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Dissimilarity representation on functional
spectral data for classification
Diana Porro-Muñoza,b*, Isneri Talaveraa, Robert P. W. Duinb,
Noslen Hernándeza and Mauricio Orozco-Alzatec
In chemometrics, spectral data are typically represent
J. Chemom
ed by vectors of features in spite of the fact that they are usually
plotted as functions of e.g. wavelengths and concentrations. In the representation, this functional information is
thereby not reflected. Consequently, some characteristics of the data that can be essential for discrimination between
samples of different classes or any other analysis are ignored. Examples are the continuity between measured points
and the shape of curves. In the Functional Data Analysis (FDA) approach, the functional characteristics of spectra are
taken into account by approximating the data by real valued functions, e.g. splines. Another solution is the
Dissimilarity Representation (DR), in which classifiers are trained in a space built by dissimilarities with training
examples or prototypes of each class. Functional informationmay be incorporated in the definition of the dissimilarity
measure. In this paper we compare the feature-based representation of chemical spectral data with three other
representations: FDA, DR defined on raw data and DR defined on FDA descriptions. We analyze the classification
results of these four representations for five data sets of different types, by using different classifiers. We demonstrate
the importance of reflecting the functional characteristics of chemical spectral data in their representation, and we
show when the presented approaches are more suitable. Copyright � 2011 John Wiley & Sons, Ltd.
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a D. Porro-Muñoz, I. Talavera, N. Hernández

Advanced Technologies Application Center (CENATAV), 7a # 21812 e/ 218 y

222, Rpto. Siboney, Playa, C.P. 12200, La Habana, Cuba
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1. INTRODUCTION

The increasing possibilities of chemometrics raise a growing
interest in advanced approaches to an automatic analysis of the
collected data. If data sets are small, the accuracy of the results is
of concern. One way to improve it is by considering advanced
data representations. This paper focusses on finding better
representations for the classification of spectral data.
The traditional way of representing spectra is by sampling. The

higher the sampling resolution, the more accurate the spectrum
is described. However, in the case of the design of a classification
system for spectra, this implies a representation in a high-
dimensional space. For small training sets of spectra, the resulting
classifier will thereby be inaccurate due to the curse of
dimensionality or overtraining. Dimension reduction by PCA or
PLS is needed, but may not solve the problem fully as they are still
based on a statistical analysis of high-dimensional data.
Another way to tackle the problem of small training sets is to

improve the original representation at the start. In particular, it
may be advantageous to directly include the knowledge that
spectra are one-dimensional signals and that neighboring points
are connected, i.e. their difference in amplitude is limited. The
so-called Functional Data Analysis (FDA) [1,2] uses this structural
property of spectra by a functional approximation, e.g. by
B-spline basis functions. The dimensionality of the description of
a spectrum is thereby reduced from the number of samples to the
number of functional parameters.
A recently developed alternative in the field of pattern

recognition is the Dissimilarity Representation (DR) [3–6]. This
representation was mainly designed for discriminating between
different classes of objects (classification), based on the
important role that dissimilarities play for this purpose. The fact
etrics 2011; 25: 476–486 Copyright � 2011 J
(or property) that dissimilarities should be smaller for similar
objects (same class) and larger for different objects suggests that
they could be used as more discriminative features due to their
crucial performance in the class constitution. Therefore, in this
approach objects are represented by distances as new features,
determined by some ‘appropriate’ dissimilarity measure, to a set
of prototype objects usually named the representation set.
Classifiers may be then built in the dissimilarity space, where each
dimension corresponds to the dissimilarity to an object of the
representation set (most representative objects for each class),
and then applied to a new object represented the same way.
Consequently, the geometry and the structure of a class are
determined by the user-defined dissimilarity measure, in which
application background information may be expressed. Like the
FDA, the DR may make use of the structural data characteristics,
ohn Wiley & Sons, Ltd.
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e.g. connectivity between the points and shape of the spectra.
Some studies have already been reported on the DR for spectral
data [7–9]. It is important to remark that any traditional classifier
that operates in feature spaces can also be used in the
dissimilarity space.
The FDA and the DR are rather young techniques that have

received a good acceptance in chemometrics and pattern
recognition, respectively. Both aim to solve the problem of a
statistical analysis for high-dimensional data generated by
sampling spectra by introducing the possibility of integrating
structural knowledge in the representation. Some classical
multivariate techniques have been extended for FDA, e.g.
Functional Principal Component Analysis PCA [1], Canonical
Correlation Analysis [10], Partial Least Squares [11–13] and Linear
Discriminant Analysis [12]. If the used models are correct they are
expected to perform better than the traditional techniques, as
these have to learn (linear) relations from the data. More recently,
a number of estimation methods for functional nonparametric
classification and regression models have also been introduced.
namely k-Nearest Neighbor classifier [14], kernel methods
[15–17] such as Support Vector Machine [18,19–21].
DR can be considered as a generalization of the kernel

approach studied in machine learning [3,4] as it accepts almost
any (dis)similarity measure between objects (spectra), including
indefinite ones. Several applications have been studied [5],
including spectra [7,9]. Also in chemometrics studies appeared in
which similarities between spectra are applied [22–24], but these
mainly aim at studying correlation, cluster analysis or visualiza-
tion. The use of representation has almost not been studied at all.
In this paper, we will compare the DR directly defined on

distances between spectra with the FDA approach as well as with
their combination, the DR based on the functional description of
spectra. By this proposed combination, advantages of both
approaches may be combined. By approximating the spectral
data with the B-spline basis functions, the structural information
in the spectra, e.g. shape, connectivity between measured points,
can be incorporated in the dissimilarity measure. According to
the basis of the DR, when adding this information about the
structure of the objects, the distances between them should be
more discriminative features. Therefore, one of the main issues in
chemometrics, the small number of objects in high-dimensional
spaces can be tackled, as with less but more discriminative data
should be enough for the classification task. Hence, nonlinearly
separable problems in the feature space can be converted to
linear problems in the dissimilarity space.
As a baseline procedure for the comparison, the traditional

feature representation in which spectra are represented by their
samples is used. The following classifiers are used: the k-Nearest
Neighbor (k-NN) rule [25,26], Regularized Linear Discriminant
Analysis (RLDA) [26], Soft Independent Modelling of Class
Analogy (SIMCA) [27] and the Support Vector Machine (SVM)
[28,29]. Section 2 summarizes and defines the foundations of
FDA, DR and their combination. Data sets and experimental
procedures are presented in Section 3 and results are discussed in
Section 4. Finally, our conclusions are presented.

2. THEORY

2.1. Dissimilarity representation

The Dissimilarity Representation (DR) [3,5,6] was originally
proposed as a more flexible representation of the objects than
J. Chemometrics 2011; 25: 476–486 Copyright � 2011 John W
the traditional feature-based one. In this approach, which was
mainly thought for classification purposes, new features are
defined for the objects, such that they are represented by their
dissimilarities to a set of representative objects of each class. The
fact (or property) that dissimilarities should be smaller for similar
objects (same class) and larger for different objects suggests that
they could be used as more discriminative features due to their
crucial role in the class constitution.
It aims at including more information about the characteristics

and structure of the objects through the dissimilarity measure,
e.g. shape of spectra. There is no general dissimilarity measure for
all problems. Hence, the first task in the DR is to select a suitable
dissimilarity measure for the problem at hand. The fact that it has
to be user-specified is a way for the expert to integrate his
knowledge and application [6].
Thus, in this approach, given a set of training objects

X ¼ x1; x2; . . . xn, e.g. spectra, a representation set (a set of
prototypes or representative objects for each class) R r1; . . . ; rp

� �
,

e.g. the reference spectral sample for each substance that
constitutes a class, and a dissimilarity measure, the distance
between each object xi 2 X to each object rh 2 R will be defined
as d xi;rhð Þ. The representation set R can be a subset of X, R � X or
X itself, being then DðX;XÞ a square dissimilarity matrix, or R and
X can be completely different sets. There are some approaches to
select prototypes of the representation set [30]. See reference for
further details.
An object from the training set is then represented by a

vector of dissimilarities D xi;Rð Þ ¼ d xi ; r1ð Þ; . . . ; d xi ; rp
� �� �

, which
relates it to the prototypes in the representation set. Therefore, in
place of the traditional feature matrix X 2 Rn�q, where n runs
over the objects andm over the variables, the training set is now
represented by the dissimilarity matrix DðX;RÞ of size n� p,
which associates all objects from the training set with all objects
from the representation set:

D ¼

dðx1; r1Þ dðx1; r2Þ . . . dðx1; rpÞ
dðx2; r1Þ dðx2; r2Þ . . . dðx2; rpÞ

..

. ..
. ..

. ..
.

dðxn; r1Þ dðxn; r2Þ . . . dðxn; rpÞ

0
BBB@

1
CCCA

We build from this matrix a dissimilarity spaceD � Rp. Objects
are represented in this space by the row vectors of the
dissimilarity matrix, such that each dimension corresponds to the
dissimilarities with one of the representation objects. Using
the DR, classifiers are trained in the space of the dissimilarities
between objects, instead of the traditional feature space.
Consequently, the relationship between all objects in the training
and representation sets is used for the classification. If a suitable
measure is chosen, the compactness property (objects from the
same class should be similar and objects from different classes
should be different) of the classes should be more pronounced.
Therefore, it should be easier for the classifiers to discriminate
between them, such that linear classifiers in dissimilarity
space may correspond to nonlinear classifier in feature space.
In general, any arbitrary classifier operating on features can be
used [4].
Given a test set Y ¼ y1; y2; :::yg, these objects are classified in

the dissimilarity space, using their distances to the prototypes in
R, DðY;RÞ, which is a g� p matrix.
Some dissimilarity measures have been already proposed for

spectral data [7,8]. In recent studies, the shape (ShD) measure was
demonstrated to have the capabilitiy for capturing the functional
iley & Sons, Ltd. wileyonlinelibrary.com/journal/cem
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information. It consists of a sum of the absolute differences
between the first Gaussian derivatives of the curves

d x1; x2ð Þ ¼
Xm
j¼1

xs1j�xs2j

���
���; xs ¼ d

dj
G j; sð Þ � x (1)

The expression of xs corresponds to the computation of the
first Gaussian (that is what G stands for) derivatives of spectra.
Thus, a smoothing (blurring) is done by a convolution process (�)
with a Gaussian filter and s stands for the smoothing parameter
[7]. Good performances have been obtained for chemical spectral
data with this measure [7,31].

2.2. Functional Data Analysis

In chemical spectral data as near-infrared, ultraviolet, each
spectrum is a function of e.g., wavelengths, concentrations.
However, they are usually observed and recorded discretely and
so analyzed with multivariate data analysis techniques which
consider the spectrum as high-dimensional vectors of different
but highly-correlated variables. Therefore, when working with
this type of representation, many practical problems can be
encountered as the characteristics of the functional nature of the
data are not taken into account.
FDA is based on retrieving the intrinsic characteristics of the

underlying function from the discrete functional data. Thus, the
observations (spectra) can be seen as continuous single entities,
instead of sets of different variables. Nevertheless, if the algorithms
work on the functional spaces, they can also lead to theoretical and
practical difficulties as these have infinite dimensions.
For dealing with the infinite-dimensional problem, FDAmethods

have been constructed on two general principles: regularization
and filtering. The filtering approach is based on using representa-
tion methods that allow working in finite dimension. This way of
approximation is used here. The first step in FDA is to choose a
proper family of basis functions matching best the function(s) to be
approximated. Of a variety of bases that exist (Fourier series,
polynomial, wavelet and splines), as spectra are generally smooth, it
seems that B-splines [32] are more appropriate to approximate
them. To make this basis of B-splines fkf gKk¼1 with K the number of
basis functions, a number of knots (points) between the start and
end wavelengths are defined. A B-spline is run from one knot to
another; the different splines can overlap.
Hence, the spectral function xi ¼ xiðlÞ for sample i and

wavelengths l can be described by the linear combination of the
basis functions

xiðlÞ ¼
XK
k¼1

cikfikðlÞ

where ci ¼ ½ci1; ci2; :::; cik � is the vector of B-spline weights
(coefficients) corresponding to each spectrum (object) xi. These
coefficients are computed by minimizing the distance between
the observed discrete spectrum xi at wavelengths lj;
8j ¼ 1; 2; :::;m and the fitted curve xil

ci ¼ argc2Rkmin
Xm
j¼1

ðxij�
XK
k¼1

cikfikðljÞÞ2

Filtering can therefore be considered as a preprocessing step in
which functional data are consistently transformed into vector
data [33]. As we are operating now in a finite-dimensional space,
it is possible to work with the coefficients instead of working on
wileyonlinelibrary.com/journal/cem Copyright � 2011 Jo
the approximating functions. It has been demonstrated that
working with these coefficients vectors ci is strictly equivalent to
working directly on the fi functions [34].
The function for each spectrum is thus explained by K

coefficients, which are represented in a vector ci, obtaining for
the entire data set a matrix Cðn� KÞ:

C ¼

c11 c12 . . . c1k
c21 c22 . . . c2k
..
. ..

. ..
. ..

.

cn1 cn2 . . . cnk

0
BBB@

1
CCCA

Matrix Cwill be taken as the new representation of the data set,
and the classifiers or any other data analysis method can use it as
input, instead of the original data points. A dimensionality
reduction is achieved in this process, which is an important task
when working with spectral data. The functional representation
by B-splines is already a way of smoothing the curve; other
functional processing techniques such as derivation can be done
on it. This processing could be beneficial when the analysis of the
shape of the function (curvature) is essential for the solution of
the problem at hand.

2.3. Dissimilarity representation and Functional
Data Analysis

Based on the advantages that both of the previous approaches
show for the representation of spectral data, we propose to
compute the DR from the functional representation of the data
(DR-FDA), instead of computing it from the feature-based one. By
using the functional approximation, we are highlighting the
structural (in terms of how the composition of the substances is
reflected in the shape of the spectra) information of the spectra.
Hence, we have a more faithful representation of the real
spectrum than by using the feature-based one. Moreover, by
using B-spline basis, the interpretability of the data is still
maintained. Because the new variables (coefficients) depend only
on some spectral regions, a range of these original variables can
be associated with each new variable. Therefore, the spectral
regions responsible for the discrimination can still be depicted
from the functional representation. A method to achieve this
association was recently introduced [33].
Moreover, if spectra are represented by dissimilarities, the use

of a suitable dissimilarity measure allows emphasizing important
details of the particular problem, which cannot be easily treated
by the simple feature representation, e.g. shape and continuity of
the measured points of the spectrum. Any knowledge on the
problem, e.g. discriminative spectral regions, or on the spectral
background can also be included in the measure. Besides, by
using the dissimilarities as features, we are considering the
relationship between all objects (structure of the classes) as
information. This is very important for the discrimination
between the classes, and even more when the number of
samples is very small (a typical problem in chemometrics), as less
but more discriminative data should be enough for the
classification task. Thus, nonlinearly separable problems in the
feature space can be converted to linear problems in the
dissimilarity space. Furthermore, by using the DR for chemical
spectral data, the problem of high-dimensionality spaces is also
eradicated. The highest dimension that could have the data now
is the number of objects in the training set, which are usually
much less than variables (spectral bands) in these types of data
sets. Therefore, it can be less computationally expensive.
hn Wiley & Sons, Ltd. J. Chemometrics 2011; 25: 476–486



DR on functional spectral data
In consequence, it is to be expected that if the dissimilarities
between a set of spectraDðX;RÞ are derived from their functional
representation, i.e. the vector of coefficients c obtained from the
approximation of each spectrum by B-spline basis functions;
the classification results may improve. A better description of the
objects than feature-based will be used, where patterns in the
structure of the spectra can be more exploited. Example of a
simple dissimilarity measure that can be computed on the
functional data is the Manhattan (L1-norm) distance:

dðx1; x2Þ ¼
XK
k¼1

c1k�c2kj j (2)

The Manhattan distance is one of the most commonly used in
many research areas, and particulary for the comparison of spectral
data [8,9,23,31]. This measure views the spectrum as a high-
dimensional feature vector, making just a band-to-band compari-
son, therefore neglecting the connectivity between the measured
points of the spectra. However, the functional information from the
spectra can be taken into account if the distance is computed
from their functional representation by B-splines approximation.
In the following section, the feature, functional and DR

approaches will be compared to the proposed one on different
chemical spectral data sets. Four classifiers are used to show the
efficacy of this approach compared to the others.
3. MATERIALS AND METHODS

A comparative study is carried out between the two representa-
tions presented above (DR and FDA) and the proposed approach
(DR-FDA), using the feature representation as a baseline
comparison. The performance of four classifiers will be evaluated
on these four representations of five chemical spectral data sets.

3.1. Data sets

The first data set, named Tecator (Figure 1), originates from the
food industry [35]. It consists of 215 near infrared absorbance
spectra of meat samples, recorded on a Tecator Infratec Food and
Feed Analyzer. Each observation consists in a 100 channel
absorbance spectrum in the 850–1050 nmwavelength range. It is
associated with a content description of meat sample, obtained
by analytic chemistry.
The classification problem consists in separating 77 meat

samples with a high fat content (more than 20%), from 138
samples with a low fat content (less than 20%). Original spectra
Figure 1. Data sets (a) Te

J. Chemometrics 2011; 25: 476–486 Copyright � 2011 John W
are preprocessed; each spectrum is reduced to zero mean and
unit variance.
The second data set (Figure 1) is composed of near infrared

(NIR) transmittance spectra of pharmaceutical tablets [36]. It
consists of 310 spectra and 404 variables in a range of
wavelengths from 7400 to 10 500 cm�1. Four different (classes)
dosages of nominal content of active substance are analyzed:
class A (5mg), B (10mg), C (15mg) and D (20mg) per tablet.
There are 70 objects in class A and 80 in each of the other classes.
As reported in Reference [36], a Multiplicative Scatter Correction
(MSC) [37] was used as a preprocessing method. The MSC
transforms the spectrum x to z, such that zðjÞ ¼ ðxðjÞ�aÞ=b, with
a the intercept and b the slope of a least-squares regression of the
values x( j), on the corresponding values r( j) for a reference
spectrum. Usually this reference spectrum is the mean of all the
available spectra [38].
The third data set is a real-world data set, which was obtained

from a cooperation with the Oil Industry in Cuba. It consists of 80
fuel samples of Fourier Transform Infrared (FT-IR) transmittance
spectra (Figure 2) in a wavelength range of 600–4000 cm�1. A
base line correction and smoothing were performed on the data.
The classification problem consists in determining the fuel type of
the samples: regular gasoline (16 samples), especial gasoline (15
samples), regular diesel (16 samples), naphtha (16 samples), turbo
diesel (9 samples) and kerosene (8 samples).
The fourth data set is another fuel real-world data set of 101

samples measured at 127 wavelengths in a range of 275–220 nm,
but this time measures have been taken by an Ultra-Violet Visible
(UV) spectrophotometer (see Figure 2). The classification problem
consists also in determining the fuel type of the samples: regular
gasoline (23 samples), especial gasoline (21 samples), regular
diesel (22 samples), naphtha (18 samples) and turbo diesel (17
samples).
The last data set consists of 101 NIR spectra of four different

common pharmaceutical excipients (classes), with 27, 14, 17 and
13 samples in each class, respectively, measured at 700
wavelengths (see Figure 3). The goal is to develop a classification
model to identify to which of the pharmaceutical excipients
belongs to a new sample. This is an example data set from the
chemometrics software Pirouette [39]. For both of the previous
data sets, original spectra are preprocessed such that each
spectrum is reduced to zero mean and unit variance.

3.2. Software and optimization

The experiments were all performed in Matlab. For the case of
FDA the FDAFuns [40] toolbox was used, and PRTools toolbox [41]
cator and (b) Tablets.

iley & Sons, Ltd. wileyonlinelibrary.com/journal/cem
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Figure 2. Fuel data set from (a) FT-IR and (b) UV-VIS.
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4
8
0

for the DR and classification of the data. The experiments have
been designed in the following way:
(1) A
wile
comparison is made between the performance of classifiers
on the four representations of each dataset: feature-based
(spectral), functional (FDA), DR and the proposed combi-
nation (DR-FDA).
(2) F
or the classification of the data we used four classifiers:
k-Nearest Neighbor (k-NN), Support Vector Machine (SVM),
Soft Independent Modeling of Class Analogy (SIMCA) and
Regularized Linear Discriminant Classifier (RLDC). To solve the
multiclass problems of some of the data sets, the one-
versus-all classification scheme is applied. For the k-NN
classifier, a leave-one-out optimization for k is computed.
An optimal number of k¼ 1 was obtained for all data sets;
thus, a 1-NN classifier is applied. For the SVM classifier, the
Gaussian and linear kernel were applied in the five data sets,
to show their performances on their different representa-
tions. The optimal regularization parameter C and Gaussian
kernel width parameter s were tuned in a grid search based
on a k-fold cross-validation procedure. In the case of the
Linear kernel, the regularization parameter was optimized in
a k-fold cross-validation. The Linear Discriminant Classifier
(LDC) assumes that the classes are described by multi-normal
Figure 3. Pharmaceutical excipients data set.

yonlinelibrary.com/journal/cem Copyright � 2011 John W
distributions with the same/different covariance matrices.
Since for n� n DRs the estimated covariance matrix S is
singular, its inverse cannot be determined. Therefore, its
regularized version is used instead (RLDC). Regularization
takes care that the inverse operation is possible by emphasiz-
ing the diagonal values (variances) of the matrix S with
reference to the off-diagonal elements (covariances) [3,4].
To find the regularization parameters of RLDC, an automatic
regularization (optimization over training set by cross-
validation) process was done.
(3) F
or the functional representation, each spectra was represented
by a lth order B-spline approximation with K basis functions. The
optimal values for the number of B-spline bases and the order of
the splines were chosen by a leave-one-out cross-validation,
using the error in the approximation of the curve as evaluation
criteria [34]. In the comparison with all representations, the
results for the FDA are reported for the performance of classifiers
on the functional representation, and when the second deriva-
tive is applied on it.
(4) F
or the DR, the shape distance was applied (Equation 1). For
DR-FDA we used the Manhattan distance on the functional
representation as defined in Equation (2). The results shown
in this case are those computed on the functional repres-
entation version (see above) for which the classifiers per-
formed better. The entire set of samples was used as a
representation set for all data.
(5) F
or all data sets, a k-folds cross-validation procedure was
repeated 10 times, such that all objects are used for training
and test at some moment. Consequently, the information of
all samples is taken into account for the modeling of the
problem. Classifiers’ performances are evaluated in terms of
the Average Classification Error (ACE), and the standard
deviation from the different repetitions is taken into account.
4. RESULTS AND DISCUSSION

4.1. Tecator data set

The classification results (averaged classification error) for the
different representations of Tecator data set are shown in Table I.
iley & Sons, Ltd. J. Chemometrics 2011; 25: 476–486



Table I. Averaged cross-validation error in % (with standard deviation) for Tecator dataset for different classifiers

Classifiers Representations

Feature DR FDA FDA (þ 2nd der) DR-FDA

1-NN 4.11 (0.2) 3.72 (0.2) 2.97 (0.2) 2.15 (0.1) 1.41 (0.1)
RLDA 6.82 (0.5) 1.72 (0.01) 3.02 (0.3) 2.74 (0.3) 0.98 (0.1)
SVM (Gaussian kernel) 2.56 (0.2) 2.65 (0.2) 1.21 (0.3) 0.93 (0.2) 0.6 (0.04)
SVM (Linear kernel) 3.51 (0.2) 2.88 (0.1) 1.8 (0.2) 1.21 (0.05) 0.47 (0)
SIMCA 5.77 (0.01) 3.3 (0.2) 2.6 (0.07) 2.31 (0.3) 1.21 (0.04)

DR on functional spectral data
The data set was split into different training and test sets in a
10-fold cross-validation repeated 10 times. For the functional
approach, the leave-one-out error calculation leads to the
selection of an optimal basis of 48 B-splines of order 5.
As stated above, in these data, the samples of the two classes

differ in their fat content, which is reflected in changes in the
shape of the spectra. We can observe remarkable differences in
curvature of the spectra between the samples of the two classes
(fat< 20 and fat> 20). High fat content spectra (fat> 20) have
sometimes two local maxima instead of one (fat< 20) (Figure 4).
As it is reported in the literature [19], we computed the second
derivative of the functional data to highlight these differences.
In the case of the derivative-based distance, shape (ShD), the

second derivative was also applied. The smoothing parameter s
was optimized in a 10-fold cross-validation procedure repeated
10 times. The best results were achieved with s¼ 2.
In Table I, it is shown that classifiers perform better on the

functional data than on their original (feature) representation.
The good performance of most classifiers on the functional space
is due to the fact that, from the functional point of view, there is a
great amount of information to obtain when shape changes
are present in the curve. Hence, the FDA by B-splines is capable
of using the information embedded in the curvature of the
spectrum. The use of the second derivatives emphasizes
the peaks in the curve, therefore making it easier to see the
differences [19]. Nevertheless, it seems that it is not enough to
discriminate between both classes.
For the DR, the results with the shape dissimilarity measure are

very good compared to the results on the original feature-based
data. This dissimilarity measure takes into account the shape
information (functional) that can be obtained from the
Figure 4. Data sets (a) Tecator (fat

J. Chemometrics 2011; 25: 476–486 Copyright � 2011 John W
derivatives. Compared to FDA, the results are usually worst
(taking the standard deviation into account). This can be due to,
in cases like this, the use of the B-splines and second derivatives
afterwards are more capable of extracting the functional
information than the shape dissimilarity measure.
In this data set, we can see that linear classifiers perform a bit

better on the functional space, but not good enough. Results with
nonlinear classifiers are still better. This might be because classes
are nonlinearly separable. In Figure 5, the scores of all samples
from a PCA of two principal components from each representa-
tion are plotted. In all cases more than 95% is retained in these
two principal components. These are not demonstrative plots,
but they show in someway how the structure of the classes can
be according to each representation. It can also be seen that all
classifiers, even the linear classifiers, perform better when
computing the dissimilarities on the functional representation
of the data (see Equation 2), corroborating our hypothesis. These
results are also better than that obtained in the literature [19]. The
functional information that is not captured by the measure itself
is obtained by the FDA, and thus included in the DR. The
relationship between all objects is also considered when
analyzing them all-against-all in the dissimilarity space, which
is very important for the discrimination between the classes.
These results could be even improved by some other expert
knowledge introduced into the dissimilarity measure.

4.2. Fuel data set by FT-IR and UV-VIS

With these two data sets, we are tackling the same problem of
discriminating between types of fuel, but using two different
instrumental techniques. Besides, they are not based on the same
< 20) and (b) Tecator (fat> 20).
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Figure 5. PCA of two components for the four representations of Tecator data set: feature (top-left), FDA (top-right), DR (bottom-left) and DR-FDA

(bottom-right).
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samples, and in the FT-IR data set, one more class is analyzed. In
this case, the samples of the classes differ in the substances by
which they are composed (see Figure 6), and therefore they differ
in shape (although sometimes it is difficult to determine for all of
them) in some parts of their spectrum.
The data sets were split into different training and test sets in a

8-fold and 10-fold cross-validation for the FT-IR and UV-VIS,
respectively; these splits were repeated 10 times. For the
functional approach, the leave-one-out error calculation leads to
the selection of an optimal basis of 850 B-splines of order 4 for the
FT-IR data set and 30 B-splines of order 4 for the UV-VIS. We also
Figure 6. One sample of each of the classes

wileyonlinelibrary.com/journal/cem Copyright � 2011 Jo
computed for both of them the second derivative of the
functional data, to highlight the curvature differences. In the case
of the derivative-based distance, shape, the second derivative
was applied. The smoothing parameter s was optimized in a
5-times 10-fold cross-validation procedure and the best results
were achieved with s¼ 3 also for both cases.
It can be observed from Tables II and III that the pattern in the

behavior of the results is very similar to that obtained for Tecator
data set. For both of them we are in the same situation. The
difference between the samples of the classes is mainly in the
curvature of the spectra.
of Fuel (a) FT-IR and (b) UV-VIS data sets.

hn Wiley & Sons, Ltd. J. Chemometrics 2011; 25: 476–486



Table II. Averaged cross-validation error in % (with standard deviation) for Fuel (FT-IR) data set for different classifiers

Classifiers Representations

Feature DR FDA FDA (þ 2nd der) DR-FDA

1-NN 32.4 (0.8) 14.3 (0.7) 18.1 (0.8) 10.4 (0.7) 7.5 (0.8)
RLDA 16.1 (0.5) 13.6 (0.2) 14 (0.5) 11.8 (0.6) 9.5 (0.4)
SVM (Gaussian kernel) 11 (0.5) 8.8 (0.3) 12.8 (0.8) 9.6 (0.5) 6.3 (0.3)
SVM (Linear kernel) 17.8 (0.8) 7.4 (0.4) 14.9 (0.5) 12 (0.8) 4.5 (0.2)
SIMCA 22.5 (1.1) 15.6 (0.6) 14.9 (1.1) 10.7 (1) 8.7 (1)

Table III. Averaged cross-validation error in % (with standard deviation) for Fuel (UV-VIS) data set for different classifiers

Classifiers Representations

Feature DR FDA FDA (þ 2nd der) DR-FDA

1-NN 13.1 (0.3) 19.8 (0.4) 14.6 (0.4) 11.4 (0.2) 10.7 (0.3)
RLDA 21.4 (1) 13.3 (0.8) 14.9 (0.7) 10.8 (0.4) 7 (0.6)
SVM (Gaussian kernel) 13.1 (0.2) 11.4 (0.3) 16.8 (0.1) 9.4 (0.2) 8.1 (0.2)
SVM (Linear kernel) 15 (0.5) 12.2 (0.5) 14.1 (0.6) 12.5 (0.1) 8.7 (0.2)
SIMCA 21.2 (0.6) 19.5 (0.4) 20.6 (0.4) 17.5 (0.7) 14.3 (0.3)

Figure 7. One sample of each of the classes of pharmaceutical excipient

data set.

DR on functional spectral data
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It can be noticed that in both of these data sets the results with
the functional data and the DR outperform those obtained for the
feature-based representation of the data. It is also remarkable
how the classifiers’ accuracy improves even more when the DR is
computed on the second derivative of the functional repres-
entation of the data. However, the results are a bit worst for the
UV-VIS spectra due to the characteristics of the instrumental
techniques. It seems that the information obtained in the FT-IR
spectra is more discriminative specially for regular and especial
gasoline. It is worth noticing the advantage of the DR in this case,
where we have six (FT-IR) and five (UV-VIS) classes and a few
samples for each of them. If the dissimilarities have captured
more structure from the data, it should be sufficient to
discriminate with few data. The FT-IR data set is also the case,
where in the functional representation a dimensionality
reduction was achieved, but still it was high for the number of
samples available. From this approximationmore reduction could
not be possible, otherwise important information could be lost in
the smoothing process; besides, it was the result from the
optimization process. Thus, the advantage of the DR in these
cases is highlighted as classifiers are built in a more balanced
space and do not have to deal with the high-dimensionality
problems.

4.3. Pharmaceutical excipient data set

A sample of each of the four pharmaceutical excipient classes is
shown in Figure 7. This is another example where the objects
from different classes have differences in shape in some parts of
their spectra. Thus, it would be important to take into account this
information in their representation, such that it would be possible
to discriminate better between them.
J. Chemometrics 2011; 25: 476–486 Copyright � 2011 John W
The data set was split into different training and test sets in a
10-fold cross-validation procedure. For the functional approach,
the leave-one-out error calculation leads to the selection of an
optimal basis of 150 B-splines of order 4. We also computed for
both of them the second derivative of the functional data to
highlight the curvature. In the case of the derivative-based
distance, shape, the second derivative was applied. The optimal
value for the smoothing parameter was s¼ 1.
As it is shown in Table IV for all classifiers, the combination of

DR with FDA outperforms the other representations in general. In
this case, although there is an improvement, it is not as
remarkable as in the previous data sets. The classification
problem seems to be not so difficult as it can be observed in the
iley & Sons, Ltd. wileyonlinelibrary.com/journal/cem
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Table IV. Averaged cross-validation error in % (with standard deviation) for pharmaceutical excipient data set for different classifiers

Classifiers Representations

Feature DR FDA FDA (þ 2nd der) DR-FDA

1-NN 3.9 (0.05) 2.7 (0.3) 3.2 (0.3) 2.1 (0.5) 1.4 (0.1)
RLDA 2.9 (0.6) 1.7 (0.4) 2.5 (0.3) 1.4 (0.1) 1 (0.2)
SVM (Gaussian kernel) 2.8 (0.05) 1.8 (0.5) 2.1 (0.3) 1.5 (0.1) 1.21 (0.2)
SVM (Linear kernel) 3.1 (0.1) 2.1 (0.8) 2.8 (0.2) 1.9 (0.2) 1 (0.3)
SIMCA 4.2 (0.6) 3.7 (0.1) 4.7 (0.04) 3.8 (0.4) 2.7 (0.7)

Figure 8. Nominal content of active substance (mg) for the classes.
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results. Thus, it depends on the application how much the users
are willing to give up in some efficiency for a bit more of efficacy.
From the studies of all these data sets, it can be seen that when

the spectra of different classes are characterized by having
differences in their curvature, this is discriminative information
that should be taken into account. These differences between the
classes are not always so visible or clear, such that the pattern for
each of them could be extracted easily. Thus, the use of
mathematical operators like the second derivative can emphasize
the curvature of the spectrum; therefore, the shape difference is
more highlighted to be further used by the classifiers.
In the results shown for the previous data sets, the SVM shows

the better results on all the representations. This could be due to
the fact that these data sets are mostly nonlinear. This classifier
has shown a high flexibility to confront complex data sets. Such is
the case of spectral chemical data sets where the number of
samples is small and is high dimensionality and the classes are
completely unbalanced with respect to the number of samples
that belong to each of them. Nevertheless, it should be noticed
that in most cases, when classifiers are built on the DR from FDA,
the linear classifiers, i.e. RLDA and SVM (linear kernel), have better
or the same performance as the nonlinear ones, showing again
the feasibility or one of the advantages of this approach.
Nonlinearly separable problems in the feature space can be
converted to linear problems in the dissimilarity space. All the
previously discussed corroborates the idea that the proposed
combination can be optimal in cases like this, where the DR
is generated from the functional data extracted by the
approximation with B-splines.

4.4. Tablet data set

In these data, the spectra of the samples of the different classes
are very similar; they barely variate in the intensity of one peak at
Table V. Averaged cross-validation error in % (with standard devi

Classifiers

Feature DR

1-NN 16.7 (0.1) 8.7 (0.2)
RLDA 25.6 (0.6) 7.7 (0.4)
SVM (Gaussian kernel) 14.1(0.3) 6.7 (0.3)
SVM (Linear kernel) 20.1 (0.5) 10.5 (0.2)
SIMCA 23.8 (0) 14.8 (0.4)

wileyonlinelibrary.com/journal/cem Copyright � 2011 Jo
8830 cm�1 (corresponding to 1132 nm) (Figure 8). This peak
corresponds to the only visually characteristic band of the active
substance, which is identified as the second overtone of the
aromatic C–H stretch. It is partially overlapping with the peak at
8200 cm�1(1220 nm), originating from the primary excipient,
microcrystalline-cellulose [36]. It seems that we are in the
presence of another nonlinearly separable classes problem.
The data set was split into different training and test sets in a

10-fold cross-validation procedure. For the functional approach,
the leave-one-out error calculation leads to the selection of an
optimal basis of 150 B-splines of order 4. In the case of the
derivative-based distance, shape, the first derivative was applied.
The smoothing parameter s was optimized in a 5-times 10-fold
cross-validation and the best results were achieved with s¼ 2.
The results are shown in Table V. In this data set, it is to be

expected that the results with the functional representation from
the B-splines approximation do not make much of a difference.
This could be explained by the fact that only a small amount of
information can be extracted from these data, from the
functional point of view. The second derivative does not give
any information of curvature either.
ation) for Tablet data set for different classifiers

Representations

FDA FDA (þ 2nd der) DR-FDA

15.1 (0.1) 22.9 (0.5) 14.9 (0.5)
20.8 (0.3) 24.8 (0.4) 10.87 (0.2)
10.7 (0.2) 14.5 (0.3) 9.6 (0.3)
15.6 (0.3) 17.8 (0.4) 11.2 (0.2)
24.2 (0.1) 28.6 (0.05) 16.2 (0.1)

hn Wiley & Sons, Ltd. J. Chemometrics 2011; 25: 476–486



Figure 9. PCA of two components for the four representations of Tablet data set: feature (top-left), FDA (top-right), ShD (bottom-left) and DR-FDA

(bottom-right).

DR on functional spectral data
Indeed, it can be observed from the above table that the results
with the functional representation are very similar to that
obtained on the original spectra (considering the standard
deviation). With the DR, good results are obtained in general,
even more than for FDA based on B-splines. This shows that this
measure is also capable of detecting the intensity changes
between the different curves, even when they are so slight as in
this case. In Figure 9 we again try to show with two-components
PCA (more than 95% of variance is retained for all representa-
tions) that the classes could be slightly more separable in this
space than in the others.
However, if we analyze the performance of classifiers on the

dissimilarity space obtained from the functional representation,
the behavior is reasonable. Most classifiers perform better on the
dissimilarity space generated from the original feature-based
data than that of the functional representation. It is under-
standable that in this case, the scarce functional information
extracted by the B-splines does not benefit the DR This lack of
information in the functional representation can be caused by the
loss of some information when using only the coefficients
resulting from the smoothing process with projection of the
function in the B-spline basis.
4

5. CONCLUSIONS

We presented three alternative ways to improve the representa-
tion of chemical spectral data. The first makes use of the physical
knowledge of the spectral background of the data, by modeling
their relations in a DR The second makes use of the spectral
connectivity by approximating the spectra by spline functions
(FDA). In the third, we propose to compute the DR on the
J. Chemometrics 2011; 25: 476–486 Copyright � 2011 John W
functional representation of the data (DR-FDA). Therefore, the
functional information of spectra is taken into account and we
can make use of the advantages of both approaches.
Comparisons were made by classifying five chemical spectral
data sets, expressed by their feature and the three other
representations. We can conclude that: in chemical spectral data
sets where changes in the shape of the spectra of different classes
are present, e.g. Tecator and Fuel data sets, both FDA and the DR
outperform the results on the feature space. In the comparison of
these types of data by their dissimilarities, better results are
obtained with measures that take the functional information into
account. Such is the case of the shape dissimilarity measure and
the proposed combination of the DR on the functional data.
Nevertheless, the latter is shown to be the best option in this case.
In data sets where the differences between the samples are
referred only to intensity changes, e.g. Tablet, the shape
dissimilarity is capable of improving the results obtained on
the feature space. However, FDA (with B-splines) is not able to
extract the functional information from these types of data.
Therefore, the computation of the DR on the functional data does
not improve, since it is influenced by the errors of the functional
approach.
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