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Abstr act: Although for some research areas it is a new thing, multi-way data analysis is a 
multivariate analysis technique that has had a wide appliance in a lot of fields. In dependence of 
the problem at hand, different types of multi-way data and specific multi-way models already 
exist. In this report, we give a general panoramic of multi-way data analysis, and some particular 
aspects needed to be taken into account when modeling such type of data. We describe some of the 
most used multi-way models and algorithms, outlining advantages and limitations that have been 
treated in new versions and others that still not. We also dedicate a chapter to describe in a sort of 
way, the research areas where multi-way analysis is most common, of a widely range of 
applications this type of data has. It is conclude with an analysis of the open problems that we 
found in these techniques and some proposals we think can work to solve them. 
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1. Introduction 

Multi-way analysis, originating when Raymond Cattell in 1952 [1] first introduced the very 
important term of multi-way arrays and later in psychometrics when Tucker published in 
1964 [2] the three-mode component analysis, is the extension of multivariate analysis when 
the analyzed data is in the form of higher order arrays. It is often used for extracting hidden 
structures, explore the interrelations in the data, etc., since it has been shown in other 
investigations that this kind of information from the data may not be gotten accurately or 
identified uniquely by two-way analysis methods because they do not respect the multi-way 
design of the data. 

Two-way analysis methods, e.g. factor models, suffer from rotational freedom unless 
specific constraints such as statistical independence, orthogonality, etc. are enforced. These 
constraints requiring prior knowledge or unrealistic assumptions are not often necessary for 
multi-way models, most of these methods have a strongly exploratory character, which 
means that one tries to find the patterns among the elements of the three ways, without a 
priori postulating specific configurations and without applying tests to these patterns.  
Consequently, multi-way analysis, with advantages over two-way analysis in terms of 
uniqueness, robustness to noise, although not too ease of interpretation, etc. has been a 
popular exploratory analysis tool in a variety of application areas. 

Important aspects of multi-way models and methods, especially in the social and 
behavioral sciences, is that they allow for the analysis of individual differences in a variety of 
conditions. The subjects do not disappear in means, (co)variances, or correlations, and 
possibly higher-order moments, but they are examined in their own right unless the 
researchers convert it for a special matter. This implies that, the data set is often taken as it is, 
and not necessarily as a random sample from a larger population in which the subjects are in 
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principle exchangeable. Naturally, this affects the possible generalization, but that is 
considered inevitable. Nevertheless, there are still a lot of scientists that instead of using the 
entire multi-way array, create a two-way matrix out of it to analyze it later with two-way 
models, by either laying out all the slices in one long row, so that the relation between similar 
variables at different time points is neglected, or laying out all slices in one tall column, so 
that the connections between samples’ scores at different moments in time are lost. The 
technical term for this procedure is matricization. Sometimes this may do no harm, because it 
is possible that a three-way analysis leads to the conclusion that no three-way analysis is 
necessary: for instance, if nothing changes over time, or if all subjects may be viewed as 
having been randomly drawn from one single population, but most of the time it is inefficient 
because it can lead to overfitting as the model does not represent the natural composition of 
the data, two of the multi-way array  modes are always confounded and no independent 
parameters for these modes are present in the model itself. 

As will be seen in the following subchapters, the multi-way models and algorithms 
development is not poor at all, an increasing range of methods have been created for different 
configurations and types of the multi-way arrays, but still they are something far from 
maturing, so it is needed to improve the models and algorithms now available. 

There are also some other philosophical and technical things to be taken into account 
when doing multi-way analysis. Matters as detection limits, outliers, missing data, if 
preprocessing is needed before fitting the multi-way model, the optimal number of 
components to use in the case of multi-linear decomposition models, as well as the term of 
uniqueness of the model, has to be handled in the process. 

The objective of this work is to make a study of the current state of multi-way analysis 
and discuss over some things that might be undone yet in this field. The most signicant 
aspects of multi-way analysis will be analyzed in the following chapters, along with the 
description of the composition of a general multi-way array. For this report we have backed 
up in existing reports and books on multi-way analysis which are very consistent [3], [4], [5]. 
As will be seen, in the different research areas can be found unlike multi-way array 
configurations and a great part of the multi-way models have been proposed for a specific 
type of array. In the next chapters we will refer to the most common configuration, defined in 
[5] as profile data, and describe the models and algorithms that apply to this type of data. 
These models were also chosen because they are the most general, and can be applied to 
almost all the configurations of multi-way arrays. For more details you can refer to [5].For 
each model described here we will not only refer to its purpose and mathematical description, 
but to some important aspects as uniqueness of the solution, advantages and disadvantages, as 
well as for the algorithms. At the end of this work, some applications of multi-way analysis 
will be described making some emphasis in chemometrics applications, which is the purpose 
of research for what this work has been done. 

2. Multi-way data 

The multivariate data prototype is a two way structure (matrix), where there are a number of 
objects (rows) characterized by measured variables (columns). For a wide variety of 
problems, the structure of the data can often be more complex than this; you can have several 
sets of variables measured on different samples, as for example, data collected at different 
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times or conditions. Sometimes there are two types of objects and only one set of variables, 
as is the case of a multivariate image where the x-coordinate and y-coordinate of the pixels 
are taken as the objects and wavelengths as the variables, and the purpose of the analysis is to 
find the relationship between the objects. These data would be appropriately represented by 
higher-order generalization of vectors and matrices where 1 2 3I I IX R × ×∈ and the order of X  
is ( )2N N > . 

The most common is the three dimension array (box) ( )X I J K× × , but it is even 
possible to generate four and five-dimension data, where each dimension (way or mode) will 
correspond with the different set of objects or variables and is called multi-way array.  

     In this three-way case the first way has index i  running along the vertical axis, the 
second way has index j running along the horizontal axis, and the third way has index 
k running along the “depth” axis of the box [6] (see Fig. 1).  

 
 

Fig. 1. Design of a typical three-way array 
 

Multi-way and multimode is not exactly the same thing, although for some data they can 
be used indifferently. The word way is considered more general, referring to the 
multidimensional arrangement irrespective of the content of the data, while the word mode is 
more specific and refers to the content of each of the ways. Thus, objects, variables, and 
conditions can be the modes of a three-way data array. 

When the same entities occur in two different ways, as is the case in a correlation matrix, 
the data are one-mode two-way data. When correlation matrices for the same variables are 
available from several different samples, one often speaks of a two-mode three-way data 
array, where the variables and the samples are the two modes.  
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(2a)             

(2b) 
 

Fig. 2.: (2a) Rows, columns and tubes of the three-way array, (2b) Horizontal, Vertical and Frontal 
slices of the three-way array respectively 

 
Although the terms rows and columns of the two-way arrays are still used, together with 

the term tube (see Fig. 2a) which refers to the third mode (three-way), the multi-way is 
usually conceptualized as a collection of two-way matrices and then the columns and rows 
replaced by slices or slabs (see Fig. 2b). Each horizontal slice ( )J K× of the block represents 

de data of one object; each vertical slice ( )I K× holds the data of a specific type of variable 

and the back to front slices ( )I J× , variables of other type [3]. 
This type of multi-way data is defined as “profile data” in the taxonomy of designs of 

multi-way data presented by Kroonenberg in [5]. In dependence of the problem in hand, 
many types of configurations or designs of the multi-way arrays can be found. In the 
following chapters we will refer to the “profile data” type, which was the chosen to be 
analyzed here as is the most common in all research areas, especially in the one that brought 
us to this investigation, Chemometrics. 

2.1. Preprocessing 

Preprocessing is as an important step in data analysis, and it is nothing else but the 
transformation of the original data that must be done before fitting a model to it, to improve 
its results. There are two basic types of data adjustment used before direct fitting of profile 
data: (a) additive adjustments (centering); and (b) multiplicative adjustments (scaling) [7]. 
This two preprocessing are the most used in two-way bilinear data analysis, and they can be 
easily extended to higher-way data. Although some authors say it is quite not easy to 
preprocess multi-way data, its difficulty is not more that the one it drags from the two-way 
analysis.  
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It is also very significant to know if it is necessary to preprocess the data and if it is so, 
which one is the right to do, most of all for the multi-way case because there are many 
alternatives, otherwise the effect can be the opposite. In [7] the authors propose some 
theoretical analysis to discover which of the possible preprocessing techniques is the 
appropriate for two-way and extended to three-way; [5]presents a summary of some works 
that relate the selection of the preprocessing with specific research areas. In [8], [3], [7] and 
[5] are also argument which combinations of centering and scaling can and can’t be done, due 
to the interdependence that exists between these two. 

2.1.1. Center ing 

To explain the idea of centering it is important first to know the term ‘offset’- also called 
intercept- which is used for a part of the model that is constant across one or several modes 
that functions as the zero point of an interval scale [7],[5]. This offsets can be found constant 
in one mode or in various (for multi-way data), they can also appear combined. So, centering 
preprocessing deals with this phenomenon, and although it can be use to estimate the offsets 
sometimes, most of the time it is used to remove them to obtain a reasonable model. It could 
be said, that centering is performed to make interval-scale data behave as ratio-scale data, 
which is the type of data assumed in most multivariate models. [8]. Deeper information on 
the reasons for centering can be found on [3]. There are some aspects, also explained in the 
previous references that demonstrate some benefits of making this type of preprocessing, of 
course, if it is right: 

 
1. Reduced rank of the model 
2. Increased fit of the data 
3. Specific removal of offsets 
4. Avoidance of numerical problems 

 
Mathematically centering can be expressed as: 
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In Eq.1 and Eq.2 ijy  is the centered element, ijx  is the element in the ith row and the jth 

column, I   the number of rows and J the number of columns. In the case of Eq.1 is referred 
the data are centered by subtracting the column average from every element of the column 
and it is known as centering across the first mode. Eq.2 is the expression for centering across 
the second mode, and the idea is the same as in the previous equation, but applied to the 
rows. For both cases, if this preprocessing is only applied to one mode it is known as single 
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centering, since there is also the double and triple centering, which means centering across 
one mode and then center the outputs across the other modes, the order in which they are 
done is not important, but it must be sequentially. 

These types of centering by columns, rows or tubes in the case of multi-way arrays, is 
known as fiber centering (one-way), and if is done across one of the modes it will remove the 
offset from all the modes that involve this mode.  But these are not the only ones, there are 
two other approaches that can be applied to three-way data: in the slab (two-way) centering 
the average of one slab is subtracted from each slab of the three-way array, and as in the case 
of fiber centering there are three types of slab centering corresponding to the vertical, 
horizontal and frontal and slices. At last, the grand mean (three-way) centering, where it is 
subtracted the overall mean of the three-way array from each element of the data. In [7] there 
are more details of this types of preprocessing and in [5]can be found some other types of 
preprocessing, besides the others found in the reference mentioned previously. But although 
there are all these types, as it was argued by [7], following the idea that the appropriate 
preprocessing should preserve the appropriateness of any factor structure underlying the data, 
the fiber preprocessing are the most indicated, as slab and global (grand mean) preprocessing 
have many disadvantages. In the case of single centering, it cannot solve the problem of 
removing all the constants and its effects itself, but its application to all three modes can do 
so. Anyway, these triple-centering can sometimes over fit the data, so it is better to use only 
the double-centering, which eliminates the offsets of all the modes except one and it yields 
preferable results. 

Saying all this, then the expression for preprocessing a two-way array can be extended for 
three-way arrays, by matricizing the array and centering across one or the two original 
modes, but the new column-mode that arises from the combination of the original ones 
should not be transformed as this is not real and won’t help in the model at all: 
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In the case of Eq.3 the three-way array has been matricized to a I JK× matrix and the 

centering is performed across the first mode as in the two-way preprocessing. 

2.1.2. Scaling 

The scaling or multiplicative adjustment does not have the same effect of changing the 
structure of the model as centering, and of course the reasons for doing it are neither the 
same, but one thing they sure have in common is that it also has to be performed in a specific 
way in order not to introduce artificial structures that need to be modeled. This becomes more 
apparent when going to three way models [3]. It is used often to adjust the data so the 
variance of each variable is unity, or what is the same to change the importance attached to 
different parts of the data in fitting the model, since most of the models assume that variables 
with large variation are the most important for the model and in some cases these large 
variations are irrelevant as they are due to noise or to the use of different scale and it 
shouldn’t influence the model more than the necessary. 
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There are three important reasons among others to scale a data; they are more detailed in 
[3], [8]: 

 
1. To adjust scale differences 
2. To accommodate for heteroscedasticity 
3. To allow for different sizes of subsets of data(scaling block) 
 

The idea of scaling is to multiply a determine scalar to the data, which is usually 
objectively calculated: a standard deviation, an interquartile distance, a range or a robustified 
range, or sometimes subjectives weights are given to the variables. To refer to this type of 
preprocessing a different terminology to the one of centering is used.  When each row of the 
matrix is multiplied by this scalar it is known as scaling within the first mode. In the case of 
doing the same operation to the columns, it is referred then as scaling within the second 
mode. These types of scaling are known as slab-centering and it is demonstrated why they are 
the most appropriate for three-way arrays. Mathematically it can be expressed as follows: 

 
ij ij iy x w=      or    jijij wxy =  (4) 

  
XWY =        or       WXY =  (5) 

 
In Eq.4 the term ijy  now refers to the scaled element, ijx  is the same as in the previous 

equations, and iw and jw are the weights or scalars multiplied to the rows or the columns 
respectively. The Eq.5 is the matrix representation where Y is the entire scaled data, X the 
original data and W is a I I× or J J× diagonal matrix that holds the scalar wi or wj

ikw

 in its 
diagonal elements, for scaling within the first and second mode respectively. This last scaling 
within the second mode, if it is combined with a previous centering across the first mode, is 
nothing else but the known autoscaling technique for the two-way data.  

The term fiber-scaling also exists in three-way arrays and could be done in the three usual 
directions: scaling each row of each slab by the coefficient , each column of each slab by 
the coefficient jkw and each tube by the coefficient ijw  [7]. Mathematically the scaling of 
columns would be expressed as: 

 
ijkijkijk wxy =  (6) 

 
In this equation the meaning of each variable is the same as explained before but now 

representing an element of a three-way array.  But it has been also demonstrated in [7]that 
this type of scaling is not appropriate since by doing this operation on just one mode, will add 
more than three extra dimensions to the data structure and decrease the fit value at the 
original true dimensionality. 

There is also the case of scaling the entire three-way array, multiplying each entry of it by 
the same coefficient, but it won’t have any effect on the results than this. 

So, after concluding that scaling a three-way array is better to scale the whole matrices or 
slabs that compose the array, the mathematically representation would be the extension of the 
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one used for two-way arrays . The following expression corresponds to the scaling within the 
first mode: 

iijkijk wxy =  (7) 
with  
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or 

( ) )( JKIJKI WXY ×× =  (9) 

 
In Eq.8 it is proposed scaling the data to a unit mean within the first mode, it will be 

explained later why this one is the most common one. The Eq.9 is the representation when 
using the matricized array and for these cases W  would also be a I I× diagonal matrix that 
contains the scaling values in the diagonal. An important thing to take into account with this 
representation is that the scaling shouldn’t be performed on the resulting array from the 
combination of two modes, it has to be done by transforming the original data within a given 
mode or unwanted artificial components will appear in the data. In [5]some other types of 
scaling can be found. 

Another complicated thing shows up when scaling several modes, as scaling one mode 
after another one has been previously scale will affect the first preprocessing.  For this 
purpose Lundy [7] has proposed to do it iteratively until convergence [9], no matter the order. 
But this convergence can be only guaranteed when it is desired to scale to a mean square of 
one within several modes, unlike scaling to standard deviation of one that won’t generally 
converge. 

The advantage of several scaling is that one deals simultaneously with different types of 
measurement scales and with undesired variability between subjects. However, there has 
been very little experience with this procedure and it is somewhat worrying that a large 
amount of informative variability from the data is eliminated. 

2.2. Unfolding 

Unfolding, usually known as matricization, is an important concept in multi-way. It is just the 
conversion of a multi-way array into a two-away array by concatenating the slices from one 
mode next to each other e.g. a I JK× matrix, with mode B entities ( )1,...,j J= nested 

within mode C  entities ( )1,...,k K= , and will be denoted as aX . This matrix simply 
contains all the frontal slices of the array next to each other (see Figure). Other matricizations 
are those that form the super-matrices bX  (of order J KI× , with mode C  entities nested 
within mode A  entities) and cX  (of order K IJ× , with mode A  entities nested within mode 
B entities). Other nesting are possible, but without further specification, matricization 
pertains to one of the above procedures [6]. 
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Fig. 3. Unfolding of the first mode of three-way array. Wide combination-mode matrix 
 
 
Notice, that the column-dimension of the generated matrix becomes quite large in the 

mode consisting of two prior modes. This is because either the subjects and conditions from 
the original modes are combined into a single mode (tall combination-mode matrix) or the 
variables or conditions are so combined (wide combination-mode matrix) (see Fig. 3). There 
is not a new variable referring to one original variable, but rather a set of variables. Thus, two 
of the modes are always confounded and no independent parameters for these modes are 
present in the model itself, except when models are used specifically geared toward this 
situation.   

Matricization is not only useful for three-way arrays. In fact, N-way data usually are to be 
read from file in a two-way structure. An N-way array is ‘matricized’ in essentially the same 
way as a three-way array e.g.  aX  contains all vertical fibers collected next to each other in 
an     ...I JKLM×  matrix, within the columns the mode B entities nested within mode 
C entities, mode C entities nested within mode D entities, etc. [6] 

Once a three-way array is arranged as a two-way dataset, two-way analysis methods, e.g. 
Singular Value Decomposition (SVD) [10], [11] and other factor models can be employed in 
understanding the structure in data, as well as other methods for classification and regression 
tasks. But this transformation, ignoring the multi-way structure to apply the two-way 
methods can lead to information loss and misinterpretation especially if the data are noisy, 
then the models would be: 

• less robust 
• less interpretable 
• less predictive 
• non-parsimonious 

 These problems of course will arise for arrays that need to be approximated by multi-
way structures and the noisier the data are, the more beneficial it will be to use the multi-way 
structure. But in cases where the data does not have an underlying multi-way structure, the 
matricization process and a two-way analysis afterwards will be enough and easier to 
interpret. 

Anyway, the fact that the data can be approximated by a multi-way structure is somewhat 
vague. To verify if this is so, in the case of three-way problem for example, it has to be 
considered a hypothetical two-way matrix with rows and columns equal to the first and 
second mode of the three way array, and another two matrixes with the mode one with three, 
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and mode two with three respectively. If all these hypothetical two-way problems are 
adequately modeled by a bilinear model, then it is suitable to use a multi-way structure. 
Though the problem of deciding which model to use is complicated, this rule of thumb does 
provide rough means for assessing the appropriateness of multi-way models for a specific 
problem [12].  

3. Multi-way models 

It is something important to define what means the term ´model´ at least for our field before 
doing some history, as this is not seen in the same sense in all fields. It is known as a way to 
describe the structure of the data, an approximation of it; and each one has its own 
specifications, being a very important one the definition of a loss function to verify how well 
this model fits the data. Thus, a model usually consists of two parts, one that is “structural” - 
an algebraic expression describing the modeled pattern(s)–and one that is “stochastic” - 
usually a single symbol representing the residuals or unmodeled variation. Their sum equals 
the array.  

Although multi-way analysis has a lot of advantages to deal with cases when you have a 
considerable amount of data and need to make use of all of it and find interrelations, as can 
be easily found in Chemometrics with the development of complicated analytical 
instruments, it is not something very usual nowadays, maybe because of its complexity when 
representing it and to analyze it later. Nevertheless, it is not a new thing; there have been 
studies on it since 1874 when Camille Jordan was investigating on how to simultaneously 
diagonalize two-matrices. Another important figure on this field was Raymond Catell who 
defined the principle of “parallel proportional files” in 1944 [13] and in 1952 he introduced 
the very important term of multi-way arrays [1]. In the 1960s started then to emerge three-
mode techniques that really obeyed to the principle of three-way analysis and nowadays there 
are many of them that extend to multi-way analysis. One of the precursors of this techniques 
was Ledyard Tucker [2], [14], [15] when he came up with the three mode factor analysis, 
where he introduced the term mode instead of dimension and still in use today. These models 
are nowadays known as Tucker models or N-mode principal component models (multi-way 
PCA) for others and the most used is TUCKER3. Based on the principle proposed by Cattell, 
was introduced the parallel factor analysis as one of the most important models to analyze 
multi-way data at present, PARAFAC. This model was created by Harshman in 1970 [16], 
and by the same year Carroll & Chang also proposed the CANDECOMP model [17]. 
Although they were introduced independently, the model behind the two is the same. In the 
case of PARAFAC and TUCKER3 the extension to multi-way is straightforward.   

There have been proposed some other models for multi-linear regression analysis as N-
PLS [18]. In 1970 J. Douglas Carroll in collaboration with Jih-Jie Chang, started the 
development of multidimensional scaling techniques for individual differences with the 
individual differences scaling model (INDSCAL) [17], which Kroonenberg names as a 
milestone in multi-way analysis, and is an extension of existing methods for two-way 
similarity/dissimilarity data to three-way data formed by sets of this matrices. Some other 
versions of this method were published later [19]. This type of design of multi-way array was 
referred in Kroonenberg’s taxonomy as “scaling designs”, and is very common in 
psychology. Some others have introduced methods for three-way cluster analysis, multi-way 
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covariance analysis, multivariate longitudinal analysis, etc, but not all of these techniques 
will be treated here, only the most transcendent ones. In [3]and [5]there are more details 
about the history of multi-way data analysis and all these techniques. In the following 
subchapters we will deepen into the theory and algorithms of the main multi-way models 
(multi-way component models), which are widely use for many types of multi-way data and 
have shown the best results. We will see also their most known versions and some special 
aspects that have to be taken into account when choosing these models. 

3.1. Multi-way component models 

In a table of different categories of multi-way models that was presented by Pieter M. 
Kroonenberg in his book Applied Multi-way Data Analysis (2008), is defined a category for 
the component models, among others. In this subchapter it is planned to deepen into models 
that were placed into the first category mentioned, which are as was said before, among the 
most used in a lot of fields; PARAFAC for example has have a violent deploy in analytical 
chemistry and other fields, in theory as much as in its applications.  The objective is then to 
analyze these main models and in some way its versions, in order to demonstrate its 
advantages and disadvantages. In this work we will refer only to the three-way models, in 
case they generalize to n-way the needed specifications will be made. 

3.1.1. Parallel factor  analysis (PARAFAC)  

The philosophy of PARAFAC is very similar to the followed by the Principal Component 
Analysis (PCA) [10], [11] based on components decomposition. There are of course 
differences, besides PCA works on two-dimensional data and PARAFAC on three and n-
dimensional data. It  is obtained now a loading matrix  ( ), ,A B C  for each variable mode and 
the score matrix for the object (in case it is considered like it), anyway, in three-way analysis 
has become very common calling loading all the vectors obtained in the decomposition 
because these are treated equally numerically.  

PARAFAC [16] (see also [20], [21], [22]), as was said before, was introduced 
independently by Harshman and by Carroll and Chang who named the model CANDECOMP 
(canonical decomposition) in 1970 [17] and it is based on Cattell’s principle of Parallel 
Proportional Profiles:  

 “The basic assumption is that, if a factor corresponds to some real organic unity, then 
from one study to another it will retain its pattern, simultaneously raising or lowering all its 
loadings according to the magnitude of the role of that factor under the different experimental 
conditions of the second study. No inorganic factor, a mere mathematical abstraction, would 
behave in this way…..” [13].Cattell in its article argued extensively that this principle is the 
most fundamental property for obtaining meaningful decompositions. 

So, following this criterion, the basic idea of a PARAFAC model is to use the same 
factors to describe the variation in several matrices simultaneously but with different 
proportions or scaled depending on the conditions. This leads to the fact that all the loading 
matrices obtained in the decomposition will have the same number of factors and the model 
won’t be subject of rotational freedom, of which we will talk about later. This can be a very 
attractive characteristic of this model, but also a limitation, as by disallowing the interaction 
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among the factors of the different modes some important variations in the structure of the 
data can be ignored.  

Mathematically, in this decomposition the array is converted in a sum or linear 
combination of triads (three-way) or N-ads (n-way) [23]. The word triad is used for a 3-array 
that can be decomposed in an outer product of  3 vectors (a, b, c) or what is the same, in an 
outer product 3-array (rank 1<= ), this definition is the same for any order 2> array. In the 
following expression it is shown the representation of an R-component PARAFAC model, 
which can be also seen as a generalization of the singular value decomposition truncated to R 
components. An illustration of this decomposition is also shown in Fig. 4. 

 

1

R

ijk ir jr kr ijk
r

x a b c e
=

= +∑  
 

(11) 

 
with ira , jrb and krc being the elements of the loading matrices 

( ) ( ) ( )  ,    ,    I R J R K R× × ×A B C  respectively and ijke are the elements of the 
corresponding residual matrix E. In this decomposition it is also obtained a diagonal matrix 

( )111,..., rrrG diag g g= called the singular value or core matrix containing the R largest 
singular values of X  in decreasing order, which would be the weights of the combinations 
mentioned before, but as in Eq.11 the values of rrrg can be absorbed in ira , jrb  and krc or in 
both. 
 

 
 

Fig. 4. Three-component PARAFAC model  
 

In the following equation it is also shown the PARAFAC model in terms of the loading 
matrices, where kX is the kth ( )I J× frontal slice of the three-way array ( )X I J K× ×  
 

kkk EBCADX += ')(  (12) 

 

kD  is the diagonal matrix with the kth row of  third component matrix C  in its 
diagonal 1( ,  . . . ,  )k kRc c ; ira , jrb are the rth columns of the component matrices in the first 

and second mode, A and B  respectively, and the residual term (  ) kE I J× is defined 
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similarly to kX . Hence, each kX is modeled using the same components A  and B , but with 
different weights, represented by kD .  

Across all slices kX , the components ira  and jrb remain the same, only their weights 

( )k1 kR ,  . . . ,  d d are different. Hence, all slices kX  are modeled with parallel and 

proportional profiles ( )' '
k1 1 1 kR Ra b ,. . . ,  a bRd d [3]. As this representation in terms of the 

frontal slabs, there are two more for the horizontal and vertical slabs which are equivalent. 
In [3] there are some other ways to express the PARAFAC model in terms of the 

Kronecker, Hadamard and Khatri-Rao [24], [25] products. Here we will only show the 
Khatri-Rao expression as it will be of interest for the algorithms section (4.1.1): 
 

( ) + E X A C B ′=   
(13) 

 
where [ ]1 2 ... KX X X X= is a ( )I JK× matrix, kX is defined as in Eq.12; ,A B and 

C are the loading matrices and [ ]1 2 ... KE E E E=  is the residual matrix.  
 Anyway, all of them should be seen as they are chosen or preferred depending on the 

problem in hand. 

3.1.1.1. Uniqueness 

In bilinear models there is the well-known problem of rotational freedom and this is the main 
reason of PARAFAC’s success. Over the years many researchers have tried different 
methods more interpretable than PCA or for rotating to more appropriate solutions but most 
of them have ended in ill-defined properties. PARAFAC on the other hand, can obtain a 
unique solution (up to permutation, sign and scaling indeterminacy) in terms of the model 
estimated parameters; that is, the calculated A, B and C loading matrices cannot be changed 
without changing the residuals. When talking about unique solution it is important to know 
that it doesn’t refer at all to the fact that the model obtained the true solution. Anyway, if the 
structure of the data is approximately tri-linear, the right number of components is chosen 
and the signal-to-noise ratio is appropriate [23], [26], [27], the true underlying parameters can 
be estimate. 

Kruskal states in [23] the following definition for this: 
 
“A rank R N-adic decomposition of an N-array X is rotationally unique, often shortened 

to just unique, if all rank R decompositions of X are equivalent to it.” 
 
The uniqueness properties of the PARAFAC model are sometimes stated as the model 

having unique axes or intrinsic axis property. As opposed to a bilinear model where the 
subspace spanned by the data can be uniquely determined but the bases are not unique, the 
PARAFAC model not only determines the subspace but also the position of the axes defining 
the subspace. That is why the name of unique axes.  
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Nevertheless, there are some conditions to achieve the PARAFAC unique solution on 
what some authors have worked on. Harshman in [26] and Leurgans et al. in [28]among 
others , have shown that unique solutions can be expected if the loading vectors are linear 
independent in two of the modes, and furthermore in the third mode the less restrictive 
condition is that no two loading vectors are linear dependent. On the other hand [23],[29] 
made a whole investigation based on the ranks of the N-array X (smallest number R such that 
X has an N-adic decomposition of rank R) of the loading matrices and its relation with 
uniqueness. For the case when the N-adic has rank 1 he stated: 

 
Lemma 4i: “For any N, a rank 1 N-adic decomposition of an array is unique if the array 

contains no zero slabs in any direction.” 
 

He also based on the mathematical fact that dyadic and triadic decompositions are usually 
unique for small enough ranks and never unique for large ranks, where the dividing line 
increases with the size of the array in the cases of triadic decompositions. In the special case 
of a 2 2 2× ×  array it is proven that a rank 2 decomposition of a rank 2 array is always 
unique, while a rank 3 decomposition is never unique. There have been some special cases 
like this that have been proven in studies as a ten factor model that was uniquely determined 
from an 8 8 8× × array [20]. For an R R R× × array, the Theorem 4a presented also in [23] 
and later extended by [30] shows that a condition to be accomplished by the PARAFAC 
model to achieve the unique estimates of the parameters is: 

 
22 +≥++ Rkkk CBA  (14) 

 
where Ak , Bk  and Ck are the k -ranks of the component matrices A , B  and C , respectively 
and R is the number of components in the PARAFAC model. This condition can be met in 
almost all practicable applications. A more understandable and accessible proof of this 
condition was proposed in [31]. Nevertheless, there can be seen in Eq.14 that it doesn’t hold 
when 1R = , but as explained before, the uniqueness for this case was proven in [26]. 

The k-rank term was introduced by Kruskal in [32]. It states that considering a matrix 
( )X I J× of rank R , then X has some set of R  independent columns. However, some other 

set of R  columns of X  might not be independent. The largest integer k  for which every 
subset of x  columns of the matrix X  is linearly independent, is called the k -rank of X  and 
is denoted by kX . Stated otherwise, the k -rank of X  is the largest subset size for all 
subsets of columns of X  that always has full rank.  

The theorem 4a, which defines the above condition, shows that many decompositions of 
rank [3R/2-1] are unique, but here it is also suggested that none of higher rank are unique. 
Later in [30] were generalized this Kruskal’s fundamental result on the uniqueness of tri-
linear decomposition of three-way arrays, to the case of n-way arrays as follows: 

 

)1(2
1

−+≥∑
=

NRk
N

n
ranks  

 
(15) 
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 In [33]it is demonstrated that Kruskal’s conditions are necessary for R smaller than four 
and made a conjecture that it could be also accomplished when 3R > , but in [34] the 
authors refuted this conjecture. The necessary conditions for uniqueness of PARAFAC 
models with more than three components are still unknown. 

Besides there are some data where the Kruskal’s condition cannot be met, and the 
PARAFAC model cannot estimate the unique solution, it might still be possible to obtain 
partial uniqueness, which means that some parameters are uniquely determined for those 
components that do have ‘adequate’ variation across all three modes [26]. The only well 
known cases are the mentioned before and those when more components are extracted than 
the required for the perfect fit. In [35] are shown results of studies that have been done on 
special 3-way arrays as 5 3 3× × where it is demonstrated how they have partial uniqueness 
solution, but anyway the study of this type of uniqueness have fallen behind. 

Although there have been all this research on PARAFAC uniqueness and have been 
demonstrated its achievement on a several number of cases, there are also cases where it 
cannot be proven. Besides, all the demonstrations have been made on models where it is used 
the same number of factors for the three modes, as a consequence of the fact that factors in 
different modes can only interact factor-wise.  

3.1.1.2. Degeneracy problems 

When trying to fit a PARAFAC model to the data, sometimes the algorithm can have 
difficulties to find the right fitting and the estimated model parameters are hence often 
unstable and unreliable. This is known as a problem of degeneracy and then the solutions 
found are called degenerate solutions.  

There reasons for this problem are not easy to determine but some causes are known e.g. 
too many components are extracted because the ‘noise’ components can be correlated, poor 
preprocessing has been applied. Another reason is related to the tri-linearity constraint, if the 
data is not appropriately modeled by a tri-linear model which is also referred as two-factor 
degeneracies. There is also degeneracy-like situation related with the algorithm and is called 
swamp, which is an area of the solution space where it advances too slowly. In this case the 
factor matrices become ill-conditioned when the solution approaches to the high-rank domain 
(degenerate solution) and the algorithm gets stuck making large changes in the factor 
matrices to improve the loss function, it could disappear after a number of iterations. 

An indication of degenerate solutions can thus be obtained by monitoring the correlation 
between all pairs of components [3]. The measure used for this is called Tucker’s congruence 
coefficient and is also sometimes referred to as the uncorrected correlation coefficient [36] , 
but it is not our objective to deepen in on it. For other degeneracy indicators you can refer to 
[37] More details about this measure and how analyze its value to infer the possibility of a 
degenerate solution can be found in [3], [20].  

There have been some proposals to affront this problem. Some authors suggest that 
Tucker models are more suitable than PARAFAC models when two factors are interrelated. 
In the case of swamps some authors as in [38]suggest the use of some amount of 
regularization to keep the algorithms away from them. Others, as [34] suggest using those 
runs that are not probable to give degenerate solutions from a lot of runs made in a few 
iterations. Another way of circumventing degenerate solutions, although it doesn´t mean that 
the cause of the problem has been removed, is by applying orthogonality or non-negativity 
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constraints on the model as this effectively prohibits negative correlations. For more studies 
on degeneracy cases in multi-way analysis and how to deal with them you can also refer to 
[39], [40] and [41]. In the later the authors proof that the algorithm will lead to degeneracies 
when there is not an optimal solution. Recently Stegeman and De Lathauwer in [42] based on 
the proof they made in [39], they propose a way to avoid degenerate solutions in a 
( )2I J× × three-way array. 

This is a problem that might be found in a lot of cases, but the main ones as mentioned 
before,  are related with the processing of the data and the initialization parameters of the 
algorithms, so this leads to the conclusion that the analysis of the data have to be done 
carefully. The use of the presented uncorrected correlation coefficient would also save a lot 
of work. This is seen as a drawback of the method, so more investigations on this area should 
be done.  

3.1.2. PARAFAC 2  

As was said before, the PARAFAC model is based on Catell’s principle of parallel 
proportional profile, which applied to this method means that, even when in a three-way array 
there is a variation between the observations in the first mode in the different occasions, they 
will be determined by the same set of factors. The problem with this assumption is presented 
when the slabs of the array have not the same dimensions (either in the samples or variables 
mode), maybe because all the samples could not be measured in all occasions, etc. For cases 
like this is why PARAFAC2 [43] was introduced, applying the parallel proportional profile 
principal in an adjusted way as follows: 

 
'k k k kX A D B E= +  (16) 

 
where kX  would be a matrix of ( )kN J× corresponding with the kth slab, kA would be the 
factor score matrix for the same slab, taking this way into account the variances that may 
exist between the slabs, and here it is the difference with the PARAFAC model. The rest of 
the members of the equation have the same interpretation as in PARAFAC. But in this 
representation, although kD B are proportional there cannot be guaranteed uniqueness as the 
factor scores are not the same for all matrices. To achieve this uniqueness Harshman 
proposed in [41] the invariance constraint in the factor scores that the cross product 'k kA A is 
constant over all kth slab. The final PARAFAC2 model would be then Eq.16 under the 
mentioned constraint. 

There were two proposals for the fitting of the PARAFAC2 model: indirect and direct. 
The precursor of this method proposed fitting the cross product version of Eq.16 model to the 
observed cross products as follows: 

 
'k k k kC BD D B E= Φ +  (17) 
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where kC  denotes the cross product matrix associated with kX , Φ denotes the invariant 
matrix 'kk AA and kE the residuals for the cross product matrix. But with this model fitting it 
is difficult to see directly what types of deviations from the tri-linear model are then allowed, 
and it is computationally complex and inefficient. 

Therefore in [44] it is proposed a way to fit the PARAFAC 2 model directly to the data, 
instead of the derived model presented in Eq.16. This is called the direct fitting and besides 
the main advantage mentioned, it has some other advantages like: is easier to adjust when 
constraints are imposed, is better handling missing data and it is also easier to extend from 
three-way to n-way arrays. Then, as it is easily verified that kA from Eq. 16 can be expressed 

with a column-wise orthonormal basis matrix of size ( )   k kN R N R× >= , kP  a 
R R× matrix as following: 

 
k kA P A=  (18) 

 
and can be proven that the cross product is constant over the kth slab:  
 

' ' ' 'k k k kA A A P P A A A= =  (19) 
 

Then the direct fitting of PARAFAC2 model is mathematically expressed as:  
 

kkkk EBADPX += '  (20) 
 

where B  and kD are the same as in Eq.16, A  and kP  are from Eq.18. More details on this 
demonstration can be found in [44]. 

3.1.2.1. Uniqueness 

Although PARAFAC2 uniqueness has been analyzed, there have not been so profound 
studies as for PARAFAC. In [ten Berge 1996] have been obtained some results 
demonstrating that the parameters estimated in the indirect fitting ( , kB D and )Φ  are 
“essentially unique” up to some conditions (see [44]): 
 

1. joint permutations of the columns of B  and the columns and rows of kDD ...1 and Φ . 

2. arbitrary scalings/reflections of the columns of B  and of the supermatrix ( )1... kD D , 

combined with the inverse scalings/reflections of the columns and rows of Φ . 
3. reflections of any subset of the matrices kDD ...1 . 
 
There have been also studies for the uniqueness conditions of special cases as when 
2=R  (see harshman1996, kiers) where they present that a matrix with 3≥K is unique if 

non-negativity is imposed to kDD ...1  matrices and B has full column rank. If 
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3<K although there is the non-negativity constraint, the model won’t be unique, the same 
will occur for 4<K when the model is unconstrained. There are other proven sufficient 
conditions in [43], [44]but not necessaries as they have some incongruence with the previous 
condition.  

In the case of the direct fitting, the conditions for essential uniqueness are directly related 
to the ones for indirect fitting, only that they are applied to the parameters of this model, and 
the simulations made on the paper suggest that the model gives unique solution as soon as  

4≥K , for arbitrary values of R . There is a Theorem in this paper that says: 
 

“The parameters of the direct PARAFAC2 model are essentially unique if and only if the 
parameters of the indirect PARAFAC2 model are essentially unique ...” 
 

As it can be seen, PARAFAC2 is a good alternative for solving problems with which a  
PARAFAC model cannot deal, like recovering underlying structure because the observations 
units vary from dataset to dataset (slabs, occasions), or there are different dimensionalities in 
one mode. In the case of the direct fitting it has even more advantages for imposing 
constraints, handling missing data and generalization of the model to n-way arrays. But even 
when this direct fitting is much easier to implement than the indirect and has more 
advantages, both are computing time consuming and that’s maybe it hasn’t been so exploited 
as PARAFAC. Also, the unique solutions can be achieved, but requires more level of 
variation and the presence of a sufficient number of levels in the third mode. So, there still 
some research to do in this topic. 

3.1.3. Shifted factor  analysis (S-PARAFAC) 

S-PARAFAC was introduced by Harshman in [45], with the idea of dealing with the problem 
of factor shifting in the sequence of the measurements, which are mainly encountered in 
some data as time series, spectrums, etc. When it is spoken about shifting, it means that the 
values of the measures made on a sample, change systematically their relative position up or 
down on the sequence: if v~ is a shifted version of v then sii vv +=~ , and s represents the 
amount of shift.  This method is very similar to PARAFAC2 and has the same purpose in this 
sense, trying to relax the factor models, in this case PARAFAC. The PARAFAC model 
cannot be applied in cases like this where introducing the shift term disturbs the multi-
linearity, most of all when it is independent for each factor i.e. the shifts of one factor differ 
from those of another.  

The idea of S-PARAFAC is to introduce into the PARAFAC model an explicit 
mathematical representation of any factor shifts present in a data set, so the model can be 
fitted even when the shifts are present and then describe the data correctly. The mathematical 
expression in Array Index Notation (AIN) would be: 

 
KRJRRsIIJK cbax

jr ][ +=  (21) 

 
The terms of Eq.21 are the equivalents to the PARAFAC expression in Eq.11 

where XxIJK = , Aa RsI jr
=+ ][  and the same for JRb  and KRc .  The difference of this model is 
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that it allows for independent shifts of each factor at each level j of the data, so jrs is the shift 
parameter that gives the shift at column j  that is exhibited by factor or component r [45], 
being then A  the sequential shifted mode as here it is assumed that it contains the 
sequentially ordered levels  (e.g. different variables, time points) and B  the shifting mode, 
which refers to the sequential profiles (e.g. objects). The modes above B reweight the factors. 

The model can be also expressed in terms of the “shift operator” S, which was defined 
explicitly to facilitate the representation of these models.  When using it, the elements of an 
array are shifted to a new position by adding a fixed amount to its subscripts; the amount is 
given to the operator. The representation would be then: 

 
=jx  S ')( CbAs jj  (22) 

 
This expression is similar to the one for lateral slices of PARAFAC model, but now 

including the shift factor. In this representation, if it is kept A as shifted and B as shifting, the 
model cannot be in terms of the frontal slices, as shifts in A change from one column of B to 
the next, which makes impossible to use a fixed A for all columns of B simultaneously. S-
PARAFAC can be also generalized to N-way arrays [46]. 

There are cases where shifting problems can be found in more than one mode, also 
known as multiple-shifting, but this method has not yet incorporate how to deal with it, what 
could be considered as a limitation specially now with the instrumental equipment 
development e.g the combination of equipments for analytical chemistry as GC-MS (Gas-
Chromatography and Mass-Spectra) where there can be a shifting problem in both 
chromatography and mass mode. Another limitation is that sometimes the shift or peaks 
position is combined with shape changes and this method doesn’t stand these changes.  

As can be seen S-PARAFAC is a version of PARAFAC2 as both share the same purpose 
in what to shifting problems refer, but besides the already mentioned limitation, its main 
difference with PARAFAC2 and also considered as a limitation is that  it cannot capture the 
structure of the data, it can only handle the shifting factors. Nevertheless, it may be 
sometimes more effective than PARAFAC2, as this depends on the inner product of the 
factors. 

In [45] there are more details about shifting factor analysis, starting from two-way data 
and then generalized to three-way. One of the aspects treated is the uniqueness of the model, 
where a conjecture of what could be a proof of essential uniqueness for the bilinear model is 
presented. 

Details about the algorithm will be presented in Section 4. 

3.1.4. Sparse Non-Negative Tensor  Factor  Double Deconvolution (SNTF2D) (cPARAFAC) 

The Sparse Non-Negative Factor Double Deconvolution (SNTF2D) [47]or presented in [4] as 
cPARAFAC, is a generalization of Non-negative Matrix Factor Deconvolution (NMF2D) 
[48] for multi-way spectral data to measure convolutive mixtures, so the process of finding 
the loading matrices is seen as a deconvolution process as each row of the multi-way X 
matrix is considered as a convolutive mixture of the factor matrices’ rows. As will be seen in 
Eq.23, the cPARAFAC model, which is only convolutive in two of the three modes (and this 
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is one of the limitations), is very similar to PARAFAC model and becomes equivalent to it 
when some parameters take determine values, this is why the model has been defined as 2-D 
Convolutive PARAFAC model and is defined as: 
 

( ) ( )
1

j r k r

R

ijk ir ijk
r
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τ ϕ
− −

=

= +∑  
 

(23) 

 
or in terms of the Khatri-Rao product: 

 

B  E X A C
ϕτ

ϕ τ
↓↓ ′ 

= + 
 
∑   

 
(24) 

 
Where A  would represent the instantaneous linear mix of the original rows e.g. channel 

in a multi-channel time-frequency analysis. The terms φ  and τ represent the factor shifting 
at the second and third mode respectively. In Eq.24, the ↓  is the downward shift operator 

which indicates how many rows down will be moved in the matrices, thus 
φ
τ

↓

B denotes that 

each element B will be movedφ  rows down and the same for 
τ
φ

↓

C and this is  how the 
relation between the different modes is seen. Any other combination of the component 
matrices is equivalent to the one of Eq.24. 

This model is equivalent to the traditional PARAFAC model [49] if there was no shifting 
in any of the modes, and also equivalent to the S-PARAFAC model in case the shifting was 
analyzed in only one mode. It can be also extended to n-way data and incorporate the 
convolutive mixtures in the 1−n  modes. 

The sparseness constraint has been imposed to the NMF2D due to this model, as a 
generalization of factor decomposition, carries the non-uniqueness problems and therefore 
sometimes fails to find the correct solution, and although it is already a constrained version of 
factor decomposition, where the non-negativity constraint has been imposed precisely to 
avoid this problem in which these models can incur, this isn’t enough. Thus, the sparseness 
constraint has been proposed as a better alternative to obtain unique solutions [50]. Details on 
the imposed sparseness cost to the model and the algorithm can be found in Section 4.1.3. 

3.1.5 Parallel Profiles with Linear  Dependencies (PARALIND) (restr icted PARATUCK2) 

In real chemical and other types of data, sometimes are variations in their underlying 
structure that cannot be analyzed without taking into account the interaction among the 
different factors of the different modes. Although PARAFAC model has the very attractive 
uniqueness properties, the structure of this type of data is too complex to be modeled by it; 
some important information might be ignored if the interactions are not taken into account. 
Tucker (see Section 3.1.6) models on the other hand, are more flexible, they allow to analyze 
all these interactions, but under the cost of rotational freedom problems and less interpretable 
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solutions. Thus PARATUCK2 [51], [12] models emerge trying to combine both methods 
advantages: flexibility and uniqueness properties. The model is then defined as: 

 
'A B

k k k kX AD HD B E= +  (25) 
 
A
kD  is an R  by R  diagonal matrix containing the weights for the columns of A  at level 

k of the third mode. Similarly, B
kD  is an S by S  diagonal matrix giving the weights at level 

k  for the columns of B . H is an R by S  and is similar to the core matrix of Tucker models, 
which permits the interaction among the factors. From here it can be seen that PARATUCK2 
is general in that it requires neither symmetry of the data or model nor the same 
dimensionality for Modes A  and B [51]. 

In this reference are also given some proofs of PARATUCK2 models’ uniqueness, 
although only in detail when R S= , for which is needed that all loading matrices and H  are 
of full rank, H  has no zero elements, and there is an "adequate variation" in the weight 
matrices A

kD  and B
kD in the way is described in [50].  They also made some studies for 

R S> and suspect that for this cases unique solutions may be found, but deeper 
investigations most be done. 

This PARATUCK2 model is nevertheless not suitable for some phenomenon rank-
deficiency, which is found in some types of chemical data.  Sometimes is possible to find 
dependencies in the underlying structure which can produce that the loadings of one or more 
modes of the n-way array become linearly dependent, such that the rank of the component 
matrix is lower than the number of columns, so they become rank-deficient. This 
phenomenon puts in risk the unique solution of the PARAFAC model for the factors involved 
as the Kruskal’s conditions will not be accomplished. The Parallel Profiles with Linear 
Dependencies (PARALIND) [52], [53] models were specifically developed for this purpose 
as a constrained version of PARAFAC or restricted version of PARATUCK2. The H  matrix 
is called now the “dependency matrix” and is used so the intrinsic rank-deficiency can be 
explicitly incorporated into the model as in Eq.25 where the linear dependencies are only 
present in one mode: 

 
( ) 'k k kX AD C B E= +  (26) 

 
 or the matricized version: 

 
( ) 'X A C B E= +   (27) 

 
with  

A AH=  (28) 
 

where A would represent the ( )I R×  component matrix of the mode with linear 

dependencies (lower rank than the others) and H  a ( )R S× binary matrix by which this 
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dependencies between the different factor are represented; P is the number of independent 
columns of A . In a ( )2 3× matrix for example, where the last two factors of A are linearly 
dependent the matrix H would have the form: 

 
100
011

H  
=  
 

 
 

(29) 

 
This representation can be adapted for cases when there are linear dependencies in more 

than one mode. Also, in cases where the dependency is between more than two factors, the 
H matrix can be more complex (and non-binary), and it doesn’t force the user to have 
previous knowledge of the data’s structure, it can be calculated from the data itself (similar to 
PARATUCK2). 

Although PARAFAC models is not prepared to recover uniquely the factors involved in 
the linear dependencies, the authors propose that the uniqueness or partially uniqueness of the 
PARALIND model would give unique solutions when determine constraints are imposed e.g. 
non-negativity, unimodality , but sometimes are not enough. They assume that uniqueness or 
partially uniqueness of this model would follow from the PARAFAC model, depending on 
the combination of its tri-linearity and added structural constraints imposed onto it.  

This model is a very good option for this type of problems, and apparently it really 
inherit PARAFAC uniqueness under some constraints, in fact the authors have 
demonstrated it for flow injection analysis (FIA) [53] and Fluorescence data [52], but 
further studies most be done for other types of applications. 

As the years go by, the use of new instrumental equipments which give as outcome 
multi-way data increases, and the researchers apply multi-way models to make their 
analysis, so more versions of the existing models and new models will arise for specific 
problems in all the research areas e.g. PARAFAC with splines [54] , PARAFASCA [55]. 
In these subchapters, the most reported versions of the PARAFAC model in the literature 
have been presented, trying to bring out the advantages and disadvantages of each of 
them, their usefulness and other important issues related. In the following we will refer to 
other remarking multi-way methods that have had also a big impact in multi-way 
analysis: Tucker models. 

3.1.6. TUCKER models 

The Tucker models were of the first models introduced for multi-way data analysis by 
Ledyard Tucker [2], [15]. These are also known as N-mode principal component analysis 
as are in some way an extension of PCA. The most used of Tucker models for multi-way 
analysis and will be mainly described here is the Tucker3 model, whose mathematical 
expression is very similar to PARAFAC’s, but with some changes that mark the main 
differences between both methods. The expression is presented hereafter: 

 

1 1 1
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(30) 
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where ipa is an element of the ( )A I P× loading matrix, jqb an element of ( )B J Q×  , krc  

of  ( )C K R× , ijke  an element of the ( )E I J K× ×  error array and pqrg  an element of the 
so called G-core array ( )G P Q R× × . As can be seen, unlike the PARAFAC model, in 
this expression the G-core array cannot be absorbed by the other loading matrices. In this 
model the core array is non-diagonal, allowing the different loading matrices to differ in 
the number of components. Thus, there will be an interaction (complex) among the 
distinct components in the different modes, which is an important characteristic of this 
model, its flexibility, giving it some attractive features for the analysis of the underlying 
structure of the data. This is the main difference with the PARAFAC model, where the 
component vectors only interact factor-wise, and what makes also difficult the 
interpretation of the results. So, this property of the core-array can be seen as an 
advantage of the model from some point of view, but a limitation from another. 

The Tucker3 model can be also expressed in a more efficient way in terms of the 
Kronecker product: 

 
( ) 'X AG C B E= ⊗ +  (31) 

 
where X and E are defined as in Eq.13; A , B and C  are the loading matrices and 

[ ]1 2 ... RG G G G= is the matricized core array of size ( )P QR× where rG is the rth  
slab of G . 

Besides Tucker3 model, in which the three modes are reduced with the different 
number of components for each one, there are models where only two or even one of the 
models is reduced i.e. the loading matrix that is not reduced is chosen to be the identity 
matrix and has the dimensions e.g. ( )K K× for the third mode. These models were called 
Tucker2 and Tucker1 in dependence of whether two or one mode was not reduced, 
respectively. The mathematical expression of Tucker2 and Tucker1 models are presented 
in the following equations in the same order, in the form of the Kronecker product: 

 
( ) ( )' 'X IG B A E G B A E= ⊗ + = ⊗ +  (32) 

and  

( ) 'X IG I A E AG E= ⊗ + = +  (33) 

 
All the terms of the equations above have the same meaning as in Eq.31. In Eq.32 it 

is assumed that the third mode ( C ) does not change, and in Eq.33 the second mode ( B ) is 
neither reduced. These expressions can of course change in dependence of which modes 
are reduced or not. As can be seen in Eq. 33, Tucker1 model can be easily interpreted as 
PCA model, so the same algorithms can be used for it.  
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3.1.6.1. Uniqueness 

As in PCA, the Tucker3 model has the problem of rotational freedom, the subspaces 
provided by the model is unique but the parameters cannot be uniquely estimated i.e. if a 
reflection/rotation transformation (orthogonal) is made on the loading matrices there is no 
change in the model’s fit. This is considered as a limitation and is one of the aspects that 
make researchers prefer PARAFAC over Tucker3 model. Nevertheless, this property of 
the Tucker3 model can be useful to facilitate the interpretation of the core-array and the 
loading matrices, by constraining the loading matrices to be orthogonal, so all the 
variation in the data is contained in G . This constraint also avoids problems with the 
degenerate solutions. But this is not enough to avoid the rotational freedom, extra 
constraints most be imposed as: the loading matrix A  needs to contain the eigenvectors 
of ( )' 'X CC BB⊗ in order of decreasing eigenvalues and similar ones most be imposed 
to B  and C . More details on this aspect and about how to simplify the core-array can be 
found in [3], [56], [57]. This problem of rotational freedom is also generalized to Tucker2 
and Tucker1 models. 

3.1.7. Other  Tucker  versions 

As for PARAFAC, in [48] was also proposed a Shifted version for Tucker3 (S-T3) and 
Tucker2 (S-T2) models. So, assuming as before that mode A is the shifted mode and B is 
the shifting mode, the S-T3 model would have the form: 

 

[ ]jpIJK I s P JQ KR PQRx a b c g+=  (34) 

 
where the terms have the same interpretation as in Eq.21. A model for S-T2 was also 
developed: 

 

[ ]jpIJK I s P KR PQRx a c g+=  (35) 

 
In these models it is only considered shifting in one mode; other possibilities have not 

yet been explored. The authors have strong conjectures that these shifted versions can be 
unique, unlike the original Tucker models. 

Recently a Sparse Non-Negative Tucker (SN-TUCKER) factorization was proposed 
in [58]. The authors developed ways to impose sparseness in any combination of modes 
and proposed algorithms as for cPARAFAC based on least squares minimization and KL 
divergence minimization. They demonstrate how these new algorithms are superior to the 
proposed ones when data and interactions can be considered non-negative. 

3.1.8. Multi-linear  par tial least squares regression (N-PLS) 

In multi-way analysis, regression problems can be found as in two-way analysis for the 
prediction of unknown quantitative information from the information available. In this 
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kind of problems the arrays are composed by two blocks: the multi-way array X with the 
independent measured variables (prior knowledge), and a vector, matrix or multi-way 
array Y  for the dependent variables.    

For this purpose some methods have been already proposed. Such is the case of 
PARAFAC and Tucker, though are mainly used for exploratory analysis, they can be 
used for regression by decomposing the three-way array and then regress the dependent 
variables on the obtained loadings.  But these procedures have some problems with the 
necessary components for the decomposition and the regression, as they are done 
separately. In [59], the authors proposed the method known as Multi-way covariates 
regression to compensate this situation. More details on this can be also found on [3].  

The most popular of the methods proposed for multi-way regression is the Multi-
linear PLS (N-PLS) [18] , [60], which is an extension of the bilinear PLS for multi-way 
arrays. The idea is the same as in PLS, to find the components by describing the 
covariance of the dependent and independent variables.  But, unlike the other multi-way 
regression methods, in N-PLS the multi-linear models for the dependent ( )Y I L M× ×  
and independent variables, and the regression model that relates the two decompositions 
are done simultaneously; all of these constitute the regression model. In the 
decomposition models to be presented afterwards the notation will be different to the 
used in the previous models to be consequent with the notation used in traditional PLS 
models: 

 

( ) 'K JX T W W E= ⊗ +  (36) 

and 

( ) 'M LY U Q Q E= ⊗ +  (37) 

 
The T  and U matrices represent the scores of X and Y  decompositions respectively. 

Assuming that X and Y are two three-way matrices with ( )I J K× ×  and 

( )I L M× × dimensions respectively, then W and Q matrices refer to the loadings of both 
decompositions and the superscript indicates to which mode belongs each one of them. 
The models above are under the restriction that the loading vectors found most conduce 
to the scores vectors of maximal covariance. The regression model would be then as 
follows: 

 
U TB E= +  (38) 

 
where B  contains the regression coefficients obtained from the regression of Y onT . 
Although the presented model refers to three-way arrays, then N-PLS model, as its name 
indicates, can be generalized to multi-way arrays, and as in this case a similar model to 
PARAFAC’s is assumed for the decomposition steps. 

 As the N-PLS method consists in finding successively one-component model (rank-
one tri-linear model) (see Section 4.2.), and as discussed in Section 3.1.1.1., it is 
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demonstrated that rank-one multi-linear models are always unique, the author deduce that 
the N-PLS solutions are unique. 

3.1.9. Selecting the number  of components 

One of the important issues of component models is the selection of the right number of 
components to use in the model. For the selection of this number exist several tools, but 
its use depends on what the purpose of the model is. In [3]some data analytical validation 
tools are described: scree plots, split-half analysis, cross-validation and visually checking 
residuals; the authors do not advise to be confident in only a particular one, as not all 
datasets have to accomplish the assumptions of this rule.  

Besides the general tools, there have been proposed some others for specific models, 
such as: DIFFIT [61] for the Tucker3 models, and later in [62] they proposed DIFFIT on 
approximate fit, which improves the speed of this method with similar results in the 
optimal fit. Also in [63] the authors proposed a new way of finding the number of 
components for tri-linear decomposition (the authors made emphasis in PARAFAC 
model)by incorporating the tri-linear character of the data into the component-
determining procedure. This new method is called ADD-ONE-UP and the authors 
demonstrated it is of easy implementation and has a very good performance. Bro and 
Kiers also proposed in [64], a method for determining the number of components for 
PARAFAC models, although it can be also used in restricted Tucker3 models. These core 
consistency diagnostic method (CORCONDIA), also quantifies subjective results, it 
helps to determine if the model is stable or not. Nevertheless, the authors suggest that the 
determination of the components should not be done either on this solo criterion.  

Although all these methods are very helpful to determine the most suitable 
dimensionality of the model, the definition of the final one is responsibility of the analyst 
in dependence of the problem at hand and the background knowledge he has on it. 
 

4. Algor ithms 

For the estimation of the multi-way component models’ optimized parameters, i.e. the 
parameters that minimize most the loss function: 
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(39) 

 
there have been proposed several algorithms which are divided in three main groups: The 
first one is formed by the alternating algorithms, which update only a subset of the 
parameters at each step. In this group are among others: Alternating least squares 
(PARAFAC-ALS, TUCKALS-3) [16], [65], a alternating slice-wise diagonalization (ASD) 
[66], alternating tri-linear decomposition (ATLD) [67], self-weighted alternating tri-linear 
decomposition (SWATLD) [68], pseudo alternating least squares (PALS) [69], alternating 
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coupled vectors resolution (ACOVER) [70], and alternating coupled matrices resolution 
(ACOMAR) [71]. In the second group are the derivative based methods, seeking an update 
for all the parameters simultaneously by successive approximations: Positive Matrix 
Factorization for 3-way arrays ( PMF3) [72] and damped Gauss–Newton (dGN) , also known 
as Levenberg–Marquadt [72]; [73]. And in the third group are the direct (non-iterative) 
procedures where the most known are: the Generalized Rank Annihilation Method (GRAM) 
[74] and the Direct Tri-Linear Decomposition method (DTLD) [75], both based on a 
generalized eigenvalue problem, but GRAM works only when there are only two slices in 
one mode and DTLD is a generalization of it to data with more than two slices by generating 
two pseudoslices as differently weighted averages of all the slices. There are other algorithms 
created to resolve particular problems as is the case of [76] which was introduced to deal with 
the influence of model deviations on the predictive accuracy in second-order calibration.   

All this relation of algorithms we took it from In [77] and [compare fitting [78], and in 
both a comparison of the mentioned algorithms is made, in terms of the complexity to 
incorporate constraints in, robustness, convergence, handling of missing values, sensibility to 
over-factoring, etc. Besides, the mentioned algorithms are of course more detailed in the 
respective papers. 

As it can be seen in the referenced papers, algorithms that are variations of the ALS or 
not, are trying to solve its speed problems, but it results that even when they are faster, when 
the model is over-factored specially, their capability for fitting the model is poorer and most 
of them can only deal with unconstrained three-way models. In this case is also [79] who 
proposes a modified version of the PARAFAC algorithm using penalty diagonalization error 
(PDE) to relieve the slow convergence caused by the random initialization and it is 
insensitive to the over-factoring, but only for three-way data. So, although ALS has its slow 
convergence problems, it is guaranteed , and still the only one that handles higher order 
arrays, constrained models, missing data and weighted least square loss functions. Due to this 
convergence characteristics and other theoretical implications related to the measurement 
noise, is that Vega Montoto created an extension of the Maximum Likelihood PCA(MLPCA) 
[80] for the PARAFAC-ALS algorithm, Maximum Likelihood PARAFAC (ML-PARAFAC) 
[81], [82], [83], [84], which accounts for measurement errors in the estimation of model 
parameters.   

For all mentioned before, the ALS algorithm is preferred over the other recently 
introduced when a better quality of the estimated model is searched, and this is why we chose 
it to deepen into. 

Nevertheless, although when using an algorithm it is always recommended to look for the 
alternative that fits the most to the problem at hand; in cases where the priority is the 
computation time, this is definitely not the advised one. Recently a way to improve this 
problem in PARAFAC-ALS algorithm was introduced by [85], which proposes to accelerate 
the algorithm for three and four-way data and reduce storage requirements by utilizing multi-
dimensional wavelet compression. 
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4.1. Alternating Least Squares 

The Alternating Least Squares basics were introduced in 1933 by Yates and the main idea is 
to resolve a bigger optimization problem with smaller sub-problems iteratively. In the 
algorithm the parameters to estimate are separated in different sets (as few as possible); this 
separation will make possible the use of simpler algorithms for the estimation of the 
parameters. In each iteration these sets will be fixed except one that will be left free to vary, 
with which will be minimized a new loss function depending only on it. The algorithm will 
iterate, alternating from one set to another until there is no change observed in the loss 
function or the parameter values, or their variation is less than a predefined convergence 
criterion. The fewer the sets are, decreases the possibility of finding local minima and slow 
convergence. If the algorithm converges to the global minimum, the least squares model is 
then found. In the least square sense, the algorithm should not get a worse fit at any step, the 
loss function tends asymptotically to a minimum so if it doesn’t improve the least it can do is 
to keep the same convergence as in previous steps.   

Following, it will be presented the steps of a generic ALS algorithm as in [12]. 
Given an array X consider the general model 

 
ECBAfX += ,....),,(  (40) 

 
To estimate the parameters ,,, CBA etc. an ALS algorithm can be as: 
 
1. Initialize the parameters 
2. A is the solution to 2||,...,,(||minarg F

A
CBAfX −  

3. B is the solution to 2||,...,,(||minarg F
B

CBAfX −  

4. C is the solution to 2||,...,,(||minarg F
C

CBAfX −  

5. Estimate following sets of parameters similarly 
6. Return to step 2 until convergence 

 
where f is the model of X and is a function of the parameters ...,, CBA  . It is a matrix of the 

same size as the data held in X . 
F

 ⋅ refers to the Frobenius norm. The first step will be 
treated in each of the following specific algorithms of PARAFAC, TUCKER, etc. In the last 
step it is determined whether the algorithm has already converge or not and it will depend on 
the conditions we mentioned before. 

This algorithm as already mentioned has the advantages that besides it is easy to 
implement and simple comparing to the algorithms that work simultaneously, can handle 
missing data, constraints, and can be extended to n-order arrays and guarantees to converge. 
This last property is very attractive and one of the reasons for its popularity. Nevertheless it 
has problems with slow convergence when the called swamps (explained in Section 3.1.1.2) 
or high co-linearity are present, cannot withstand the presence of outliers which are very 
common in many research lines e.g. Chemometrics. It also carries other disadvantages of the 
iterative algorithms with: 1. the fact that a stopping criterion have to be chosen beforehand, 2. 
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the starting point that would lead to the best solution has also to be chosen, etc. More details 
on the iterative algorithms can be found in [5]. 

So we can conclude that, besides the alternating least squares algorithms are actually the 
most used in multi-way analysis because of all the advantages they have, and that the 
problems that can arise also depend on the data, there are very important disadvantages that 
still have to be treated.  

4.1.1 PARAFAC-ALS 

The PARAFAC-ALS was introduced by [16], [17] where X is a three-way array, so there are 
three sets of parameters (A, B, and C) and the loss function : 
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or with the Eq. 13  
 

( )
2

, ,
min
A B C

X A C B ′= −   
 

(42) 

 
 In this algorithm as was said before, the parameters are updated in each operation until 

the convergence, alternating: A  given B  and C , B  given A  and C , and C  given A  and 
B . Due to the symmetry of the model, an update of one mode is essentially identical to an 
update for any of the modes with the role of the different loading matrices shifted [3]. To 
estimate A  conditionally on B  and C  results in the optimization problem: 
 

2||'||min AZX
A

−=  (43) 

 
with  
 

CZ = ⊙ ]'''...'[ 21 BDBDBDB k=  (44) 
 
and the diagonal matrix kD is the same as in Eq.12. Then when given B and C the least 
squares optimal A  can be found as: 
 

1)'()'( −+ == ZZXZZXA  (45) 
 

The updating of B and C can be done in the same way due to the mentioned symmetry 
property of the model. So now it will be presented the PARAFAC-ALS algorithm where 

( )X I J K× × is unfolded to an I JK× array. 
 

1. Initialize B and C  
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2. Z C B=   

              1)'( −== ZZZXA IxJK  

3. Z C A=   
1)'( −== ZZZXB JxIK  

4. Z B A=   
1)'( −== ZZZXC KxJI  

5. Go to step 1 until relative change in fit is small 
 

This version anyway is computationally costly for large arrays and the continuous 
rearranging of the array in the three unfolded versions requires excessive memory. Harshman 
[16] and Carroll [17] noted that a simpler updating scheme is possible due to the special 
structure of the problem, formulated in terms of the frontal slices, KX , then the multiplication 
of XZ and 'ZZ is done straight out from B , C and X . So making use of Eq.12: 
 

]'''...'][...[ 2121 BDBDBDXXXXZ kk= kk BDXBDXBDX +++= ...2211  (46) 
 
and 
 

)'(' CCZZ = ∗ )'( BB  (47) 
 
we can define A as: 
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(48) 

 
 The following algorithm is more efficient and although the calculation for all the modes 

is not identical as in the previously shown, it is still symmetric and equivalent to the previous 
one.  
 

1. Initialize B and C  

2. ( ) ( ){ } 1

1
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A X BD C C B B
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3. ( ) ( ){ } 1

1
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B X AD C C A A
−

=
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∑     

4. ( ) ( ){ } ( ){ }1
1, 1,...,k kd B B A A A X B I k K

−
′ ′ ′= ∗ ∗ =  

5. Go to step 2 until relative change in fit is small 
 

There are some other ways to represent this algorithm, these were taken from [3] and 
there are more details about it. 
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As introduced previously, the ALS algorithms have the limitation that the starting point 
(initialization values) and stopping criterion have to be chosen. These require a lot of work to 
find the ones that would lead to a good solution and they are very important as any error can 
lead to slow-convergence, a local minima and finally not getting the most fitted model. 

A good initialization of the parameters can influence in the speeding up of the algorithm 
and decreases the chances of getting to a local minimum, most of all in difficult cases like: 
loading vectors are intrinsically correlated or there is over-factoring and then the noise is 
included in the modeling. There have been some proposals for the initialization points e.g. 
[21] suggests a random initialization and starting the algorithm from different points but this 
usually do not lead to a good estimation. There have been suggested also the term for a “good 
initialization as possible”, rational start and a similar one semi-rational start, which of course 
should be as close as possible to the true solution and therefore save computational time. 
There are more details in [3] on how to select these points. At the end the advice is to fit the 
model from the three mentioned points of view and if the same solution is obtained, the 
chances of a local minimum are very low. 

In the case of the stopping criterion, as the convergence of the fit model does not mean 
that the parameters have converged, then the small changes between the fitness of one 
iteration and another can be a criterion. Anyway, following the changes in the parameters 
instead, can be another criterion, it won’t be equivalent to the previous one as it will converge 
simultaneously and changes in the parameters can still be detected. But in cases when there is 
two-factor degeneracy it can end in infinite iterations searching for the convergence of the 
parameters estimates even when the fit has already converge, this can only be fixed imposing 
the number of iterations of the algorithm.  

4.1.2. PARAFAC2-ALS 

Because of the structure of the PARAFAC2 model (see Section 3.1.2), although it was 
introduced by Harshman in 1972 [43] it was not until 1993 that Kiers [86] proposed an 
algorithm for this fitting (indirect). This is, as demonstrated, computationally complex and 
time consuming, so in [44] it is proposed a simpler one(direct fitting) and it will be the 
presented here. If it is used the PARAFAC2 model defined in Eq.20, the optimization 
function would be then: 
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(50) 

 
minimizing all its arguments, subject to the constraints that Rkk IPP ='  and kD as was said 
before is diagonal. If '' kk XBAD is decomposed by singular value decomposition then kP can 
be expressed as: 
 

'kkk UVP =  (50) 
 

The minimization problem shown is then equivalent to: 
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(51) 

 

kP can be calculated also as: 
 

2/1)'''(' −= ABDXXBADABDXP kkkkkkk  (52) 
 

So finally the algorithm steps are: 
 

1. If kNJ < , kXreplace by )( JMH kk × from the Cholesky decomposition of 

kk XX ' = kk HH ' , and kM is considerably smaller than kN . 

2. Initialize A , B and kD . 

3. Compute the SVD of '' kk XBAD and update 'kkk UVP =  , Kk ,...1= . 

4. Update A , B and kD by one iteration of PARAFAC-ALS applied to kk XP ' . 
5. Go to step 2 until relative change in the fit is small. 
6. If kX  has been replaced by kH in Step 1, replace kH by kX again and compute 

kP according to Step 3, Kk ,...1= . 
 

More details about this algorithm can be found in [44]. Here it is also suggested to 
initialize B  as the loading matrix from PCA on∑

k
kk XX ' , and A  and kD ( )1,...k K=  

as RI .   As in the previous algorithms it can be also suggested to try using this initialization 
and other with random values to verify convergence and assess uniqueness. 

This algorithm for the direct fitting is less complex computationally than the indirect 
fitting one, but as can be seen there are operations that can explain the computation time 
required by PARAFAC2 and this must be one of the main reasons of why it hasn’t been so 
accepted or applied unless it is really necessary. Nevertheless, in the last years its use has 
been increased mainly in the Chemometrics field. 

4.1.3. cPARAFAC 

Finding an efficient algorithm for matrix factor deconvolution has been a difficult task, 
although some have been proposed [87], [88], most of them cannot reach the global 
minimum of the cost function, but only a local minimum. Fast and easy to implement 
algorithms, based on the developed ones for the traditional matrix factor decomposition, have 
been proposed and proof to converge for the NMF2D [48], but again, only for a local 
minimum of the cost function. Such is the case of the least squares minimization algorithm, 
and the other based on the Kullback-Leibler (KL) divergence minimization, with a 
transformation matrix to form the convolution. These two algorithms were also extended for 
sparse non negative matrix factor double deconvolution (SNMF2D) [48] and later for 
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SNTF2D [47] in which a sparseness penalty is added to the cost function, like in the 
following equation for the Least Squares algorithm: 
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with 
( )CCCCCC Sparse

rp
rkSparse +== ∑

,,
,1

)(
θ

φββ  (54) 

 
where jkp = and β  the weight of sparseness to the reconstruction error. The sparseness 
cost is imposed to restrict  C  to be sparse in order for the underlying structure of the data to 
be present in B and it can be any function with positive derivative. The selection of β could 
become a drawback of the method as it is not trivial. 
 

The Alternating Least Squares for cPARAFAC is presented: 
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8. Repeat from step 2 until convergence. 
 
 

The unit Frobenius Norm constraint, included in steps 4 and 6 of the algorithm, was 
added to avoid the elements of the component matrix C  to go to zero and so A and B to go 
to infinity, which can be an after-effect of the sparseness constraint. 

The other algorithm proposed for this model, based on the KL divergence minimization 
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is shown hereafter: 
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7. 
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8. Repeat from step 2 until convergence. 

 
No problems of divergence have been reported in the literature with these algorithms 

until now, in fact it has been shown that they were able to identify the components correctly, 
but although the NMF2D has been proven to converge, and the inclusion of sparsity hasn´t 
made them diverge, there is neither a proof of their convergence, only well founded 
conjectures. 

4.1.4. PARATUCK2-ALS and PARALIND-ALS 

Although PARATUCK2 was introduced by Harshman [22], it was not published an 
algorithm by that time, it was in [12] that was proposed an ALS algorithm for this model, 
which will be presented afterwards. The loss function for this algorithm comes also straight 
from the model: 
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So the algorithm will consist in the following steps: 

 
1. Initialize A , A

kD , H , B
kD  and B  , 1,...,k K=  

2. 'A B
k k kF D HD B= , ( ) 'A X F +=  where [ ]1 2 ... KF F F F=  

3. 'B
k kF BD H= , ( ) ( )( ),:' 'A

k k kvecX F A C= ⊗  

4. ( )kZ F A= ⊗ , ( ),: 'A
k kC Z vecX+=  

5. The same procedure follows to estimate B and ,:
B
kC  with the pertinent rearranges 

6. 1 1 2 2 ... 'B A B A B A
K KZ BD AD BD AD BD AD = ⊗ ⊗ ⊗   

7. vecH Z vecX+= where [ ]1 2 ... 'kvecX vecX vecX vecX=  

8. Repeat from step 2 until convergence. 
 

This algorithm can be also extended for models of higher orders [12], but it has its 
complications. As for other algorithms, the initialization of the parameters can be done 
randomly, or with the loading vectors of an unfolded PCA in a way that is described in 
[12].In the case of matrix, if R S= it can be defined as the identity matrix. 
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For fitting a PARALIND model an algorithm has been also proposed in the referenced 
papers [52], [53] but only for the models used in a specific type of data. This lack of 
generalization can be taken as a limitation, as for any change in the model the algorithm 
should be rewritten. Nevertheless, it can be seen that is much simpler than the 
PARATUCK2-ALS algorithm. The following algorithm is related specifically for FIA data 
analysis’s PARALIND model, considering the linear dependency in only one mode, of left-
dimension (column-dimension of A ) R  and right dimension (column dimension of B  and 
C ) S . This is very similar to the PARAFAC-ALS algorithm; except for the 
necessary step for updating the interaction matrix H . So the loss function would be as 
follows, using the matricized representation of the model: 
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and the algorithm: 
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6. Repeat from step 2 until convergence. 
 

where the operator ( )diag X  is a column vector with the diagonal elements of X  and the 
operator vec is the vector obtained by stringing out X  column-wise to a column vector. This 
algorithm can be extended to higher order arrays and where there are linear dependencies in 
more than one mode, but not so easily. In [52], [53] some ways to integrate constraints in the 
algorithm can also be found.  

4.1.5. TUCKALS3 

As for PARAFAC model, various algorithms were proposed to fit the Tucker models, but the 
most important one is TUCKALS3, based on alternating least squares with orthogonal 
loading vectors [65], which will be shown hereafter based on the loss function: 
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The steps of the algorithm taken from [Bro] are: 
 

1. Initialize B  and C  
2. A equals first P left singular vectors of ( ) ( )I JKX C B× ⊗  

3. B equals first Q  left singular vectors of ( ) ( )J IKX C A× ⊗  

4. C equals first R  left singular vectors of ( ) ( )K IJX B A× ⊗  

5. Repeat from step 2 until convergence 
6. ( )'G A X C B= ⊗  

 
To initialize B  and C  it is recommended to take the left singular vectors of the singular 

value decomposition of the correspondent matricized version of X . For the stopping criterion 
can be used the change in the fit between one iteration and another, as is expressed in the 
previous algorithm, and fit can be also obtained of the squared elements of G , so in the 
implementations step 5 and 6 can be exchanged without any problem. 

The TUCKALS2 [89], [90] algorithm is similar to the one proposed for Tucker3, with the 
difference that the loading matrix of the mode that will not be compress is substitute by the 
identity matrix I . As the Tucker1 model matches with a bilinear model, the algorithms used 
for these models e.g. SVD can be also applied for this model.  

4.2. Tr i-PLS algor ithms 

The N-PLS algorithm [18] is one of the multi-way models that can exceptionally be fitted 
sequentially. This is carried from the traditional PLS model and has the advantage that a 
model with higher number of components can be calculated from a previous solution with 
less components and backwards the job is already done. So, originating from the traditional 
PLS algorithm called bi-PLS, the three-way algorithm is named tri-PLS. 

As the objective of the N-PLS model is to obtain the scores matrices such that the 
covariance between the independent and dependent variables is the maximum, the loss 
function will be based on this. In the following equation the optimization criterion will be 
expressed for a case where there is more than one dependent variable ( )Y I J× : 
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,
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J K

K J J K

w w
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We will present here the corresponding Tri-PLS2 [18] algorithm which is a combination 

of the tri-linear tri-PLS1 [3], [12], [18] (for one y ) and the traditional PLS2 algorithm, where 
all sy can be modeled simultaneously: 

 
1. Initialize 1u  with a column in ( )Y I J× and 1f =  
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3. Determine J
fw and K

fw as the first left and right singular vectors of Z . 

4. Calculate ( )K J
f f ft X w w= ⊗  

5. 
'

'
f

f
f

Y tq
Y t

=  

6. f fu Yq=  

7. If u has converged, continue, else step1. 

8. ( ) 1' 'f fb T T T u−=  

9. ( ) 'J K
i if f fX t w w−  and '

f fY Y Tb q= −  

10. 1f f= + . Continue from step 1unitl proper description of Y  
 
 

This algorithm is equivalent to tri-PLS1 if only one dependent variable is available. Some 
improvements have been proposed for this algorithm in a way described in [thesis bro], but 
would lead to other complications as slowness. The N-PLS algorithm can be also extended to 
higher order arrays and also for higher order dependent variables arrays, in a similar way. 
More details about this can be found in [12]. 

4.3. Missing data 

It is rare in any empirical study not to have at least a few data points for which the values are 
unknown. There can be a variety of causes for such missing data, such as accidents of some 
sort, flaws in the data collection, the impossibility to obtain measurements because of a too 
low signal, or by design. There may be no pattern to the missing data, so that they are 
scattered through the entire data array, or they may show specific patterns because certain 
data could not be collected, were no longer collected, or part of the data collection started 
later than that of the main body of the data. 

The origin of the missing data can influence the way they are handled in an analysis, and 
the way the results of the analyses are interpreted. Missing data may also be produced on 
purpose, in order to perform analyses of data sets in which outlying data values have been 
identified or are suspected. In such situations the outliers can be designated as missing and 
analyses with and without these outliers can be performed to assess their influence on the 
solution. By treating the outliers as missing, it is possible to establish whether they are 
responsible for the three-way structure or interaction. If so, the complexity of the analysis 
may be reduced so that there may no longer be a need for a multi-way analysis of the data. 

One of the interesting aspects of analyzing multi-way data in the presence of missing 
values is that due to the presence of more ways, the data are much richer than in the two-way 
case. The additional information makes the analyses easier and often more reliable, even 
when a considerable amount of data are missing. However, there must be sufficient 
information at the right places in the data set to allow for estimation of the missing data [5]. 
The treatment of missing data in any model should be very carefully, as this kind of 
information can’t be compensated. There are a lot of people that sets up the missing values to 
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zero as the solution to this, but it can often give incorrect results, so this means that this 
values have no influence on fitting the model and this is not correct in a modeling situation. 

Another approach is to impute the missing elements from neighboring elements in case 
that these elements are correlated. This approach can provide reasonable results if only a few 
elements are missing, but it does not work correctly otherwise. 

In methods like two-way PCA and two-way and multi-way PLS regression fit through 
NIPALS-like algorithms, the approach is to simply skip the missing elements in the 
appropriate inner products of the algorithm [91]. This has the same problem as the last 
approach mentioned, and it can even be suboptimal in the cases that it may work [92]. 

There are some other approaches to treat missing data mentioned in [5], most of them 
applied to the PARAFAC model. In [3] two more approaches are also explained, imputation 
and weighted regression; this last can work for all models that have a well-defined overall 
optimization criterion, as PARAFAC and Tucker. Although Kiers has shown in [93] that both 
approaches give identical results, it is difficult to say which one is better, as it depends on the 
implementation, size of the data, and size of the computer memory as both can be 
computationally costly, though data imputation is easier to implement. 

4.4. Outlier  detection 

The outliers are observations that differ from the rest of the other samples of the model and 
their presence in the data, in particular, outlier interactions among the modes of three-way 
array, affects the model most of the time (see [5] for types of unusual points). Consequently, 
this type of points must be detected, and removed or ignored when creating the models. There 
are two approaches to analyze them: their treatment before the analysis of the data by the 
analysis of residuals plot or the use of robust methods that could be able to estimate model’s 
parameters correctly notwithstanding these points.  

In the case of multi-way models, most of which are based on least squares procedures, 
carry its problem of being too sensitive to outliers. Another problem is that multi-way data 
are usually preprocessed before they are analyzed, so if there are outliers the analysis could 
be defective before it started. So there is also the need of robust methods for preprocessing. 

There are some facts to be taken into account in the detection of unusual points in multi-
way data, and it is that as it can be composed by combinations of subjects, variables, 
conditions, etc there can be outlying points in any of the modes. If one restricts oneself to 
subjects, there are two possibilities corresponding to the two common data arrangements: to 
detect outlying slices and to detect outlying fibers. In the first one the data are viewed 
according to the I by J K× arrangement (a wide combination-mode matrix). In some robust 
procedures the robust estimates for the parameters are based on a subset of slices so as to 
eliminate the influence of outlying slices on the parameter estimates. The second arrangement 
would be in the way I K× by J  (a tall combination-mode matrix) with the robust estimates 
based on a subset of the I K× fibers (i.e., rows). For the last case, there may be encountered 
some imbalance as some subjects have no observations in certain conditions. This can only 
be handled in a multi-way analysis by designating these fibers as missing in order to make 
the data set a "complete" multi-way array for analysis [5].  

Some standard procedures for the analysis of residuals exist and some robust methods for 
multi-way analysis, including robust preprocessing methods. Most of these robust approaches 
are variants of strengthen principal component analysis extended to multi-way analysis (see 
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Robust statistical procedures. [94], A fast method for robust principal components with 
applications to chemometrics [95], ROBPCA: A new approach to robust principal component 
analysis [96], Robustness and outlier detection in chemometrics [97], A comparison of three 
procedures for robust PCA in high dimensions [98]. 

Among the works made on robust versions of multi-way component methods to treat 
outlying points are: Algorithms for robust PCA and applications for multi-way data [99] 
Robust PARAFAC for fluorescence data [100], A fully robust PARAFAC method for 
analyzing fluorescence data [101], A robust PARAFAC method [102], A robust version of 
the Tucker3 model [103]. 

We can then conclude that it is very important the detection of outliers because of their 
direct negative influence on models, making their results invalid. Although they can be 
analyzed by the residuals, it would be very important to work more on the development and 
improvement of multi-way robust methods for this purpose, as it is incipient yet.  

5. Applications 

After the main things of multi-way analysis have been explained, in this chapter we are 
planning to show how it is applied in many research areas. At the beginning of the history of 
multi-way analysis, the principal applications and contributions were made by 
psychometricians [1], [15], but as the years go by and the specialist earn new technologies 
that supplies them of complicated but useful amount of data, they have learned to model their 
data with this structure and take advantage of all the kindness and information that the 
developed methods offer.  

Nowadays there are a lot of fields where multi-way analysis is used for exploratory 
analysis, classification and regression purposes. In the following subchapters we will try to 
explain how some of them make use of multi-way analysis. 

5.1. Chemistry 

 One of the research areas where this technique is very popular is in chemometrics. As most 
of the new instrumental equipments are now combined, the output data has a natural three-
way structure e.g. 1) Liquid chromatography with ultraviolet (UV) detection (HPLC-DAD) 
for different samples (Samples x Time x Wavelengths), 2) Gas Chromatography-Mass 
Spectrometry (GC-MS) for different samples (Samples x Time x m/z) and 3) Fluorescence 
spectra for different samples (Excitation-Emission wavelengths matrix per sample) (EEM)  
(Samples x ExcWavelengths x EmisWavelengths).  

The objective of using the multi-way component methods in this data are mainly for 
exploratory analysis and calibration, to determine specific interrelations between the 
components, determination of the compounds found in each sample as well as the relative 
concentrations of compounds, etc. The application of PARAFAC to the Fluorescence data 
[104], [105], [106], [107], [108] has been one the most popular applications of multi-way 
analysis as is the one that shows best the modeling power and interpretation of factors of a 
PARAFAC model. The applications of multi-way in chemometrics can be also found for the 
treatment of environmental data, which has a lot more influence from outside, introducing 
noise and undesirable information into the data. In this data the presented models have also 
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shown very good results for exploratory analysis and calibration [109], [110], [111], [112], 
[113]. For classification purposes there have been also some applications in chemometrics. 
One example we bring here is with a GC-MS data of weathered petroleum oils [114], but in 
this case the component model that have give good results is the PARAFAC2 model, as this 
type of data shows the limitation of PARAFAC models with time shifts, which is very 
common in chromatography. In fluorescence data there was also a big study in food 
classification [115], showing once again the capability of the PARAFAC model for this type 
of data. 

Batch processes are another important area where multi-way analysis has a wide 
application. In this analysis it is obtained an array of batches followed over time and 
measured by temperature or pressure sensors, etc., (Batch x Time Wavelengths). These 
processes sometimes are very difficult and time consuming, as to obtain the whole data set 
the specialist ahs to wait for the completion o the hall batch. Although this type of data can 
have problems with missing values, PARAFAC have shown it can beat this problem and 
model it with success [116]. These datasets can also have some problems with the reduction 
of the data in the time mode, so the data will have different dimensions. PARAFAC cannot 
deal with this, but a three-way analysis method called STATIS [117] can do it, as unlike the 
other three-way models, it explores each mode separately. Also in [118], a new approach for 
handling this problem with PARAFAC2 models was introduced. An extensive review of 
application of multi-way data is related in [119].  

Details on how the multi-way data of these and other examples would be arranged can be 
found in [12], [3]. 

5.2. Sociology 

Applications of multi-way analysis can be also found in sociology, to evaluate human 
behaviors. Some works have been done to find patterns in the use of time between the 
populations of different countries [120], having arranged the three-way data with the 
variables: (countries x activities x categoryofpopulations). There has been also a special 
interest in finding hidden structures in social networks e.g. patterns in relationships, 
communication. For this, investigations from chat rooms [121],have been done, being the 
three-way data of the form (users x keywords x time). Also for the investigations on 
communication has been used the information from the emails [122]. 

5.3. Neurology 

Another of the most common applications of multi-way analysis has been in neurology, 
where the electroencephalographic data (EEG) has been modeled as a three-way array [123], 
[124] but with different arrangements in dependence of the investigation purpose. 

There have been studies of epilepsy where the three-way data consist of wavelet 
coefficient at ith time sample, jth scale and kth electrode [125]. Another arrangement of 
multi-way data that have become very popular in neuroscience is in the following form: 
(space x time x frequency),which has been applied to solve important problems e.g. Brain 
computer interfacing (BCI) based on EEG activities which enable people suffering severe 
neurological disabilities but cognitively intact to operate computers by intention rather than 



42      Ing. Diana Porro Muñoz, Dr. C. Isneri Talavera Bustamante, Dr. C. Robert W. Duin 

by physical contact. In this example PARAFAC has demonstrated its capability of 
successfully space-time-frequency decomposition of the EEG for BCI and annihilation of the 
brain background potentials [126]. Recently, for the analysis of brain activities, a toolbox for 
multi-channel time-frequency analysis using EEG and MEG data (ERPWAVELAB) was 
introduced by [127]. 

5.4. Classification 

The previous examples of applications of multi-way analysis methods are only a few of a 
wide variety that exist in a lot of fields. During our investigation we could notice that, most 
of the applications are for exploratory and regression purposes but for classification there are 
not so many. This is not because the problems are not there, classification problems are very 
common in any research area, it is maybe because there was not a classification tool yet and 
the exploratory tools sometimes are not enough. 

Nowadays, the classification tasks for “profile data” design are being solved by unfolding 
the data and using traditional two-way classification methods, which has been shown here to 
have a lot of disadvantages, or by using PARAFAC or Tucker models and later analyzing the 
scores obtained in the decompositions [115], [128], which evidently have interesting 
characteristics that made them very popular among the researchers. This last is better than the 
unfolding alternative, but still carries the problems outlined in the previous sections about 
these models. Other times the classification task is only accomplished by the simple 
exploration with these methods [114]. 

In the last years a few models have been proposed for this purpose , not for the “profile 
data” type which concerns us, but for the “three- way binary data” type explained in [5]. This 
type of data ( )( ) (var ) ( )X I objects J iables K conditions× ×  has the same structure of the 
first one, but as its name indicates the values of the array are binary. So, the models defined 
for working with this data are analogous to PARAFAC and Tucker [129], [130], [131], [132], 
but based on Boolean algebra; the entries of the component matrices are also binary. 

Recently, David Ballabio introduced the use of MOLMAP (Molecular Map of atom 
level-properties) approach [133] for the classification of multi-way data. This is an algorithm 
for calculating molecular descriptors for the study of molecule chemical information 
organized into three-way data structures. The MOLMAP algorithm is based on the use of 
Kohonen maps such that a representation of the objects of the original multi-way dataset can 
be obtained by projecting them onto the trained map, one at a time, and by mapping the J 
input vectors of each multi-way object, this way the similar vectors are mapped into the same 
or closely adjacent neurons. The final object is a score matrix ( )*M I N N× , where 
I represents de number of samples and N is the number of neurons that the square Kohonen 
map contains on each side. Finally, each sample is described by new variables that encode 
information both on the second and third mode of the original dataset [134]. Once this two-
way matrix is obtained, any traditional two-way classifier should work. Although this 
technique is really new, it seems promising as good results are shown in the article, 
nevertheless it carries the MOLMAP disadvantages about the computational time that takes 
to optimize the Kohonen map. 
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6. Open problems 

Multi-way data analysis is not a new technique, as can be noticed in this study and the 
reported literature. Nevertheless, as we were writing the document we tried to outline some 
limitations of what already exists in this field and might be seen as open problems that still 
have to be worked out: 

1.  Although a sequence of works have been published about the uniqueness conditions 
for PARAFAC models, they are not complete; most of them are for particular cases 
of multi-way arrays. So, many things can still be done in this issue. 

2. The degeneracy problems of the PARAFAC-ALS algorithm are another important 
aspect should be treated. Some authors have been working on how to avoid this 
inconvenience, but some effort could be done to develop an algorithm with similar 
qualities to ALS´s and fixing its degeneracy and maybe slowness problem. 

3. The uniqueness in PARAFAC2 model has not been threshed as PARAFAC. It is a 
method that has very good qualities and has been proven to be sometimes even more 
convenient than PARAFAC, but only a few works were done on this issue. 

4. As could be seen, other methods as S-PARAFAC and cPARAFAC has been 
developed to affront problems that can be found in specific types of multi-way data, 
but these are rather incipient methods yet. A lot of work can be done in refining 
them, as for example how to include multiple-shifting in S-PARAFAC models. The 
same applies for the Tucker versions of these models.  

5.  During our investigation, although we didn´t deepen into all the existing methods of 
multi-way analysis for all types of multi-way data, we explored most of them and the 
ones are not explained here are in some way reported in the bibliography. We have 
noticed that, very poor work has been done for classification in multi-way data 
analysis, and is even worst for the profile data type, which is now the kind of multi-
way data that interests us most. Besides the use of the existing exploratory analysis 
tools and other ways to affront this problem in some way, only one method was 
found [buscar molmap] specially for this purpose, so we think that of all the open 
problems we might encountered in multi-way analysis, this is the less attended until 
now by researchers and we already have some proposals for it. 

6.1. Dissimilar ity Representation 

Recently for two-way data, a new type of representation was introduced by Pekalska et al. 
[135]as a new approach that links the structural and statistical approaches, and is known as 
Dissimilarity Representation (DR). This representation was mainly thought for classification; 
therefore it is based on the idea that, as classes are conformed by a set of similar objects, the 
proximity between them plays an important role in this type of problems. The DR consists 
basically in the representation of the objects by its dissimilarities with respect to the other 
objects, and the classifiers may be built on the dissimilarity space generated by a 
representation set, or in a feature space where the dissimilarity data is isometrically 
embedded. This type of representation can have several applications but the main researches 
have been done on classification [136], [137]. 
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As there is not a general dissimilarity measure for all types of data, the dissimilarity 
measure selected allows emphasizing the information that would be very useful to classify a 
particular type of data, so the first thing here is to select a suitable dissimilarity measure for 
the problem at hand, a measure that is appropriate for comparing objects given the known 
data characteristics. Next, a representation set ),...,,( 21 npppR  has to be selected, which is a 
set of representative objects from the classes, called prototypes. 

The DR for a set of objects X is the matrix ),( RXD  formed by the dissimilarities 
between each object Xx∈ and the objects of R . Each element of the matrix would be then a 
dissimilarity value between two objects, ),( nm pxd . R  can be a subset of 

)(, XRX ⊆ or X itself, being then ),( XXD  a square dissimilarity matrix, or X and R can 
be completely different sets. There are many approaches to select the prototypes of the 
representation set [138]. 

In DR there are three main approaches. The first one addresses the given dissimilarities 
directly. There is also the one based on an approximate embedding of the dissimilarities into 
a (pseudo-)Euclidean space and at last, the  so-called dissimilarity space approach which is 
the  one proposed to be used here. The dissimilarity space 𝔇𝔇⊆  ℝn

),( npd ⋅

 is generated by the column 
vectors of the dissimilarity matrix, where each dimension corresponds to the dissimilarity 
between the objects and a prototype . As the dissimilarities are computed to the 
representation set, it constitutes already a dimensionality reduction and therefore it can be 
less computationally expensive. 

The use of DR is especially advantageous with: 1) spectral data, 2) when vector 
representations of objects live in a high dimensional space and 3) when the number of 
examples is very small, and these last two elements turn out to be the major problems when 
working with spectroscopic chemical data. Some researches have been done about the proper 
dissimilarity measures for spectral data [139]. 

Another important advantage of this representation is that any traditional classifier that 
works on feature spaces can be also used on the dissimilarity space. This approach could be 
also extended to multi-way analysis if the appropriate way to represent the relations between 
the modes and characteristics of the data could be included in the dissimilarity measure. 

7. Conclusions 

In this work we have presented a general panoramic of multi-way data analysis, making 
emphasis in some essential issues to be taken into account. Although multi-way analysis is 
not a new technique, as most of the methods were developed some years ago, it has had its 
big deploy in applications in the last years. We did not analyze here all the multi-way 
methods, because as reported in Kroonenberg´s book, there is a wide relation of multi-way 
methods for different types of multi-way data, though, there are not reported methods for 
classification. We centered, among other important aspects of multi-way analysis, in 
explaining the models and algorithms of the most popular multi-way methods along the 
years: PARAFAC, Tucker and NPLS, outlining their advantages and disadvantages. During 
this work we have noticed that researchers have focused their attention on improving the 
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existing multi-way methods for special problems, which are mainly for exploratory analysis 
and regression tasks, but have left behind other important issues as classification problems.  

We can conclude that multi-way analysis is having more applications to a sped up step 
and thus, has been forcing the researchers to improve and create more methods to analyze 
them, but it is still not enough. Methods for resolving classification problems with multi-way 
data, which are very important and frequent in any research area, have not been minded, and 
then only a few methods have been proposed. So, referring to this aspect and other important 
issues of multi-way analysis that have been outlined in this work, tell us that still much to do 
in what multi-way analysis refers.  
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