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Abstract. The patterns in collections of real world objects are often not
based on a limited set of isolated properties such as features. Instead, the
totality of their appearance constitutes the basis of the human recog-
nition of patterns. Structural pattern recognition aims to find explicit
procedures that mimic the learning and classification made by human
experts in well-defined and restricted areas of application. This is often
done by defining dissimilarity measures between objects and measuring
them between training examples and new objects to be recognized.

The dissimilarity representation offers the possibility to apply the
tools developed in machine learning and statistical pattern recognition to
learn from structural object representations such as graphs and strings.
These procedures are also applicable to the recognition of histograms,
spectra, images and time sequences taking into account the connectivity
of samples (bins, wavelengths, pixels or time samples).

The topic of dissimilarity representation is related to the field of non-
Mercer kernels in machine learning but it covers a wider set of classifiers
and applications. Recently much progress has been made in this area and
many interesting applications have been studied in medical diagnosis,
seismic and hyperspectral imaging, chemometrics and computer vision.
This review paper offers an introduction to this field and presents a
number of real world applications1.

1 Introduction

In the totality of the world around us we are able to recognize events or objects
as separate items distinguished from their surroundings. We recognize the song
of a bird in the noise of the wind, an individual tree in the wood, a cup on the
table, a face in the crowd or a word in the newspaper. Two steps can now be
distinguished. First, the objects are detected in their totality. Second, the isolated
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object is recognized. These two steps are strongly interconnected and verified by
each other. Only after a satisfactory recognition the detection takes place. It
may even be questioned whether it is not artificial to make a distinction of these
processes in the human recognition of interesting items in the surrounding world.

It is common to separate the two processes in the design of artificial recogni-
tion systems. This is possible and fruitful as it is known what type of objects are
considered in most applications. For example, we know that the system under
construction has to recognize faces and is not intended to recognize characters
or objects such as cups. The detection step is thereby simplified to selectively
focus on faces only, on characters only or on cups only. The recognition step,
however, may now lack important information from the context: the recognition
of an isolated character is more difficult than its recognition given the entire
word. Recognition systems that take the context into account can become more
accurate, albeit at the price of a higher complexity.

On the level of the recognition of a single object a similar observation can
made. In the traditional pattern recognition approaches this is mainly done by
describing objects by isolated features. These are object properties that are ap-
propriate locally, at some position on the object, e.g. the sharpness of a corner,
or by global properties that describe just a single aspect such as the weight or
size of the object. After these features are determined in a first step, the class or
the name of the object is determined: it is a cup and not an ashtray, or it is the
character ’C’ out of the character set in the alphabet. Again it can be doubted
whether these steps reflect the human recognition process.

Is it really true that we consciously observe a set of features before we come
to a decision? Can we really name well-defined properties that distinguish a cup
from an ashtray, or John from Peter? Some experts who have thought this over
for their field of expertise may come a long way. Many people, however, can
perfectly perform a recognition task, but can hardly name specific features that
served the purpose. It is only under pressure when they mention some features.

In general, the process of human decision making may not be based on clear
arguments but on an unconscious intuition, instead. Arguments or justifications
may be generated afterwards. They may even be disputed and refuted without
changing the decision. This points in the direction that human recognition and
decision making are global processes. These processes take the entire object or
situation into account and a specification into isolated observations and argu-
ments becomes difficult.

The above reasoning raises the question whether it is possible to constitute
an automatic pattern recognition procedure that is based on the totality of an
object. In this paper some steps in this direction are formulated on the basis of
the dissimilarity representation. A review will be given of the research that is
done by the authors and their colleagues. Although many papers and experiments
will be mentioned that describe their work, it should be emphasized that the
context of the research has been of significant importance. The publications and
remarks by researchers such as Goldfarb [29], Bunke [44], Hancock and Wilson
[40,63], Buhman and Roth [36], Haasdonk [30], Mottle [41], Edelman [25] and
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Vapnik [58] have been a significant source of inspiration on this topic. It is
however the aim of this paper to sketch our own line of reasoning in such a way
that it may serve as inspiration for newcomers in this area. We will therefore
restrict this paper to an intuitive explanation illustrated by some examples. More
details can be found in the references. Parts of this paper have been extracted
from a recent journal paper [20] which deals with the same topic but which is
more dedicated to research results and in which less effort has been made to
introduce ideas and concepts carefully.

A global description of objects, which takes their totality into account, should
be based on knowledge of how all aspects of the object contribute to the way it
appears to the observer. To make this knowledge explicit some structural model
may be used, e.g. based on graphs. This is not a simple task and usually demands
much more background knowledge of the application area than the definition of
some local properties such as features. The feature-based approach is mainly an
effort in measuring the properties of interest in the observations as presented
by the sensors. As features describe objects just partially, objects belonging to
different classes may share the same feature vectors. This overlap has to be solved
by a statistical analysis. The two approaches, mentioned above, are linked to the
two subfields: structural and statistical pattern recognition.

The possibility to merge the two fields has intrigued various researchers over
the decades. Thereby, it has been a research topic from the early days of pat-
tern recognition. Originally, most attempts have been made by modifying the
structural approach. Watanabe [59] and especially Fu [26] pointed to several
possibilities using information theoretic considerations and stochastic syntacti-
cal descriptions. In spite of their inspiring research efforts, it hardly resulted
in practical applications. Around 1985 Goldfarb [29] proposed to unify the two
directions by replacing the feature-based representation of individual objects by
distances between structural object models. As this proposal hardly requires a
change of the existing structural recognition procedures, it may be considered
as an attempt to bridge the gap between the two fields by approaching it from
the statistical side. Existing statistical tools might thereby become available in
the domain of structural pattern recognition. This idea did not attract much
attention as it was hardly recognized as a profitable approach.

After 1995, the authors of this paper started to study this proposal further.
They called it the dissimilarity representation as it allows various non-metric,
indefinite or even asymmetric measures. The first experiences were published in
a monograph in 2005, [49]. An inspiration for this approach was also the above
explained observation that a human observer is primary triggered by object dif-
ferences (and later similarities) and that the description by features and models
comes second; see [25]. The analysis of dissimilarities, mainly for visualization,
was already studied in the domain of psychonomy in the 1960s, e.g. by Shepard
[54] and Kruskal [35]. The emphasis of the renewed interest in dissimilarities in
pattern recognition, however, was in the construction of vector spaces that are
suitable for training classifiers using the extensive toolboxes available in multi-
variate statistics, machine learning and pattern recognition. The significance for
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the accessibility of these tools in structural object recognition was recognized by
Bunke [55,44] and others such as Hancock and Wilson [64] and Mottle [42,41].

Before introducing the further contents, let us first summarize key advantages
and drawbacks of using the dissimilarity representation in statistical learning:

– Powerful statistical pattern recognition approaches become available for
structural object descriptions.

– It enables the application expert to use model knowledge in a statistical
setting.

– As dissimilarities can be computed on top of a feature-based description,
the dissimilarity approach may also be used to design classifiers in a feature
space. These classifiers perform very well in comparative studies [23].

– As a result, structural and feature-based information can be combined.
– Insufficient performance can often be improved by more observations without

changing the dissimilarity measure.
– The computational complexity during execution, i.e. the time spent on the

classification of new objects, is adjustable.
– The original representation can be large and computationally complex as

dissimilarities between all object pairs may have to be computed. There are
ways to reduce this problem [48,39,13].

In this paper we present an intuitive introduction to dissimilarities (Sec. 2), ways
to use them for representation (Sec. 3), the computation of classifiers (Sec. 4),
the use of multiple dissimilarities (Sec. 5) and some applications (Sec. 6). The
paper is concluded with a discussion of problems under research.

2 Dissimilarities

Suppose we are given an object to be recognized. That means: can we name it,
or can we determine a class of objects of which it belongs to? Some representa-
tion is needed if we want to feed it to a computer for an automatic recognition.
Recognition is based on a comparison with previous observations of objects like
the one we have now. So, we have to search through some memory. It would
be great if an identical object could be found there. Usually, an exact match is
impossible. New objects or their observations are often at least slightly different
from the ones previously seen. And this is the challenge of pattern recognition:
can we recognize objects that are at most similar to the examples that we have
been given before? This implies that we need at least the possibility to express
the similarity between objects in a quantitative way. In addition, it is not always
advantageous to look for an individual match. The generalization of classes of
objects to a ’concept’, or a distinction which can be expressed in a simple classi-
fication rule is often faster, demands less memory and/or can be more accurate.

It has been observed before [25], and it is in line with the above discussions,
that in human recognition processes it is more natural to rely on similarities
or dissimilarities between objects than to find explicit features of the objects
that are used in the recognition. This points to a representation of objects based
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on a pairwise comparison of the new examples with examples that are already
collected. This differs from the feature-based representations that constitute the
basis of the traditional approaches to pattern recognition described in the well-
known textbooks by Fukunaga [27], Duda, Hart and Stork [17], Devijver and
Kittler [16], Ripley [53], Bishop [7],Webb [60] and Theodorides [56]. We want
to point out that although the pairwise dissimilarity representation presented
here is different in its foundation from the feature-based representation, many
procedures described in the textbooks can be applied in a fruitful way.

We will now assume that a human recognizer, preferably an expert w.r.t. the
objects of interest, is able to formulate a dissimilarity measure between objects
that reflects his own perception of object differences (for now we will stick to
dissimilarity measures). A dissimilarity measure d(oi, oj) between two objects oi

and oj out of a training set of n objects may have one or more of the following
properties for all i, j, k ≤ n.

– Non-negativity: d(oi, oj) ≥ 0.
– Identity of indiscernibles: d(oi, oj) = 0 if and only if oi ≡ oj .
– Symmetry: d(oi, oj) = d(oj , oi).
– Triangle inequality: d(oi, oj) + d(oj , ok) ≥ d(oi, ok).
– Euclidean: An n × n dissimilarity matrix D is Euclidean if there exists

an isometric Euclidean embedding into a Euclidean space. In other words, a
Euclidean space with n vectors can be found such that the pairwise Euclidean
distances between these vectors are equal to the original distances in D.

– Compactness: A dissimilarity measure is defined here as compact if a suf-
ficiently small perturbation of an object (from a set of allowed transforma-
tions) leads to an arbitrary small dissimilarity value between the disturbed
object and its original. We call such a measure compact because it results in
compact class descriptions for which sufficiently small disturbances will not
change the class membership of objects. Note that this definition is different
than compactness discussed in topological spaces.

The first two properties together produce positive definite dissimilarity measures.
The first four properties coincide with the mathematical definition of a metric
distance measure.

Non-negativity and symmetry seem to be obvious properties, but sometimes
dissimilarity measures are defined otherwise. E.g. if we define the distance to a
city as the distance to the border of that city, then a car that reaches the border
from outside has a distance zero. When the car drives further into the city the
distance may be counted as negative in order to keep consistency. An example
of an asymmetric distance measure is the directed Hausdorff distance between
two sets of points A and B: dH(A, B) = maxx{miny{d(x, y), x ∈ A, y ∈ B}}.

An important consequence of using positive definite dissimilarity measures is
that classes are separable for unambiguously labeled objects (identical objects
belong to the same class). This directly follows from the fact that if two objects
have a distance zero they should be identical and as a consequence they belong
to the same class. For such classes a zero-error classifier exists (but may still be
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difficult to find). See [49]. This is only true if the dissimilarity measure reflects all
object differences. Dissimilarity measures based on graphs, histograms, features
or other derived measurements may not be positive definite as different objects
may still be described by the same graph (or histogram, or sequence) and thereby
have a zero dissimilarity.

The main property is the Euclidean property. A metric distance measure in
fact states that the Euclidean property holds for every set of three points while
the first two properties (positive definiteness) state that the dissimilarity of every
pair of points is Euclidean.

We may distinguish the properties of the dissimilarity measure itself and the
way it works out for a set of objects. The first should be analyzed mathematically
from the definition of the measure and the known properties of the objects. The
second can be checked numerically from a given n × n dissimilarity matrix D.
There might be a discrepancy between what is observed in a finite data matrix
and the definition of the measure. It may occur for instance that the matrix D for
a given training set of objects is perfectly Euclidean but that the dissimilarities
for new objects behave differently.

The concept of compactness is important for pattern recognition. It was first
used in the Russian literature around 1965, e.g. see Arkedev and Braverman [3],
and also [18]. We define here that a compact class of objects consists of a finite
number of subsets, such that in each subset every object can be continuously
transformed (morphed) into every other object of that subset without passing
through objects outside the subset. This property of compactness is slightly dif-
ferent from the original concept defined in [3] where it is used as a hypothesis on
which classifiers are defined. It is related to the compactness used in topology.
Compactness is a basis for generalization from examples. Without proof we state
here that for compact classes the consequence of the no-free-lunch theorem [65]
(every classifier is as good as any other classifier unless we use additional knowl-
edge) is avoided: compactness pays the lunch. The prospect is that for the case
of positive definite dissimilarity measures and unambiguously labeled objects,
the classes can be separated perfectly by classifiers of a finite complexity.

3 Representation

Arepresentation of real world objects is needed in order to be able to relate to them.
It prepares the generalization step by which new, unseen objects are classified. So,
the better the representation, the more accurate classifiers can be trained. The tra-
ditional representation is defined by numerical features. The use of dissimilarities
is an attractive alternative, for which arguments were given in Introduction. This
section provides more details by focussing on the object structure.

3.1 Structural Representations

The concept of structure is ill defined. It is related to the global connectivity of
all parts of the object. An image can be described by a set of pixels organized in
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a square grid. This grid may be considered as the structure of the image. It is,
however, independent of the content of the image. If this is taken into account
then the connectivity between the pixels may be captured by weights, e.g. related
to the intensity values of the neighboring pixels. We may also forget that there
are pixels and determine regions in the image by a segmentation procedure. The
structure may then be represented by a graph in which every node is related
to an image segment and the graph edges correspond to neighboring segments.
Nodes and edges may have attributes that describe properties of the segments
and the borders between them.

A simpler example of a structure is the contour of an image segment or a
blob: its shape. The concept of shape leads to a structure, but shapes are also
characterized by features, e.g. the number of extremes or a set of moments. A
structural representation of a shape is a string. This is a sequence of symbols
representing small shape elements, such as straight lines (in some direction) or
curves with predefined curvatures. Shapes are also found in spectra, histograms
and time signals. The movement of an object or a human body may be described
as a set of coordinates in a high-dimensional space as a function of time. This
multi-dimensional trajectory has a shape and may be considered as a structure.

The above examples indicate that structures also have some (local) properties
that are needed for their characterization. Examples of pure structures without
attributes can hardly be found. Certainly, if we want to represent them in a way
that facilitates comparisons, we will use attributes and relations (connections).
The structural representations used here will be restricted to attributed graphs
and sequences.

3.2 The Dissimilarity Representation

Dissimilarities themselves have been discussed in Sec. 2. Three sets of objects
may be distinguished for constructing a representation:

– A representation set R = {r1, . . . , rk}. These are the objects we refer to.
The dissimilarities to the representation set have to be computed for training
objects as well as for test objects used for evaluation, or any objects to be
classified later. Sometimes the objects in the set R are called prototypes.
This word may suggest that these objects are in some way typical examples
of the classes. That can be the case but it is not necessary. So prototypes
may be used for representation, but the representation set may also consist
of other objects.

– A training set T = {o1, . . . , on}. These are the objects that are used to
train classifiers. In many applications we use T := R, but R may also be just
a (small) subset of T , or be entirely different from T .

– A test set S. These are the objects that are used to evaluate classification
procedure. They should be representative for the target objects for which
the classification procedure is built.

After determining these three sets of objects the dissimilarity matrices D(T, R)
and D(S, R) have to be computed. Sometimes also D(T, T ) is needed, e.g. when
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the representation set R ⊂ T has to be determined by a specific algorithm. The
next problem is how to use these two or three matrices for training and testing.
Three procedures are usually considered:

– The k-nearest neighbor classifier. This is the traditional way to classify
new objects in the field of structural pattern recognition: assign new objects
to the (majority) class of its (k) nearest neighbor(s). This procedure can
directly by applied to D(S, T ). The dissimilarities inside the training set,
D(T, T ) or D(T, R) are not used.

– Embedded space. Here a vector space and a metric (usually Euclidean) are
determined from D(T, T ) containing n = |T | vectors, such that the distances
between these vectors are equal to the given dissimilarities. See Sec. 3.3 for
more details.

– The dissimilarity space. This space is postulated as a Euclidean vector
space defined by the dissimilarity vectors d(·, R) = [d(·, r1), . . . , d(·, rk)]T

computed to the representation set R as dimensions. Effectively, the dissim-
ilarity vectors are used as numerical features. See Sec. 3.4.

3.3 Embedding of Dissimilarities

The topic of embedding dissimilarity matrices has been studied for a long time.
As mentioned in the introduction (Sec. 1), it was originally used for visualiz-
ing the results of psychonomic experiments and other experiments representing
data in pairwise object comparisons [54,35]. In such visualization tasks, a reli-
able, usually 2D map of the data structure is of primary importance. Various
nonlinear procedures have been developed over the years under the name of
multi-dimensional scaling (MDS) [9].

It is difficult to reliably project new data to an existing embedded space
resulting from a nonlinear embedding. Therefore, such embeddings are unsuitable
for pattern recognition purposes in which a classifier trained in the embedded
space needs to be applied to new objects. A second, more important drawback
of the use of nonlinear MDS for embedding is that the resulting space does not
reflect the original distances anymore. It usually focusses either on local or global
object relations to force a 2D (or other low-dimensional) result.

For the purpose of generalization a restriction to low-dimensional spaces is
not needed. Moreover, for the purpose of the projection of new objects linear
procedures are preferred. Therefore, the linear MDS embedding has been studied,
also known as classical scaling [9]. As the resulting Euclidean space is by its
very nature not able to perfectly represent non-Euclidean dissimilarity data, see
Sec. 2, a compromise has to be made. The linear Euclidean embedding procedure
is based on an eigenvalue decomposition of the Gram matrix derived from the
given n×n dissimilarity matrix D, see [29,49], in which some eigenvalues become
negative for non-Euclidean dissimilarities. This conflicts with the construction of
a Euclidean space as these eigenvalues are related to variances of the extracted
features, which should be positive. This is solved in classical scaling by neglecting
all ’negative’ directions. The distances in this embedded space may thereby be
entirely different from the original dissimilarity matrix D.
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The approach followed by the pseudo-Euclidean embedding is to construct
a vector space [49] in which the metric is adjusted such that the squared dis-
tance contributions of the ’negative’ eigenvectors are counted as negative. The
resulting pseudo-Euclidean space thereby consists out of two orthogonal Eu-
clidean spaces of which the distances are not added (in the squared sense) but
subtracted. Distances computed in this way are exactly equal to the original dis-
similarities, provided that they are symmetric and self-dissimilarity is zero. Such
an embedding is therefor an isometric mapping of the original D into a suitable
pseudo-Euclidean space, which is an inner product space with an indefinite inner
product.

The perfect representation of D in a pseudo-Euclidean embedded space is an
interesting proposal, but it is not free from some disadvantages:

– Embedding relies on a square dissimilarity matrix, usually D(T, T ). The dis-
similarities between all pairs of training objects should be taken into account.
The computation of this matrix as well as the embedding procedure itself
may thereby be time and memory demanding operations.

– Classifiers that obey the specific metric of the Pseudo-Euclidean space are dif-
ficult to construct or not yet well defined. Some have been studied [32,50,21],
but many problems remain. For instance, it is not clear how to define a normal
distribution in a pseudo-Euclidean space. Also the computation of SVM may
be in trouble as the related kernel is indefinite, in general [31]. Solutions are
available for specific cases. See also Sec. 4.

– There is a difficulty in a meaningful projection of new objects to an existing
pseudo-Euclidean embedded space. The straightforward projection opera-
tions are simple and linear, but they may yield solutions with negative dis-
tances to other objects even though the original distances are non-negative.
This usually happens when a test object is either an outlier or not well rep-
resented in the training set T (which served to define the embedded space).
A possible solution is to include such objects in the embedding procedure
and retrain the classifier for the new objects. For test objects this implies
that they will participate in the representation. Classification may thereby
improve at the cost of the retraining. This approach is also known as trans-
ductive learning [58].

– The fact that embedding strictly obeys the given dissimilarities is not al-
ways an advantage. All types of noise and approximations related to the
computation of dissimilarities are expressed in the result. It may thereby be
questioned whether all non-Euclidean aspects of the data are informative. In
[19] it is shown that there are problems for which this is really the case.

In order to define a proper topology and metric, mathematical texts, ↪e.g. [8],
propose to work with the associated Euclidean space instead of the pseudo-
Euclidean space. In this approach all ’negative’ directions are treated as ’positive’
ones. As a result, one can freely use all traditional classifiers in such a space.
The information extracted from the dissimilarity matrix is used but the original
distance information is not preserved and may even be significantly distorted.
Whether this is beneficial for statistical learning depends on the problem.
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3.4 The Dissimilarity Space

The dissimilarity space [46,49] postulates a Euclidean vector space defined by
the dissimilarity vectors. The elements of these vectors are dissimilarities from
a given object to the objects in the representation set R. The dissimilarity vec-
tors serve as features for the objects in the training set. Consequently, such a
space overcomes all problems that usually arise with the non-Euclidean dissim-
ilarity measures, simply by neglecting the character of the dissimilarity. This
approach is at least locally consistent for metric distance measures: distances
in the dissimilarity space between pairs of objects characterized by small dis-
similarities d(oi, oj) will also have a small distance as their dissimilarity vectors
d(oi, R) = [d(oi, r1), . . . , d(oi, rk)]T and d(oj , R) = [d(oj , r1), . . . , d(oj , rk)]T will
be about equal. This may serve as a proof that the topology of a set of objects
with given dissimilarities {d(oi, oj)}i,j=1:n is identical to the topology of this set
of objects in the dissimilarity space {dE(d(oi, R), d(oj , R))}i,j=1:nprovided that
R is sufficiently large (to avoid that different objects have, by accident, a zero
distance in the dissimilarity space).

If all training objects are used for representation, the dimension of the dis-
similarity space is equal to |T |. Although, in principle, any classifier defined for
a feature space may be applied to the dissimilarity space, some of them will
be ill-defined or overtrained for such a large representation set. Dimension re-
duction, e.g. by prototype selection may thereby be an important issue in this
approach [48,39,13]. Fortunately, these studies show that if the reduction is not
put to the extreme, a randomly selected representation set may do well. Here
the dissimilarity space is essentially different from a traditional feature space:
features may be entirely different in their nature. A random selection of R may
exclude a few significant examples. The objects in a training set, however, will
in expectation include many similar ones. So, a random selection is expected to
sample all possible aspects of the training set, provided that the training set T
as well as the selected R are sufficiently large.

If a representation set R is a subset of T and we use the complete set T in
training, the resulting representation D(T, R) contains some zero dissimilarities
to objects in R. This is not expected to be the case for new test objects. In
that sense the training objects that participate in the representation set are not
representative for test objects. It might be better to exclude them. In all our
experiments however we found just minor differences in the results if we used
D(T \R, R) instead of D(T, R).

Although any feature-based classifier can be used in a dissimilarity space,
some fit more naturally than others. For that reason we report a number of
experiments and their findings in Sec. 4.

4 Classifiers

We will discuss here a few well-known classifiers and their behavior in various
spaces. This is a summary of our experiences in many studies and applications.
See [49] and its references.
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In making a choice between embedding and the dissimilarity space for train-
ing a classifier one should take into account the essential differences between
these spaces. As already stated, embedding strictly obeys the distance charac-
teristics of the given dissimilarities, while the dissimilarity spaces neglects this.
In addition, there is a nonlinear transformation between these spaces: by com-
puting the distances to the representation objects in the embedded space the
dissimilarity space can be defined. As a consequence, a linear classifier in the
embedded space is a nonlinear classifier in the dissimilarity space, and the other
way around. Comparing linear classifiers computed in these spaces is thereby
comparing linear and nonlinear classifiers.

It is outside the scope of this paper, but the following observation might be
helpful for some readers. If the dissimilarities are not constructed by a procedure
on a structural representation of objects, but are derived as Euclidean distances
in a feature space, then the pseudo-Euclidean embedding effectively reconstructs
the original Euclidean feature space (except for orthonormal transformations).
So in that case a linear classifier in the dissimilarity space is a nonlinear classifier
in the embedded space, which is the same nonlinear classifier in the feature space.
Such a classifier, computed in a dissimilarity space, can perform very well [23].

4.1 Nearest Neighbor Classifier

The k-nearest neighbor (k-NN) classifier in an embedded (pseudo-)Euclidean
space is based on the distances computed in this space. By definition these are
the original dissimilarities (provided that the test examples are embedded to-
gether with the training objects). So without the process of embedding this clas-
sifier, can directly be applied to a given dissimilarity matrix. This is the classifier
traditionally used by many researchers in the area of structural pattern recog-
nition. The study of the dissimilarity representation arose because this classifier
does not make use of the given dissimilarities in the training set. Classification is
entirely based on the dissimilarities of a test object to the objects in the training
(or representation) set only.

The k-NN rule computed in the dissimilarity space relies on a Euclidean dis-
tance between the dissimilarity vectors, hence the nearest neighbors are deter-
mined by using all dissimilarities of a given object to the representation objects.
As explained in Sec. 3.4 for the metric case and for large sets it is expected
that the distances between similar objects are small for the two spaces. So, it is
expected that learning curves are asymptotically identical, but for small training
sets the dissimilarity space works better as it uses more information.

4.2 Parzen Density Classifiers

The class densities computed by the Parzen kernel density procedure are based
on pairwise distance computations between objects. The applicability of this
classifier as well as its performance is thereby related to those of the k-NN rule.
Differences are that this classifier is more smooth, depending on the choice of
the smoothing parameter (kernel) and that its optimization involves the entire
training set.
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4.3 Normal Density Bayes Classifiers

Bayes classifiers assume that classes can be described by probability density
functions. Using class priors and Bayes’ rule the expected classification error is
minimized. In case of normal density function either a linear classifier (Linear
Discriminant Analysis, LDA) arises on the basis of equal class covariances, or
a quadratic classifier is obtained for the general case (Quadratic Discriminant
Analysis, QDA). These two classifiers belong to best possible in case of (close
to) normal class distributions and a sufficiently large training set. As mean vec-
tors and covariance matrices can be computed in a pseudo-Euclidean space, see
[29,49], these classifiers exist there as well if we forget the starting point of nor-
mal distributions. The reason is that normal distributions are not well defined
in pseudo-Euclidean spaces; it is not clear what a normal distribution is unless
we refer to associated Euclidean spaces.

In a dissimilarity space the assumption of normal distributions works often
very well. This is due to the fact that many cases dissimilarity measures are
based on, or related to sums of numerical differences. Under certain conditions
large sums of random variables tend to be normally distributed. It is not per-
fectly true for distances as we often get Weibull [12] or χ2 distributions, but the
approximations are sufficient for a good performance of LDA and QDA. The
effect is emphasized if the classification procedure involves the computation of
linear subspaces, e.g. by PCA. Thanks to projections normality is emphasized
even more.

4.4 Fisher’s Linear Discriminant

In a Euclidean space the Fisher linear discriminant (FLD) is defined as the linear
classifier that maximizes the Fisher criterion, i.e. the ratio of the between-class
variance to the within-class variance. For a two-class problem, the solution is
equivalent to LDA (up to an added constant), even though no assumption is
made about normal distributions. Since variance and covariance matrices are
well defined in pseudo-Euclidean spaces, the Fisher criterion can be used to
derive the FLD classifier there. Interestingly, FLD in a pseudo-Euclidean space
coincides with FLD in the associated Euclidean space. FLD is a linear classifier
in a pseudo-Euclidean space, but can be rewritten to FLD in the associated
space; see also [50,32].

In a dissimilarity space, which is Euclidean by definition, FLD coincides with
LDA for a two-class problem. The performance of these classifiers may differ
for multi-class problems as the implementations of FLD and LDA will usually
vary then. Nevertheless, FLD performs very well. Due to the nonlinearity of the
dissimilarity measure, FLD in a dissimilarity space corresponds to a nonlinear
classifier in the embedded pseudo-Euclidean space.

4.5 Logistic Classifier

The logistic classifier is based on a model of the class posterior probabilities as a
function of the distance to the classifier [1]. The distance between a vector and a
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linear hyperplane in a pseudo-Euclidean space however is an unsuitable concept
for classification as it can have any value (−∞,∞) for vectors on the same side of
this hyperplane. We are not aware of a definition and an implementation of the
logistic classifier for pseudo-Euclidean spaces. Alternatively, the logistic classifier
can be constructed in the associated Euclidean space.

In a dissimilarity space, the logistic classifier performs well, although normal
density based classifiers work often better. It relaxes the demands for normality
as made by LDA. It is also more robust in case of high-dimensional spaces.

4.6 Support Vector Machine (SVM)

The linear kernel in a pseudo-Euclidean space is indefinite (non-Mercer). The
quadratic optimization procedure used to optimize a linear SVM may thereby
fail [30]. SVM can however be constructed if the contribution of the positive
subspace of the Euclidean space is much stronger than that of the negative
subspace. Mathematically, it means that the measure is slightly deviating from
the Euclidean behavior and the solution of SVM optimization is found in the
positive definite neighborhood. Various researchers have reported good results in
applying this classifier, e.g. see [11]. Although the solution is not guaranteed and
the algorithm (in this case LIBSVM, [14]) does not stop in a global optimum, a
good classifier can be obtained.

In case of a dissimilarity space the (linear) SVM is particularly useful for com-
puting classifiers in the complete space for which R := T . The given training set
defines therefore a separable problem. The SVM does not or just hardly over-
train in this case. The advantage of this procedure is that it does not demand a
reduction of the representation set. A linear SVM is well defined. By normaliz-
ing the dissimilarity matrix (such that the average dissimilarity is one) we found
stable and good results in many applications by setting the trade-off parameter
C in the SVM procedure [15] to C = 100. Hereby, additional cross-validation
loops are avoided to optimize this parameter. As a result, in an application one
can focus on optimizing the dissimilarity measure.

4.7 Combining Classifiers

In the area of dissimilarity representations many approaches can be considered.
Various strategies can be applied for the choice of the representation set, either
embedded or dissimilarity spaces can be used, and various modifications can be
considered, e.g. refinements or correction procedures for these spaces; see [24,21].
Instead of selecting one of the approaches, classifier combining may provide an
additional value. However, as all these classifiers are based on the same dissimi-
larities they do not provide any additional or valuable information. Effectively,
just additional procedures are considered that encode different nonlinearities. As
the given square dissimilarity matrix D describes an already linearly separable
set of objects (under the assumption of the positive definite dissimilarity) we
do not expect that in general much can be gained by combining, although an
occasional success is possible in particular problems.
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5 Multiple Dissimilarities

Instead of generating sets of classifiers defined on the same dissimilarity rep-
resentation also modifications of the dissimilarity measure may be considered.
Another measure can emphasize other aspects of the objects. The resulting dis-
similarity matrices cannot be derived from each other, in general. Consequently,
they are chosen to encode different information. Combining various dissimilarity
representations or classifiers derived from them is now much more of interest.
These types of studies are closely related to the studies on kernel metric learning
[61,68,66]. An important difference is that the study of kernels is often focussed
on the use of SVM for classification, and consequently positive definite kernels
obeying the Mercer conditions are the key. As the dissimilarity representation
permits many classifiers this point is not relevant for dissimilarity measures.
On the contrary, the unrestricted use of dissimilarity definitions is of particular
significance for structural pattern recognition as there non-Euclidean measures
naturally arise. See also [22].

There are a number of reasons why a set of different dissimilarities between
objects arises. A few examples are:

– The same set of objects is observed multiple times under different conditions.
– The dissimilarities are computed on different samplings from the original

signals (multi-scale approach).
– Different dissimilarity measures are used on the same signals.

A very interesting observation that can be made from various studies such as
[33,57] is that a simple element-wise averaging of dissimilarity matrices defined
by different measures often leads to a significant improvement of the classification
error over the best individual measure. Attempts to improve this further by a
weighted averaging is sometimes successful but often appears not to be useful.
The precise value of the weights does not seem to be very significant, either.

6 Application Examples

In this section we will discuss a few examples that are typical for the possibilities
of the use of dissimilarities in structural pattern recognition problems. Some have
been published by us before [22] for another readership. They are repeated here
as they may serve well as an illustration in this paper.

6.1 Shapes

A simple and clear example of a structural pattern recognition problem is the
recognition of blobs: 2D binary structures. An example is given in Fig. 1. It is
an object out of the five-class chickenpieces dataset consisting of 445 images [2].
One of the best structural recognition procedure uses a string representation
of the contour described by a set of segments of the same length [10]. The
string elements are the consecutive angles of these segments. The weighted edit
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Fig. 1. Left: some examples of the chickenpieces dataset. Right: the error curves as a
function of the segment length L.

distances between all pairs of contours are used to compute dissimilarities. This
measure is non-Euclidean. A (γ, �L) family of problems is considered depending
on the specific choice for the cost of one editing operation γ as well as for the
segment’s length L used in the contour description. As a result, the classification
performance depends on the parameters used, as shown in Fig 1, right. 10-fold
cross-validation errors are shown there for the 1-NN rule directly applied on the
dissimilarities as well as the results for the linear SVM computed by LIBSVM,
[14], in the dissimilarity space. In addition the results are shown for the average
of the 11 dissimilarity matrices. It is clearly observed that the linear classifier in
the dissimilarity space (SVM-1) improves the traditional 1-NN results and that
combining the dissimilarities improves the results further on.

6.2 Histograms and Spectra

Histograms and spectra offer very simple examples of data representations that
are judged by human experts on their shape. In addition, also the sampling of the
bins or wavelengths may serve as a useful vector representation for an automatic
analysis. This is thanks to the fact that the domain is bounded and that spectra
are often aligned. Below we give an example in which the dissimilarity represen-
tation outperforms the straightforward vector representation based on sampling
because the first can correct for a wrong calibration (resulting in an imperfect
alignment) in a pairwise fashion. Another reason to prefer dissimilarities for his-
tograms and spectra over sampled vectorial data is that a dissimilarity measure
encodes shape information. For examples see the papers by Porro [52,51].

We will consider now a dataset of 612 FL3-A DNA flow cytometer histograms
from breast cancer tissues in a resolution of 256 bins. The initial data were
acquired by M. Nap and N. van Rodijnen of the Atrium Medical Center in
Heerlen, The Netherlands, during 2000-2004, using the four tubes 3-6 of a DACO
Galaxy flow cytometer. Histograms are labeled into three classes: aneuploid (335
patients), diploid (131) and tetraploid (146). We averaged the histograms of the
four tubes thereby covering the DNA contents of about 80000 cells per patient.
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Fig. 2. Examples of some flow cytometer histograms: aneuploid, diploid and tetraploid.
Bottom right shows the learning curves.

We removed the first and the last bin of every histogram as here outliers are
collected, thereby obtaining 254 bins per histogram. Examples of histograms are
shown in Fig. 2. The following representations are used:

Histograms. Objects (patients) are represented by the normalized values of
the histograms (summed to one) described by a 254-dimensional vector. This
representation is similar to the pixel representation used for images as it is
based on just a sampling of the measurements.

Euclidean distances. These dissimilarities are computed as the Euclidean
distances in the vector space mentioned above. Every object is represented
by by a vector of distances to the objects in the training set.

Calibrated distances. As the histograms may suffer from an incorrect cali-
bration in the horizontal direction (DNA content) for every pairwise dissim-
ilarity we compute the multiplicative correction factor for the bin positions
that minimizes their dissimilarity. Here we used the �1 distance. This repre-
sentation makes use of the shape structure of the histograms and removes
an invariant (the wrong original calibration).

A linear SVM with a fixed trade-off parameter C is used in learning. The learning
curves for the three representations are shown in the bottom right of Fig. 2. They
clearly illustrate how for this classifier the dissimilarity representation leads to
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Fig. 3. Left: examples of the images used for the digit recognition experiment. Right:
the learning curves.

better results than the vector representation based on the histogram sampling.
The use of the background knowledge in the definition of the dissimilarity mea-
sure improves the results further.

6.3 Images

The recognition of objects on the basis of the entire image can only be done
if these images are aligned. Otherwise, earlier pre-procession or segmentation is
necessary. This problem is thereby a 2-dimensional extension of the histogram
and spectra recognition task. We will show an example of digit recognition by
using a part of the classic NIST database of handwritten numbers [62] on the
basis of random subsets of 500 digits for the ten classes 0-9. The images were
resampled to 32 × 32 pixels in such a way that the digits fit either horizontally
or vertically. Fig. 3 shows a few examples: black is ’1’ and white is ’0’. The
dataset is repeatedly split into training and test sets and hold-out classification
is applied. In every split the ten classes are evenly represented.
The following representations are used:

Features. We used 10 moments: the seven rotations invariant moments and
the moments [00], [01], [10], measuring the total number of black pixels and
the centers of gravity in the horizontal and vertical directions.

Pixels. Every digit is represented by a vector of the intensity values in 32∗32 =
1024 dimensional vector space.

Dissimilarities to the training object. Every object is represented by the
Euclidean distances to all objects in the training set.

Dissimilarities to blurred digits in the training set. As the pixels in the
digit images are spatially connected blurring may emphasize this. In this
way the distances between slightly rotated, shifted or locally transformed
but otherwise identical digits becomes small.

The results are shown in Fig. 3 on the right. They show that the pixel rep-
resentation is superior for large training sets. This is to be expected as this
representation stores asymptotically the universe of possible digits. For small
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training sets a suitable set of features may perform better. The moments we use
here are very general features. Better ones can be found for digit description.
As explained before a feature-based description reduces the (information on the)
object: it may be insensitive for some object modifications. For sufficiently large
representation sets the dissimilarity representation may see all object differences
and may thereby perform better.

6.4 Sequences

The recognition of sequences of observations is in particular difficult if the se-
quences of a given class vary in length, but capture the same ’story’ (information)
from the beginning to the end. Some may run faster, or even run faster over just
a part of the story and slow down elsewhere. A possible solution is to rely on
Dynamic Time Warping (DTW) that relates the sequences in a nonlinear way,
yet obeys the order of the events. Once two sequences are optimally aligned, the
distance between them may be computed.

An example in which the above has been applied successfully is the recognition
of 3-dimensional gestures from the sign language [38] based on an statistically
optimized DTW procedure [4]. We took a part of a dataset of this study: the 20
classes (signs) that were most frequently available. Each of these classes has 75
examples. The entire dataset thereby consists of a 1500× 1500 matrix of DTW-
based dissimilarities. The leave-one-out 1-NN error for this dataset is 0.041,
which is based on the computation of 1499 DTW dissimilarities per test object.
In Fig. 4, left, a scatterplot is shown of the first two PCA components showing
that some classes can already be distinguished with these two features (linear
combinations of dissimilarities).

We studied dissimilarity representations consisting of just one randomly drawn
exampleper class.The resultingdissimilarity spacehas thereby20dimensions.New
objects have to be compared with just these 20 objects. This space is now filled
with randomly selected training sets of containing between 2 and 50 objects per
class. Remaining objects are used for testing. Two classifiers are studied, the linear
SVM (using the LIBSVM package [14]) with a fixed trade-off parameter C = 100
(we used normalized dissimilarity matrices with average dissimilarities of 100) and
LDA. The experiment was repeated 25 times and the results averaged out. The
learning curves in Fig. 4, right, show the constant value of the 1-NN classifier per-
formance using the dissimilarities to the single training examples per class only, and
the increasing performances of the two classifiers for a growing number of training
objects. Their average errors for 50 training objects per class is 0.07. Recall that
this is still based on the computation of just 20 DTW dissimilarities per object as
we work in the related 20-dimensional dissimilarity space. Our experiments show
thatLDAreaches an error of 0.035 for a representation set of three objects per class,
i.e. 60 objects in total. Again, the training set size is 50 examples per class, i.e. 1000
examples in total. For testing new objects one needs to compute a weighted sum
(linear combination) of 60 dissimilarity values giving the error of 0.035 instead of
computing and ordering 1500 dissimilarities to all training objects for the 1-NN
classifier leading to an error of 0.041.
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Fig. 4. PCA and learning curves for the 20-class Delft Gesture Dataset

6.5 Graphs

Graphs2 are the main representation for describing structure in observed objects.
In order to classify new objects, the pairwise differences between graphs have to
be computed by using a graph matching technique. The resulting dissimilarities
are usually related to the cost of matching and may be used to define a dis-
similarity representation. We present here classification results obtained with a
simple set of graphs describing four objects in the Coil database [43] described by
72 images for every object. The graphs are the Delaunay triangulations derived
from corner points found in these images; see [67]. They are unattributed. Hence,
the graphs describe the structure only. We used three dissimilarity measures:

CoilDelftSame. Dissimilarities are found in a 5D space of eigenvectors derived
from the two graphs by the JoEig approach; see [37]

CoilDelftDiff. Graphs are compared in the eigenspace with a dimensionality
determined by the smallest graph in every pairwise comparison by the JoEig
approach; see [37]

CoilYork. Dissimilarities are found by graph matching, using the algorithm of
Gold and Ranguranjan; [28]

All dissimilarity matrices are normalized such that the average dissimilarity is
1. In addition to the three dissimilarity datasets we used also their averaged
dissimilarity matrix.

In a 10-fold cross-validation experiment, with R := T , we use four classifiers:
the 1-NN rule on the given dissimilarities and the 1-NN rule in the dissimilarity
space (listed as 1-NND in Table 6.5), LDA on a PCA-derived subspace covering
99% of the variance and the linear SVM with a fixed trade-off parameter C = 1.
All experiments are repeated 25 times. Table 6.5 reports the mean classification
errors and the standard deviations of these means in between brackets. Some
interesting observations are:
2 Results presented in this section are based on joint research with Prof. Richard

Wilson, University of York, UK, and Dr. Wan-Jui Lee, Delft University of Technol-
ogy, The Netherlands.
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Table 1. 10-fold cross-validation errors averaged over 25 repetitions

dataset 1-NN 1-NND PCA-LDA SVM-1

CoilDelftDiff 0.477 (0.002) 0.441 (0.003) 0.403 (0.003) 0.395 (0.003)
CoilDelftSame 0.646 (0.002) 0.406 (0.003) 0.423 (0.003) 0.387 (0.003)
CoilYork 0.252 (0.003) 0.368 (0.004) 0.310 (0.004) 0.326 (0.003)
Averaged 0.373 (0.002) 0.217 (0.003) 0.264 (0.003) 0.238 (0.002)

– The CoilYork dissimilarity measure is apparently much better than the two
CoilDelft measures.

– The classifiers in the dissimilarity space however are not useful for the
CoilYork measure, but they are for the CoilDelft measures. Apparently these
two ways of computing dissimilarities are essentially different.

– Averaging all three measures significantly improves the classifier performance
in the resulting dissimilarity space, even outperforming the original best
CoilYork result. It is striking that this does not hold for the 1-NN rule
applied to the original dissimilarities.

7 Discussion

In this paper we have given a review of the arguments why the dissimilarity
representation is useful for applications in structural pattern recognition. This
has been illustrated by a set of examples on real world data. This all shows that
using the collective information from all other objects and relating them to each
other on the top of the given pairwise dissimilarities (either in the dissimilarity
or embedded space), reveals an additional source of information that is otherwise
unexplored.

The dissimilarity representation makes the statistical pattern recognition tools
available for structural data. In addition, features are given the use of combiners
may be considered or the features may be included in the dissimilarity measure.
If either the chosen or optimized dissimilarity measure covers all relevant aspects
of the data, then a zero dissimilarity arises if and only if the objects are identical.
In that case the classes are separable in a sufficiently large dissimilarity space.
Traditional statistical classification tools are designed for overlapping classes.
They may still be applied, but the topic of designing proper generalization tools
may be reconsidered for the case of high-dimensional separable classes. For in-
stance, the demand that a training set should be representative for the future
data to be classified in the statistical sense (i.e. they are generated from the same
distributions) is not necessary anymore. These sets should just cover the same
domain.

A result, not emphasized in this paper, is that for positive definite dissim-
ilarity measures, see Sec. 2, and sufficiently complex classifiers, any measure
asymptotically (for increasing training and representation sets) reaches a zero-
error classifier. So, a poorly discriminative dissimilarity measure can be com-
pensated by a large training set as long as the measure is positive definite.
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An interesting experimental observation is that if several of these measures are
given the average of the dissimilarity matrix offers a better representation than
any of them separable. Apparently, the asymptotic convergence speeds (almost)
always contribute in combinations and do not disturb each other.

One may wonder whether the dissimilarity measures used in Sec. 6 are all
have the positive definite property. However, entirely different objects may be
described by identical histograms or graphs. So, the users should analyze, if they
need this property and whether an expert is able to label the objects unambigu-
ously on the basis of histograms or graphs only. If not, as a way to attain a better
generalization, he may try to extend the distance measure with some features,
or simply add another, possibly bad measure, which is positive definite.

They area of dissimilarity representations is conceptually closely related to
kernel design and kernel classifiers. It is, however, more general as it allows
for indefinite measures and makes no restrictions w.r.t. the classifier [47,50]. The
dissimilarity representation is essentially different from kernel design in the sense
that the dissimilarity matrix is not necessarily square. This has not only strong
computational advantages, but also paves the way to the use of various classifiers.
As pointed out in Sec. 3.4, systematic prototype selection is mainly relevant to
obtain low-dimensional dissimilarity spaces defined by a small set of prototypes.
Another way to reach this goal, not discussed here due to space limit, is the use
of out-of-the training set prototypes or the so-called generalized dissimilarity
representation. Here prototypes are replaced by sets of prototypes, by models
based on such sets, or by artificially constructed prototypes; see [5,6,45,34].

For future research in this field we recommend the study of dissimilarity mea-
sures for sets of applications such as spectra, images, etcetera. In every individual
application measures may be optimized for the specific usage, but the availability
of sets of measures for a broader field of structural applications may, according
to our intuition, be most profitable for the field of structural pattern recognition.
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52. Porro-Muñoz, D., Talavera, I., Duin, R.P.W., Hernández, N., Orozco-Alzate, M.:
Dissimilarity representation on functional spectral data for classification. Journal
of Chemometrics, n/a–n/a (2011)

53. Ripley, B.D.: An introduction to statistical pattern recognition. Cambridge Uni-
versity Press, Cambridge (1996)

54. Shepard, R.: The analysis of proximities: Multidimensional scaling with an un-
known distance function. i. Psychometrika 27, 125–140 (1962)

55. Spillmann, B., Neuhaus, M., Bunke, H., P ↪ekalska, E.z., Duin, R.P.W.: Transforming
strings to vector spaces using prototype selection. In: Yeung, D.-Y., Kwok, J.T.,
Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109,
pp. 287–296. Springer, Heidelberg (2006)

56. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press
(2008)

57. Ulas, A., Duin, R.P., Castellani, U., Loog, M., Mirtuono, P., Bicego, M., Murino, V.,
Bellani, M., Cerruti, S., Tansella, M., Brambilla, P.: Dissimilarity-based detection
of schizophrenia. International Journal of Imaging Systems and Technology 21(2),
179–192 (2011)

58. Vapnik, V.: Statistical Learning Theory. John Wiley & Sons, Inc. (1998)
59. Watanabe, S.: Pattern Recognition: Human and Mechanical. Wiley (1985)
60. Webb, A.: Statistical pattern recognition. Wiley (2002)
61. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest

neighbor classification. Journal of Machine Learning Research 10, 207–244 (2009)
62. Wilson, C., Garris, M.: Handprinted character database 3. Tech. rep., National

Institute of Standards and Technology (February 1992)
63. Wilson, R., Luo, B., Hancock, E.: Pattern vectors from algebraic graph theory.

IEEE Trans. on PAMI 27, 1112–1124 (2005)
64. Wilson, R.C., Hancock, E.R.: Spherical embedding and classification. In: Hancock,

E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR&SPR 2010.
LNCS, vol. 6218, pp. 589–599. Springer, Heidelberg (2010)

65. Wolpert, D.H. (ed.): The Mathematics of Generalization. Addison-Wesley, Reading
(1995)

66. Woznica, A., Kalousis, A., Hilario, M.: Learning to combine distances for complex
representations. In: Ghahramani, Z. (ed.) ICML. ACM International Conference
Proceeding Series, pp. 1031–1038. ACM (2007)

67. Xiao, B., Hancock, E.R.: Geometric characterisation of graphs. In: Roli, F., Vit-
ulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 471–478. Springer, Heidelberg
(2005)

68. Yang, L., Jin, R., Sukthankar, R., Liu, Y.: An efficient algorithm for local distance
metric learning. In: AAAI. AAAI Press (2006)


	The Dissimilarity Representation for Structural Pattern Recognition

	Introduction
	Dissimilarities
	Representation
	Structural Representations
	The Dissimilarity Representation
	Embedding of Dissimilarities
	The Dissimilarity Space

	Classifiers
	Nearest Neighbor Classifier
	Parzen Density Classifiers
	Normal Density Bayes Classifiers
	Fisher's Linear Discriminant
	Logistic Classifier
	Support Vector Machine (SVM)
	Combining Classifiers

	Multiple Dissimilarities
	Application Examples
	Shapes
	Histograms and Spectra
	Images
	Sequences
	Graphs

	Discussion
	References




