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Abstract. The selection of prototypes for the dissimilarity space is a
key aspect to overcome problems related to the curse of dimensionality
and computational burden. How to properly define and select the pro-
totypes is still an open issue. In this paper, we propose the selection
of clusters as prototypes to create low-dimensional spaces. Experimen-
tal results show that the proposed approach is useful in the problems
presented. Especially, the use of the minimum distances to clusters for
representation provides good results.
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1 Introduction

The representation of objects is crucial for the success of a pattern recognition
system. The feature space representation is the most common approach since a
large number of techniques can be used. Dissimilarity representations [1] arose
as an alternative and have been showing a good performance in several prob-
lems, where the dissimilarities may be computed by directly matching original
objects [1] or on top of feature representations [2]. Three main approaches are
presented in [1], the most promising being the dissimilarity space (DS).

In the DS, an object is represented by a vector of dissimilarities with other
objects called prototypes. If a large set of prototypes is used, it leads to a high-
dimensionality of the DS implying that computational costs of classification are
increased as well as storage costs. In addition, a high-dimensionality leads to
problems related to the “curse of dimensionality” and small sample sizes. Fur-
thermore, high-dimensional representations are likely to contain noise since the
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intrinsic dimensionality of the data is usually small, leading to overfitting.
Prototype selection is a way to overcome these drawbacks. It has been stud-

ied [3] for reducing dimensions of DS with encouraging results. Several methods
have been proposed such as Kcentres, Forward Selection (FS), Editing and Con-
densing, among others [3]. In these studies, the selected prototypes are objects.
However, some efforts are also put in a different direction and, instead of objects,
linear models are built, selecting out some of them for representation [4]. These
studies showed that it is a feasible alternative to use a small number of carefully
selected feature lines as prototypes instead of the original objects.

In this paper we study the selection of clusters for the generation of a low-
dimensional generalized dissimilarity space (GDS). Our hypothesis is that clus-
ters may be useful to obtain low-dimensional GDSs in case datasets are struc-
tured in clusters. A similar approach was presented in [5], however it was specifi-
cally developed for graph distances while our research is not restricted to graphs.
Besides, they do not take into account the selection of the best clusters, while
our goal is to find the clusters which allow a good classification with a decreased
dimension of the space. We also included the subspace distance to clusters. Dif-
ferent approaches to compute the distances of the training and test objects to the
clusters are presented. The paper is divided as follows. Section 2 introduces the
DS and prototype selection. Section 3 describes the construction of the datasets
based on cluster distances. Experimental results and discussions are provided in
Sec. 4 followed by concluding remarks in Sec. 5.

2 Dissimilarity space

The DS was conceived with the purpose to address classification of data rep-
resented by dissimilarities that may be non-Euclidean or even non-metric. The
dissimilarities of a training set X with a set of prototypes R = {r1, ..., rk} are
interpreted as coordinates in the DS. Thereby, the number of prototypes selected
determines the dimension of the space. The DS was postulated as a Euclidean
vector space, making suitable the use of statistical classifiers. The set of proto-
types may satisfy R ⊆ X or R ∩ X = ∅. Once R is selected by any prototype se-
lector, the dissimilarities of both training and test objects with R are computed.
Let x be any training or test object and d a suitable dissimilarity measure for the
problem at hand, the representation dx of the object in the dissimilarity space
is:

dx = [d(x, r1) d(x, r2) ... d(x, rk)]. (1)

2.1 Prototype selection

Many approaches have been considered [2,3] for the selection of prototypes in
the DS. Variants of wrapper or supervised methods [3] have been proposed.
Other approaches are considered that use the distances or distribution of the
prototypes over the dataset [2]; note that in these cases the class labels of the
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prototypes may not be needed. An interesting option is the genetic algorithm
(GA) presented in [6]. The GA is an evolutionary method which uses heuristics
in order to evolve an initial set of solutions (sets of prototypes) to better ones by
using operations such as mutation and reproduction. Moreover, it is adequate
to handle non-metric dissimilarities and it can find complicated relationships
between the prototypes. For these reasons we propose to use a GA to select the
clusters together with the leave-one-out nearest neighbor (LOO 1-NN) error in
the DS as selection criterion. We adopt the same parameters for the GA as in [6].
Clusters present nice properties that good prototypes must have. For example,
they do not provide redundant information since redundant or close objects must
lie together in the same cluster and they cover the representation space better
than a small set of objects.

3 Construction of models based on clusters

In this section we describe our methodology to construct the new dissimilarity
datasets based on cluster distances computed from the originally given dissimi-
larities. In this study, the clusters are created per class by the Affinity Propaga-
tion algorithm [7]. In the clustering process representatives and their correspond-
ing clusters emerge from a message-passing procedure between pairs of samples
until stopping criteria are met. This method is reported to provide good cluster-
ing results. Furthermore, it is also of our convenience that it semi-automatically
selects the proper number of clusters, emerging from the message-passing proce-
dure but also from a user preference of the cluster representatives. The original
dissimilarities must be transformed into similarities in order to apply the clus-
tering procedure. We set the preferences for each object (i.e. the potential to be
selected as cluster center) equal to the median similarity.

Different types of distances are used to measure the resemblance of objects
with clusters such as: the minimum, maximum, average and subspace distances.
The minimum distance is computed as the distance between the object and its
nearest object in the cluster. The maximum distance is defined as the distance
between the object and its farthest object in the cluster. The average distance
is defined as the average of the distances between the object and all the cluster
objects. The subspace distance is explained more carefully. Theory about it is
sparse in the literature [8,9], especially for the case of data given in terms of non-
metric dissimilarities. Therefore, one contribution of this paper is to describe the
methodology to compute the (speeded-up) distance of objects to subspaces when
data is provided in terms of non-metric dissimilarities.

The methodology to compute the subspace distance to clusters is as follows.
First, a subspace is created for every cluster in order to compute the subspace
distances. To achieve this, the set of dissimilarities is transformed into equivalent
dot products (which can be interpreted as similarities) and centered according
to the “double-centering” formula for each cluster:
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where Dij is the dissimilarity between the cluster objects xi and xj , Ci =
∑

j D2
ij ,

which is the i-th row sum of the dissimilarity matrix for the cluster objects, n is
the number of objects in the cluster, and Sij are the centered dot products. The
eigendecomposition of S is performed and eigenvectors are sorted in descendent
manner according to their eigenvalues. Only the eigenvectors associated with
eigenvalues λ > 0 are used to compute the projections of new points to the
subspace via the Nyström formula [10].

Each embedding coordinate of a cluster object xi used to compute the kernel
is given by eik =

√
λkvik as for multidimensional scaling (MDS) [8], where λk

is the k-th eigenvalue and vik is the i-th element of the k-th eigenvector of S,
but the embedding for a new point is obtained via the Nyström approxima-
tion which is interpreted as the Kernel PCA projection [9] using S as the kernel
matrix. The Nyström formula was generalized for extending MDS as suggested
in [9], therefore, each embedding coordinate eik is computed by:

eik(x) =
√

λk

λk

n∑

i=1
vikS(x, xi), (3)

where xi are the cluster objects and S(x, xi) is computed from a continuous
version of the “double-centering” formula:
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S(x, xi) is a data-dependent kernel where d(·, ·) is the dissimilarity function.
This Nyström embedding is applied to speed-up the embedding computation
instead of recomputing the eigendecomposition including x in the whole process.
However, in our case, the embedding is not directly used, instead, the embed-
ding coordinates are used to compute the distance to the subspace. The squared
subspace distance dL(x, L)2 is formulated as the difference between the squared
length of the vector (its squared norm) given by S(x, x) and the length of its
projection on the space via Nyström:

dL(x, L)2 = S(x, x) −
m∑

k=1

(√
λk

λk

n∑

i=1
vikS(x, xi)

)2

. (5)

4 Experimental results

4.1 Datasets and experimental setup

The dissimilarity datasets were selected for the experiments based on the exis-
tence of clusters in the data. The Ionosphere dataset consists in radar data [11]
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where the L1 distance is used. The Kimia dataset is based on the shape con-
texts descriptor [12] computed for the Kimia shapes data [13]. The dissimilarity
is based on sums of matching costs for the best matching points defining two
shapes, plus the amount of transformation needed to align the shapes. The dis-
similarity data set Chickenpieces-20-60 [14] is composed by edit distances from
string representations of the angles between segments defining the contours of
chicken pieces images. The Ringnorm dataset is the one presented in [15]; it is
originally a 20-dimensional, 2-class data, where the first class is normally dis-
tributed with zero mean and covariance matrix 4 times the identity. The second
class has unit covariance matrix and mean close to zero. We use only the first 2
features and the L2 distance. The characteristics of the datasets as well as the
cardinality of the training sets used are presented in Table 1.

As classifier we used the support vector machine (SVM) classifier. For the

Table 1. Properties of the datasets used in this study, Symm. and Metric refers to
whether the data is symmetric or metric, the |T | column refers to the training set
cardinality used for the experiments

Datasets # Classes # Obj. per class Symm. Metric |T |
Ionosphere 2 225,126 yes yes 140

Kimia 18 18 × 12 no no 90
Rings 2 440,449 yes yes 222

ChickenPieces-20-60 5 117,76,96,61,96 no no 158

SVM we used a linear kernel and a fixed appropriately selected cost param-
eter C = 1. Note that despite the fact that the curse of dimensionality was
mentioned as a limitation of high-dimensional spaces, the SVM classifier is able
to handle high dimensions well. This makes our comparisons more fair for the
high-dimensional representations. However, the limitation was mentioned since
in many applications people may want to use classifiers that suffer from the curse
of dimensionality and resorting to low-dimensional representations by prototype
selection is one option to overcome the problem. Our proposals are the following
cluster-based methods: selection by GA of clusters created using minimum, max-
imum, average and subspace distances of training objects to the clusters. The
cluster-based methods are compared with some of the best prototype selectors
presented in the literature (which select objects as prototypes), with representa-
tives of unsupervised and supervised methods: Forward selection [3] optimizing
the LOO 1-NN error in the DS, Kcentres prototype selector [3], random selec-
tion, selection by GA of the best clusters centers, and selection by GA of the
best prototypes from the whole candidate set. In addition, we compared the ap-
proach using all candidate objects as prototypes.

A set of 5 to 20 prototype clusters/objects are selected. However, the total
number returned by the affinity propagation is about 25 clusters. Averaged er-
rors and standard deviations over 30 experiments are reported in Table 2 for
the dimension where the best result was obtained. Objects in each dataset are
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randomly split 30 times into training, representation, and test sets. Clusters are
computed on the representation set which also contains the candidate objects
for prototypes, the best clusters and objects are selected optimizing the criteria
for the training set by which the classifiers are trained, and the final classifi-
cation errors are computed for the test sets. We performed a t-test to find if
the differences between the mean errors of the best overall result and the mean
errors achieved by the other approaches was statistically significant, the level of
significance used is 0.05. In the case that a cluster-based method was the best,
the statistical significance is computed with respect to the non cluster-based
approaches.

Table 2. Mean and standard deviation of errors over 30 experiments. The best overall
result is reported for each dataset with the corresponding results of the other methods
for the same dimension of the space (in parenthesis). When the difference of the best
result with the other standard approaches is statistically significant, it is reported in
bold.
XXXXXXXXXSelectors

Datasets Ionosph(15) Kimia(20) Rings(20) Chicken Pieces(20)

Clusters minimum 0.063± 0.028 0.047± 0.032 0.265 ± 0.0205 0.11 ± 0.025
Clusters maximum 0.09 ± 0.029 0.11 ± 0.054 0.263± 0.0236 0.15 ± 0.028

Clusters average 0.072 ± 0.023 0.06 ± 0.045 0.274 ± 0.0181 0.09 ± 0.024
Clusters subspace 0.073 ± 0.022 0.07 ± 0.048 0.276 ± 0.0193 0.088 ± 0.023

Random 0.086 ± 0.026 0.12 ± 0.057 0.274 ± 0.0181 0.17 ± 0.039
GA (whole set) 0.082 ± 0.028 0.1 ± 0.043 0.274 ± 0.0181 0.16 ± 0.028

GA (cluster centres) 0.085 ± 0.032 0.094 ± 0.05 0.275 ± 0.0177 0.15 ± 0.029
Forward selection 0.09 ± 0.027 0.12 ± 0.054 0.274 ± 0.0184 0.16 ± 0.036

Kcentres 0.082 ± 0.029 0.13 ± 0.061 0.274 ± 0.0181 0.15 ± 0.036
All 0.083 ± 0.033 0.068 ± 0.042 0.274 ± 0.0181 0.077± 0.017

4.2 Results and discussion

In Table 2 it can be seen that classification results in the GDS generated by
selected clusters outperform the classification results in DS with selected objects
as prototypes for the same dimensions of the spaces. For the Ionosphere and
Kimia datasets the best method uses clusters with minimum distance, this is
in agreement with previous findings for graph dissimilarities in [5]. In the Iono-
sphere and Kimia datasets, the selection of clusters using maximum distance
is usually among the worse alternatives. This may be expected since it may be
very sensitive to outliers. However, in the Rings dataset the clusters based on
maximum distances provide the best overall result. In the case of Chicken Pieces,
the best results are obtained using all objects as prototypes, perhaps because
this dataset has a high intrinsic dimension (176) according to the number of
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significant eigenvalues of the covariance matrix in the DS. Therefore, in order to
obtain good results, high-dimensional spaces are needed. However, the average
and subspace distance to clusters outperformed the other approaches that create
low-dimensional spaces.

Cluster-based approaches create irregular kernels which nonlinearly map the
data to the GDS in a better way than the object-based approaches for the same
dimensions. We computed the nonlinear mapping for the Rings data from the
underlying feature space to a Hilbert space using a second degree polynomial ker-
nel and applied SVM classification with this kernel and regularization parameter
optimized. We corroborate that the results were very similar to the ones obtained
using clusters in the dissimilarity space. Cluster-based prototypes allow one to
apply linear classifiers with good results to originally nonlinear data. The same
can be achieved by kernels and SVM if the dissimilarities are Euclidean (they
are transformed to the equivalent kernel). However, the original SVM will not
work anymore for a non-Euclidean dissimilarity matrix but a nonlinear mapping
to the DS or GDS can still be achieved for non-Euclidean data (e.g. the Kimia
dataset).

The main disadvantage of using cluster-based prototypes compared to object-
based prototypes for spaces of the same dimension is the computational cost,
since, when using clusters, more dissimilarities must be measured. In this case,
for training and test objects, the dissimilarities with all the objects in the clusters
must be computed in order to find the minimum, maximum and average dissimi-
larity. However, when compared to the approach using all objects as prototypes,
the computational cost of the cluster-based approach is smaller because some
clusters are discarded in the selection process and, thereby, less dissimilarity
computations are made for training and test objects. Since the dissimilarity ma-
trix is computed in advance before prototype selection is executed, the proposed
approach as well as the standard prototype selection methods have limitations
in case of very large datasets. This remains open for further research.

5 Conclusions

For the selection of prototypes not only the optimization method and crite-
rion used are important, but also how the prototypes are devised is vital. We
found that clusters may be useful to obtain low-dimensional GDSs in the case
of datasets that present clusters. Our approach is useful for problems where the
use of cluster-based prototypes make sense according to the data distribution.
Note that our results hold for small and moderate training set sizes. When large
training sets are available, they may compensate for bad mappings using objects
as prototypes.

In general, we found that the minimum, average and subspace distances to
clusters perform well in real-world datasets. However, there is no “best” approach
among the cluster-based methods, it seems that the best option depends on spe-
cific data characteristics. Our intuition is that the minimum distance seems to
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be more meaningful for measuring distances with sets of objects with a shape
such as the clusters. The cluster-based approaches improve the results of using
DS of the same dimension but created by selected objects as well as DS using
all the objects as prototypes (high-dimensional). Future works will be devoted
to study the sensitivity to the choice of different clustering methods as well as
the influence of numbers and sizes of the clusters.
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