem.

Two factors to consider for a dissimilarity representation are to select a proto-
type subset from the training samples and to quantify the dissimilarity between
two vectors. To do these things, various representative selection methods and
dissimilarity measures have been proposed in [12], [13], and [17]. The details of
these are omitted here in the interest of compactness.
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2.2 Classifier Fusion Strategies (CFSs)

Recently, classifier combination (“Fusion”) has received considerable attention
because of its potential to improve the performance of classification systems. The
basic idea is to solve each classification problem by designing a set of classifiers,
and then combining the classifiers in some way to achieve reduced classification
error rates. Therefore a choice of an appropriate fusion method can further im-
prove on the performance of the combination. Various CFSs have been proposed
in the literature - excellent studies are found in [14], [15], and [16]. The CFS’s
decision rules of [15] are summarized here briefly.

Consider a pattern recognition problem where pattern z is to be assigned
to one of the c possible classes, ω1, · · · , ωc. Assume that there are M classifiers
each representing the given pattern by a distinct measurement vector. Denote the
measurement vector used by the ith classifier by xi, i = 1, · · · , M . In this case, the
Bayesian decision rule computes the a posteriori probability p(ωk|x1, · · · , xM )
using the Bayes theorem as follow:

p(ωk|x1, · · · , xM ) =
p(x1, · · · , xM |ωk)P (ωk)

∑c
j=1 p(x1, · · · , xM |ωj)P (ωj)

. (2)

Let us assume that the representations used are statistically independent.
Then the joint probability distribution of the measurements extracted by the
classifiers can be rewritten as follow:

p(x1, · · · , xM |ωk)P (ωk) =
M∏

i=1

p(xi|ωk), (3)

where p(xi|ωk) is the measurement process model of the ith representation.
Based on (2) and (3), the commonly used decision rules, such as Product,

Sum, Max, Min, Median, and Majority vote rules, are obtained. Their details
can be found in [14] and [15]. Although all of them can be used in a CFS, a rule
used in the present experiment, namely, the Majority vote rule which operates
under the assumption of equal priors, can be described as follows:

M∑

i=1

Δji = max
1≤k≤c

{
M∑

i=1

Δki

}

⇒ z ∈ ωj , (4)

Δki =
{

1, if p(ωk|xi) = max1≤j≤c {p(ωj |xi)} .
0, otherwise. (5)

Here, for each class ωk, the sum of Δji simply counts the votes received for this
result from the individual classifiers. Thus the class which receives the largest
number of votes is then selected as the majority decision.

The above combination schemes can be applied for combining a set of distinct
features as well as different classifiers. Here, it is interesting to note that a
number of distinct dissimilarity representations can be combined into a new
one to obtain a more powerful representation in the discrimination. The idea
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of this feature combination is derived from the possibility that discriminative
properties of different representations can be enhanced by a proper fusion [12].
There are several schemes for combining multiple representations to solve a given
classification problem. Some of them are : Average, Product, Min, and Max rules.
The details of these methods are omitted here, but can be found in [12].

The reasons for combining several distinct dissimilarity representations and
different dissimilarity-based classifiers will be exhaustively investigated in the
present paper.

2.3 Combined Dissimilarity-Based Classifiers (CDBCs)

In this section, a dissimilarity-based method of classifying the high-dimensional
samples without encountering the SSS problem is proposed. A simple
Dissimilarity-Based Classifier (DBC) [17] consists of the following steps:

1. Select the representative set, Y , from the training set T by resorting to one
of the prototype selection methods as described in [13], [17].

2. Compute the dissimilarity matrix, D(T, Y ), with T and Y , in which each indi-
vidual dissimilarity is computed using one of the measures. To test a sample
z, compute a dissimilarity column vector, d(z), using the same measure.

3. Achieve a classification based on invoking a classifier built in the dissimilarity
space and operating on the dissimilarity vector d(z).

However, in facial images there are many kinds of variations based on such
factors as pose, illumination, facial expression, and distance. Thus, by simply
measuring the differences of facial images for each class, it is not possible to
obtain a good representation. To overcome this limitation, a classifier fusion
strategy is employed. The basic strategy used in fusion is to solve the classifica-
tion problem by designing a set of classifiers, and then to combine the individual
results obtained from these classifiers in some way to achieve reduced classifica-
tion error rates. The tangible rationale for this fusion strategy will be presented
in a later section together with the experimental results.

The proposed approach, which is referred to as a Combined Dissimilarity-
Based Classifier (CDBC), is summarized in the following:

1. Select the input training data set T as a representative subset Y .3

2. Compute dissimilarity matrices, D(1)(T, Y ), D(2)(T, Y ), · · ·, D(k)(T, Y ), by
using the k different dissimilarity measures for all x ∈ T and y ∈ Y .

3. To obtain more powerful representation, combine the dissimilarity matrices,
{D(i)(T, Y )}k

i=1, into new ones, {D(j)(T, Y )}l
j=1, by building an extended

matrix or by computing their weighted average.
3 This is a Wholeset method. Undoubtedly, for “large size” applications, we can select

the small number of representatives from the given training data set through the
clustering phase. Rather than deciding to discard or retain the training points with
the Random C, PeatSeal, or KCentres [13], we can do this by invoking a PRS (Pro-
totype Reduction Scheme). For the interest of brevity, the details of the PRS-based
methods are omitted here, but can be found in [17].
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4. For any dissimilarity matrix, D(j)(T, Y ), (j = 1, · · · , l), perform classification
of the input, z, with combined classifiers designed on the newly created
dissimilarity space as follows:
(a) Compute a dissimilarity column vector, d(j)(z), for the input sample z,

with the same method as in measuring the D(j)(T, Y ).
(b) Classify d(j)(z) by invoking a group of DBCs as the base classifiers de-

signed with n m-dimensional vectors in the dissimilarity space. The clas-
sification results are labeled as class1, class2, · · · , classM , respectively.

5. Obtain the final result from the class1, class2, · · · , classM by combining the
base classifiers designed in the above step, where the base classifiers are
combined to form the final decision in the fixed or trained fashion.

In the above algorithm, using the n×n dissimilarity matrix, the feature-based
vectors are translated into the dissimilarity-based vectors, where the dimension-
ality is determined with the number of samples n. While the dimensionality of
the feature-based vectors is p, thus, the dimensionality of the dissimilarity-based
vectors is n(<< p). Notice also that the sample to be tested is projected onto
the dissimilarity space represented by the dissimilarity matrix. From these con-
siderations, it can be noted that the algorithm can be used as a scheme to reduce
the dimensionality without encountering the SSS problem in FR.

In Step 3, on the other hand, a number of distinct dissimilarity matrices can
be combined into a new one to obtain a more powerful representation in the dis-
crimination. A simple method to do this is to average different representations.
For example, two dissimilarity matrices, D(1)(T, Y ) and D(2)(T, Y ), can be av-
eraged into 1

2 (α1D
(1)(T, Y ) + α2D

(2)(T, Y )) after scaling with an appropriate
weight, ατ , to guarantee that they all take values in a similar range. In addition
to this averaging method, the two dissimilarity matrices can be combined into
:

∑2
τ=1 log(1 + ατD(τ)(T, Y )), minτ{ατD(τ)(T, Y )}, and maxτ{ατD(τ)(T, Y )}

[12]. Some of them will be exhaustively investigated in the present experiment.
The computational complexity of the proposed algorithm depends on the com-

putational costs associated with the dissimilarity matrix. The time complexity
of CDBC can be analyzed as follows: Step 1 requires O(1) time. Step 2 requires
k×O(n2) = O(n2) time to compute the k dissimilarity matrices. Step 3 requires
l × O(n2) = O(n2) time to compute the l combined matrices, for example, by
averaging the l matrices. Step 4 requires O(n)+M ×O(γ1) = O(γ1) time (where
M is the number of the base classifiers and γ1 is the time for doing classification
with the base classifiers.) to project the test sample onto the dissimilarity space
and classify it with the base classifiers designed in the dissimilarity space. Step
5 requires O(γ2) time to classify the test sample with the combined classifier
designed in the dissimilarity space. Here, γ2 is the time for obtaining the final
result. Thus, the total time complexity of the CDBC is O(n2 + γ1 + γ2). Then,
the space complexity of CDBC is O(n(n + p)).4

4 In [9], it was reported that the time complexities of LDA-extension methods such
as PCA, PCA+LDA, LDA/GSVD, and RLDA, respectively, are O(n2p), O(n2p),
O((n + c)2p), and O(n2p) and their space complexities are all the same as O(np).
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3 Experimental Results

3.1 Experimental Data

The proposed method has been tested and compared with conventional methods.
This was done by performing experiments on two well-known benchmark face
databases, namely, the “AT&T”5 and “Yale”6 databases.7

The face database captioned AT&T, formerly the ORL database of faces, con-
sists of ten different images of 40 distinct subjects, for a total of 400 images. Each
subject is positioned upright in front of a dark homogeneous background. The
size of each image is 112× 92 pixels, for a total dimensionality of 10304. The face
database termed as Yale contains 165 gray scale images of 15 individuals. The size
of each image is 243× 320 pixels, for a total dimensionality of 77760. However, in
this experiment, each facial image of 236×178 pixels was manually extracted, and
then represented by a centered vector of normalized intensity values.

3.2 Experimental Method

In this paper, all experiments were performed using a “leave-one-out” strategy.
To classify an image of object, that image is removed from the training set and
the dissimilarity matrix is computed with the n − 1 images. Following this, all
of the n images in the training set and the test object were translated into a
dissimilarity space using the dissimilarity matrix, and recognition was performed
based on the proposed algorithm in Section 2.3. We repeated this n times for
every sample and obtained a final result by averaging them.

To construct the dissimilarity matrix, all samples were selected as represen-
tatives and the dissimilarities were measured with the Euclidean distance and
the regional distance. Here the two distance measures are named as “ED” and
“RD”, respectively.8 The distance measure called RD is defined as the average
of the minimum difference between the gray value of a pixel and the gray value
of each pixel in the 5 × 5 neighborhood of the corresponding pixel. In this case,
the regional distance compensates for a displacement of up to three pixels of
the images. For the interest of brevity, the details of the distance measure are
omitted here, but can be found in the literature including [19].

However, the faces for some subjects vary with pose, illumination, facial ex-
pression, and whether or not they are wearing glasses. Thus, the dissimilarity

5 http://www.cl.cam.ac.uk/Research/DTG/attarchive/facedatabase.html
6 http://www1.cs.columbia.edu/ belhumeur/pub/images/yalefaces
7 A thorough evaluation on AT&T and Yale databases is presented here. It would be

interesting to see results on more challenging datasets, such as FERET and CMU-
PIE. The results on these datasets will appear in the next paper.

8 Here, we experimented with two simple measures, namely, ED and RD. However,
it should be mentioned that we can have numerous solutions, depending on dissim-
ilarity measures, such as the Hamming distance, the modified Hausdorff distances,
the blurred Euclidean distance, etc. From this perspective, the question “what is the
best measure?” is an interesting issue for further study.
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matrix simply obtained by measuring the input images can not work as a rep-
resentative. To overcome this problem as well as the SSS problem, a combined
dissimilarity representation and two classifier fusion strategies are employed in
the experiment. To investigate this combination rule, first of all, two dissimilar-
ity representations, namely, ED and RD, are averaged into a new representation
(which is named as “AD” here) after normalization. As mentioned in the previ-
ous section, three base classifiers are designed in this newly defined dissimilarity
space, and then all of their results are combined in fixed or trained fashion.

Since the diversity between the base classifiers is essential for constructing a
robust ensemble, different classifiers, such as Nearest Mean Classifiers, Normal
Density based Classifiers, and Nonlinear Classifiers, are considered as the base
classifiers. These three kinds of base classifiers are implemented with PRTools,9

and will be denoted as nmc, ldc, and knnc, respectively, in a subsequent section.
The outputs of the base classifiers are combined with fixed combiners, such as
Product, Median, and Majority vote rules, and two trained classifiers. All five
combiners are also implemented with PRTools, and named as prodc, medianc,
votec, meanc, and fisherc, respectively. To simplify the classification task for
the paper, only three base classifiers, three fixed and two trained combiners
are experimented. However, other classifiers, including neural network and SVM
based classifiers, and combining rules can also be considered.

3.3 Experimental Results

The run-time characteristics of the proposed algorithm for the two benchmark
databases, AT&T and Yale, is reported below and shown in Table 1. The perfor-
mance of the dissimilarity-based classifiers (DBC and CDBC) is investigated
first. Following this, a comparison is made between the conventional LDA-
extension methods and the proposed CDBC scheme.

First of all, to examine the rationality of employing a fusion technique in
the CDBC, the simple Dissimilarity-Based Classifier (DBC) was experimented.
While CDBC involves all of the five steps given in Section 2.3, DBC consists of
only the steps 1, 2, and 4 with k = 1 and l = 1. The classification accuracy rates
of DBC was evaluated for the AT&T and Yale databases. In this experiment,
the same dissimilarity matrix was constructed for both DBC and CDBC.

Table 1 shows the classification accuracy rates (%) of DBCs and CDBCs for
the two databases. Here, the abbreviations ED, RD, and AD, which are the
Eucledian distance, the regional distance, and the averaged distance, indicate
the dissimilarity measures employed in this experiment. Additionally, in the base
classifiers column, an Uncorrelated Normal based Quadratic Classifier (named
as udc) was used for the RD representation instead of the Normal Density based
Classifier (ldc). Also, knnc stands for the k-Nearest Neighbor Classifier (k = 1).

From Table 1, it is observed that the classification accuracies for the bench-
mark databases can be improved by employing the philosophy of CDBC. This
is clearly shown in the classification accuracy rates of the classifiers designed for
9 PRTools is a Matlab Toolbox for Pattern Recognition. PRTools can be downloaded

from the PRTools website, http://www.prtools.org/
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Table 1. A comparison of classification accuracy rates (%) of the base Dissimilarity-
Based Classifiers (DBC) and the Combined Dissimilarity-Based Classifiers (CDBC)
designed with the fixed and the trained combiners. Here, the classifiers of nmc, ldc
(udc*), and knnc are designed and evaluated as DBCs. Then, the combiners of prodc,
medianc, and votec are employed as the fixed combining schemes of the DBCs. Finally,
the classifiers of meanc and fisherc are employed as the trained combiners respectively.

Data Distance Base Classifiers Fixed Combiners Trained Combiners
Sets Measures nmc ldc(udc*) knnc prodc medianc votec meanc fisherc

ED 81.25 98.75 96.50 98.75 98.25 98.00 98.75 99.00
AT&T RD* 71.25 88.00 95.00 88.00 89.25 89.00 88.00 89.00

AD 76.25 99.25 95.75 99.25 98.50 98.00 99.25 99.25

ED 80.61 93.33 79.39 93.33 86.06 86.06 93.33 93.33
Yale RD* 78.18 72.12 79.39 72.12 76.36 76.97 72.12 78.18

AD 79.39 96.36 78.79 95.76 82.42 86.67 96.36 96.36

the AT&T database measured with ED. Specifically, the classification accuracies
of the base classifiers, namely, nmc, ldc, and knnc, are 81.25, 98.75, and 96.50
(%), while those of the fixed combiners, such as prodc, medianc, and votec, are
98.75, 98.25, and 98.00 (%), respectively. Additionally, the trained combiners
of meanc and fisherc have the classification accuracies of 98.75 and 99.00 (%),
respectively. From this consideration, it is evident that the rationale of the paper
for employing a fusion technique works well. Furthermore, the result of the com-
parison is completely in accord with the well-known fact that the combination
of different classifiers for the same feature set only slightly improves the best
individual results. Besides this, the results also prove that the best overall result
is obtained by a trained combiner. This is the case of the fisherc here. For the
Yale database, the same characteristics can be observed.

Secondly, as the main results, it should be noted that it is possible to improve
the classification performance by appropriately combining the dissimilarity rep-
resentations. For instance, the classification accuracy rates of the three base
classifiers designed with AD for AT&T database are (76.25, 99.25, 95.75) (%),
respectively, and those of the three fixed and the two trained combiners applied
to the outputs of the base classifiers are (99.25, 98.50, 98.00) and (99.25, 99.25)
(%), respectively. The above comparison shows that the accuracy rates of the
combiners are generally higher than those of the base classifiers. From these
considerations, the reader should observe that the newly created dissimilarity
representation of AD improves the performance of the classification accuracy
more effectively than the ED or RD measure. Therefore, it can be concluded
that the highest accuracy rates are achieved when the combined representation,
namely, AD, is classified with the trained combiners. However, it should be also
pointed out that the classification efficiencies were not improved in both com-
biners for RD. For the Yale database, the same characteristics can be observed.

Finally, CDBC can be compared with LDA-extensions for solving the SSS
problem in FR. Consider experimental results on the LDA-extensions, such as
the PCA [3], the PCA+LDA [3], the direct LDA [8], the DCV [10], and the
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LDA/GSVD [5], which have been recently reported in [18]. In that experiment, to
reduce the computational complexity, each facial image from the two databases,
AT&T and Yale, was down-sampled into 56 × 46 and 61 × 80, respectively. Ad-
ditionally, the “leave-one-out” strategy was also used to experiment with these
methods. In [18], the classification accuracies of the PCA, PCA+LDA, direct
LDA, DCV, and LDA/GSVD methods for AT&T and Yale databases are (93.25,
95.50, 98.50, 97.25, 93.50) and (72.73, 74.55, 92.12, 70.91, 98.79) (%), respec-
tively. A comparison of these figures and Table 1 shows that the classification
accuracy of CDBCs is marginally higher than that of the conventional meth-
ods. From this consideration, the rationale of the dissimilarity-based scheme for
employing a fusion technique is proven to be valid.

In review, it is not easy to say that one specific method is superior to others for
solving the SSS problem in FR. However, as a matter of comparison, it is clear
that the combined dissimilarity-based method is better than the conventional
schemes with regard to the classification accuracy rates.

4 Conclusions

In this paper a method that seeks to address the SSS problem of image recog-
nition by combining the dissimilarity-based classifiers was considered. Rather
than use Fisher’s criterion to reduce the dimensionality, a completely different
approach was employed, in which an object was represented based on the dis-
similarity measures among training samples instead of the feature vector itself.
Apart from utilizing the dissimilarity representation [18], to increase the classi-
fication accuracy, in this paper, a new method of employing a fusion technique
in representing features as well as in designing classifiers was proposed.

The proposed method has been tested on two well-known face databases and
compared with LDA-extension approaches. The experimental results demon-
strate that the proposed scheme works well and its classification accuracy is
better than that of the conventional ones. The results especially demonstrate
that the highest accuracy rates are achieved when the combined representation
is classified with the trained combiners. Although an investigation was made
that focused on the possibility that the combined dissimilarity-based classifiers
could be used to solve the SSS problem, many problems remain. One of them
is an improvement of the classification performance by utilizing an appropriate
dissimilarity measure (i.e., a modified Hausdorff distance) and by developing a
suitable feature combination in the dissimilarity space. The research concerning
this is a future aim of the authors.
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