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Abstract. Spectral content of seismic signals contains essential infor-
mation for discriminating different classes of volcanic earthquakes. Such
an information is largely redundant; therefore, a reduce number of spec-
tral regions may provide almost the same description of the original
events. By reducing the number of bands considered, the amount of data
to be processed is significantly decreased and the interpretability of the
characterization results is enhanced as well. We consider several spectral
band selection methods in a two-class classification problem of volcanic
earthquakes recorded at Nevado del Ruiz Volcano. Selection approaches
have been compared to each other in terms of classification accuracy as
well as by looking at the resulting spectral divisions. Detailed discussions
about the technical considerations of the selection approaches as well as
regarding their possible physical interpretations have been conducted.
Results show that the sequential selection approach is the most flexible
and powerful for classifying and characterizing volcanic earthquakes.

Keywords: Signal processing and analysis, statistical pattern recogni-
tion, seismic-volcanic events, spectral analysis.

1 Introduction

Nevado del Ruiz is an ice-capped volcano placed in the Colombian Andes. Its
historical eruptions, including the deadly one in November 1985, produced mud-
flows which travelled through the river valleys until reaching the low-lying plains.
When the mudflows from 1985 eruption came into the Lagunillas river valley,
the city of Armero was destroyed and about 23.000 people were killed. Due to
the tremendous disaster, the government created the volcanological observato-
ries; before that, Colombian volcanoes were not daily and sufficiently monitored.
Nevado del Ruiz volcano is currently studied by the Volcanological and Seismo-
logical Observatory at Manizales (VSOM), which for several years has registered
a large amount of data related to seismic activity.
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Seismic volcanic events correspond to manifestations of two types of physical
processes: transport of fluids and fracture of solid rock. The former produces
long-period (LP) events, that are essential for eruption forecasting; the latter
originates volcano-tectonic (VT) earthquakes, usually observed as a first sign of
renewed volcanic activity as well as during the active period itself. Analyzing
those seismic signals is essential to achieve an understanding of eruptive pro-
cesses in andesitic volcanoes [1]. In order to use the forecasting potential of LP
events fully, one must first be able to distinguish their signatures from those
of VT earthquakes, a task made difficult by the extreme heterogeneity of vol-
canic media [2]. Differences in spectral content allow a discrimination of different
types of volcanic earthquakes [3]; in consequence, a spectral-based classification
is a natural approach to face the problem. In addition, magma properties are
fundamental to explain the volcanic eruption style as well as the generation and
propagation of seismic waves [4]; the reverse also holds, and some physical insight
into these properties may be derived from a spectral study.

The always increasing capacity of sensory systems and data storage provides
high quality and densely sampled spectral measurements but, at the same time,
such an improvement in data acquisition challenges the performance of analy-
sis algorithms, e.g. classifiers of volcanic events, that have to deal with a huge
amount of data to be processed. However, spectral information is largely re-
dundant by nature, i.e. its intrinsic dimensionality is low. In order to reduce
data redundancy and also to find an understandable and reduced number of
discriminative regions, the spectral band selection/extraction techniques have
a good potential and should be preferred over the standard feature extraction
techniques like Principal Component Analysis (PCA), which does not take into
account the connectivity between neighbouring spectral bins.

In this paper, we restrict ourselves to the problem of selecting discriminative
spectral bands for classifying seismic-volcanic signals. Since which spectral band
selection technique is preferred seems to be defined by the problem [5], we study
the performance of 7 different band selection strategies, applied for spectral
classification of seismic events at Nevado del Ruiz volcano. We compare these
results with those obtained without any dimensionality reduction, i.e. providing
the entire spectrum to the classifier, as well as when PCA is used to extract
the useful discriminative information from the spectral data. We also consider
the spectral regions extracted by the best performing spectral band selection
technique and discuss their possible interpretations.

2 Data

The seismic signals were selected from data collected by the VSOM monitoring
network deployed on the Nevado del Ruiz volcano [6]. The dataset is composed of
483 VT events and 580 LP events. Stations of the monitoring network are located
strategically; for instance near to the glaciers and craters. Signals from one single
station (Olleta crater station) were selected for the experiments because this
station is a reference for the volcanic-related events. Besides, by considering
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signals recorded at the same location, we reduce the influence of the so-called
path effect. Olleta crater station is located at a distance of 4.08 km from the
active crater. Signals were digitized at 100.16 Hz sampling frequency by using a
12 bits analogue-to-digital converter.

Spectra were computed by using two different approaches: (i) N-point Fast
Fourier Transform (FFT) and, (ii) parametric estimation of the power spectral
density (PSD). The first one is a data-based spectral estimation; the second one
is a model-based spectral estimation, in particular we used the Yule-Walker AR
method. In both cases, the direct current bias was removed before computing
the spectra. According to the spectral estimation method, datasets are referred
to as Ruiz-FFT and Ruiz-PSD respectively.

3 Spectral Band Selection Methods

Each particular spectral band selection technique finds the discriminative spec-
tral regions by using a particular criterion and merges them according to a
different function. Such a criterion or a merging function is crucial for the per-
formance of the band selection strategy. For the sake of comparison under equal
conditions, we use the same criterion and the same merging function for all the
studied spectral band selection strategies.

In order to evaluate a discriminative capacity of the extracted spectral regions,
we use the Mahalanobis Distance (MD) between data classes as a discriminant
measure (criterion):

MD = (μA − μB)′ (pΣA + (1 − p)ΣB)−1 (μA − μB) , (1)

where μA, μB and ΣA, ΣB are the means and the covariance matrices of data
classes A and B, respectively; p is the prior probability of the data class A. The
larger MD, the larger discriminative capacity between data classes. We use the
mean function, i.e. taking the average of spectral intensities in the region, to
reduce the dimensionality of each considered spectral region to a single value
representation. The following spectral band extraction/selection techniques are
considered in this study.

Approach 1. GLDB-TD. It consists in partitioning the original p-dimensional
spectra into smaller subspaces by using a top-down recursive algorithm [7].
First, the best place to split spectra into two parts is found by computing
a discriminant measure between data classes. The criterion value obtained
on the parent space is compared with the criterion values calculated on the
children subspaces. If the child subspace has a higher discrimination than
the parent space, then it is partitioned further. The partitioning is stopped
when no child subspace shows an improvement in its discrimination capacity
compared to the parent space. The GLDB-TD algorithm is fast, but the final
set of spectral regions found is suboptimal, because the optimization is per-
formed only in one-dimensional way: a discrimination capacity is evaluated
for each spectral region separately but not for a total set of selected spectral
regions.
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Approach 2. GLDB-BU. It merges p original bands in larger subspaces by
using a bottom-up recursive algorithm [7]. First, the best pair to merge
among all possible pairs of neighbouring single bands is found by computing
a discriminant measure between data classes. The criterion value obtained on
the best merged band is compared with the criterion values calculated on its
component subspaces. If the merged space has a higher discrimination than
the component subspaces, the merge is accepted and we move to the next
level. Elsewise, the merge is denied and we consider the second best pair to
merge on this level. If no merge is found that gives the better discrimination
than component subspaces, then the merging procedure stops. This strategy
has the same limitation as GLDB-TD: the optimization is performed only
for one spectral group.

Approach 3. Sequential Partitioning (SP) [8]. It also performs multidimen-
sional optimization for the spectral region selection. First, spectra are par-
titioned into two parts by finding the best split (with the optimal criterion
value over all possible partitions) in the space of two features extracted
from the two spectral regions. When the first split location is anchored, we
look for the second optimal split in such a way that the criterion value in a
three-dimensional space (on three features extracted from the three spectral
regions) is the largest over all possible locations for the second split. We fix
the second split location and repeat the procedure until the desired number
of spectral regions S is found. In this approach, all spectral bands are used
in the partitioning of spectra. However, some of them may be uninformative
- introducing only noise. It is good to remove them, as they may deteriorate
the classification when they are included in the extracted spectral regions.
One way to do this is described below.

Approach 4. Sequential Partitioning and Elimination of uninformative spec-
tral bands (SPE) [8]. After a desired number of spectral regions S is found
by the previous approach, we shrink the spectral regions removing unin-
formative bands. We proceed sequentially from the most left region to the
most right one. In order to shrink the spectral region, we consider all possible
subregions of the reduced size in the region and find the subregion with the
largest criterion value in S-dimensional space (where one feature represents
a shrunk subregion of the spectral region under consideration and the rest
S − 1 features are extracted from the other S − 1 spectral regions which
definitions are fixed for a moment). After shrinking the first spectral region,
we anchor its new definition and move to the next spectral region in order to
exclude uninformative spectral bands. This method does not guarantee the
optimal shrinking for all regions in general, because it is highly dependent
on the proceeding order of spectral regions.

Approach 5. Sequential Selection (SS) [8]. The discriminative spectral regions
are selected sequentially one by one. At each step s (s = 1, S) we consider
all possible region definitions (of arbitrary size) in spectra. For each defi-
nition we calculate the discriminant measure in s dimensions: one feature
represents a current potential pretender for the most discriminative spectral
region and the other s−1 features are extracted from the previously selected
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spectral regions. The region (a potential pretender) with the largest criterion
value in s-dimensional space is picked as the most discriminative spectral re-
gion (in combination with the s − 1 previously found optimal regions). In
this approach the overlapping and non-overlapping spectral regions may be
selected. Some spectral bands might be not selected at all to participate in
spectral regions.

Approach 6. Sequential Selection of Non-overlapping discriminative spectral
regions (SSN) [8]. This approach is identical to SS but the overlapping spec-
tral regions are not allowed to be selected.

Approach 7. Floating Partition (FP) [9]. First, spectra are uniformly parti-
tioned to a predefined number of spectral regions S. At each step, we allow
the borders between spectral regions to float one spectral bin aside from the
current position. Among 3S possible mutations we select the partition that
provides the highest discrimination according to the selected criterion. We
repeat the procedure until no improvement in discrimination capacity can be
found. This method performs multivariate optimization by simultaneously
adjusting all spectral regions. However, it is still a suboptimal procedure
because the drifting step for region borders is limited to one spectral bin.
The efficacy of this method can be improved by enlarging the drifting step d.
But this leads to computational burdens because one has to rank (2d + 1)S

cases at each step of the procedure.

4 Experimental Results and Discussion

For our experiments, training data sets with 100 objects per class are considered
for the two spectral representations studied: FFT and PSD spectral estimations.
Each time the training objects are chosen randomly from the total set. The re-
maining data are used for testing. The prior class probabilities are set to be equal
as the data are unbalanced and the real prior class probabilities are unknown.
To evaluate the performance of different feature selection/extraction methods
for the datasets described above, we have chosen the Regularized Linear Classi-
fier (RLC) [10] which constructs a linear discriminant function assuming normal
class distributions and using a joint class covariance matrix for both data classes.
The value of the regularization parameter used is equal to 10−8. All experiments
are repeated 20 times on independent training sets.

Obtaining a reduced number of meaningful spectral regions is particularly
useful for interpretation as well as for the sake of visualization. Fig. 1 shows the
mean generalization errors over 20 trials, considering a maximum of 10 extracted
spectral bands, for the Ruiz-FFT and the Ruiz-PSD datasets respectively. The
standard deviation of the reported results (the mean per two data classes) is
about 0.01 for each considered case. Since the GLDB-TD and GLDB-BU al-
gorithms terminate automatically according to a data-driven criterion, only a
single point is given in each plot.

In the case of selecting a single spectral region, PCA (a single component for
this method), SS and SPE strategies are the best performing ones; in partic-
ular, PCA is the best one for the Ruiz-PSD dataset. In this case there is no
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Fig. 1. Average generalization error of RLC using different methods to select discrim-
inative spectral regions for the Ruiz-FFT (left plot) and the Ruiz-PSD (right plot)
datasets

difference between SS, SSN and SPE, as they converge to the same solution.
Such selected single region is shown in Fig. 2, for the FFT and PSD spectral
estimations respectively. The results in both cases are approximately consistent
and correspond basically to the spectral region where a significant part of en-
ergy associated to the VT events is placed, that is, roughly from 8 Hz up to
27.5 Hz. The SS method is the most flexible and powerful method from all the
considered ones. It sequentially finds the most discriminative spectral bands (in
combination with the previously found ones). By this, it is not surprising that
it is one of the best performing spectral band selection methods. It benefits the
most for small number of spectral regions. When the number of spectral regions
increases, its performance degrades because each new selected spectral region
depends on the sequence of the regions selected before. This does not guarantee
the optimal set of regions in general. A better alternative would be to select
spectral regions simultaneously, i.e. performing a full search; however, this way
is computationally very expensive.

Due to space constraints, plots showing the regions selected by the SS method,
for 2-4 spectral regions, had been left out of the paper. Nonetheless, it is avail-
able at the first author website (see http://orozco.co.nr/). The case of four
selected regions is particularly interesting because a detailed insight, describ-
ing the spectral properties of the studied phenomenon, can be derived for both
datasets. Even the bands are split in different ways, the three first ones indicate
that most of the discriminative information is contained between 7.5 Hz and 25
Hz approximately. A narrow band around 40 Hz, associated to the peak observed
in both classes, is also selected.

The FP strategy depends very much on the initial partition; nonetheless,
it outperforms the other techniques when spectra are splitted into five or more
spectral regions. As shown in Fig. 3, the result is very close to the initial uniform
partition. Due to a small floating step, the FP method converges to its local
minima. By using other initial split, the method may converge in a completely

http://orozco.co.nr/
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Fig. 2. A single spectral band selected by using the SS strategy for the Ruiz-FFT
dataset (left plot) and the Ruiz-PSD dataset (right plot)
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Fig. 3. Seven spectral bands selected by the FP strategy for the Ruiz-FFT dataset
(left plot) and the Ruiz-PSD dataset (right plot)

different partition, in consequence it is not very useful for interpretation and di-
mensionality reduction purposes although it may converge by accident to a good
partition. Differences between the results for both datasets show the influence of
the spectral estimation method. Indeed, even though the global interpretation
does not change significatively, narrow bands and average spectra are clearly
different.

5 Conclusion

In this paper, we have studied a series of spectral band selection methods for
characterizing the spectra of two different volcanic seismic signals –VT and LP
events– recorded at Nevado del Ruiz Volcano. Such spectral band selection tech-
niques allow us to find a small number of discriminative spectral regions as well
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as to discard spectral peaks, apparently significant, which might be attributed
to path effects and near surface resonance. Differences between selected bands
and average spectra shapes suggest that the influence of the spectral estimation
methods should be analyzed carefully. The two types of volcanic events share
some dominant and discriminative regions, e.g. the narrow band near 40 Hz, sug-
gesting a common source of volcanic process. Nonetheless, a further discussion,
based on the opinion of experts such as geologists and volcanologists familiar-
ized with the structure of the volcanic edifice, might give some insight about
the physical phenomena associated to VT and LP events. For instance, magma
viscosity, rock hardness/composition among others properties.
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1. Zamora-Camacho, A., Esṕındola, J.M., Reyes-Dávila, G.: The 1997–1998 activ-
ity of volcán de Colima, Western Mexico: Some aspects of the associated seismic
activity. Pure Appl. Geophys. 164, 39–52 (2007)

2. Chouet, B.A.: Longperiod volcano seismicity: its source and use in eruption fore-
casting. Nature 380, 309–316 (1996)

3. Zobin, V.: Introduction to Volcanic Seismology. Elsevier, Amsterdam (2003)
4. Jousset, P., Neuberg, J., Jolly, A.: Modelling low-frequency volcanic earthquakes

in a viscoelastic medium with topography. Geophys. J. Int. 159, 776–802 (2004)
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