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Abstract—Combining different distance matrices or dissimi-
larity representations usually can increase the performance of
individual ones. In this work, we experimentally study on the
performance of combining Euclidean distances and its rela-
tionship with the non-Euclideaness produced from combining
Euclidean distances. Also, the relationship between the degree
of non-Euclideaness from combining Euclidean distances and
the correlations between these Euclidean distances are also
investigated in the experiments.

From the experimental results, we observe that combining dis-
similarities computed with Euclidean distances usually performs
better than combining dissimilarities computed with squared
Euclidean distances. Also, the improvements are highly related
to the degree of non-Euclideaness. Moreover, the degree of
non-Euclideaness is relatively high if two highly uncorrelated
dissimilarity matrices are combined. And the degree of non-
Euclideaness becomes lower if two dissimilarity matrices to be
combined are more correlated.

I. I NTRODUCTION

In stead of feature-based representations, pairwise distances
are also commonly used in classification problems, especially
in applications where features are difficult to obtain or are
with too high dimensionalities. However, selecting a good
dissimilarity measure for the problem at hand is a difficult
task. Recently, an interesting development seeks to construct
a good dissimilarity from a series of dissimilarities [1], [2],
[3], [4], [5], [6], [7], [8], [9]. The most simple way to combine
dissimilarities is by averaging them. But not every dissimilarity
should receive the same weight in the decision process, and
therefore the main force of such combination study which is
called the distance metric learning [1], [2], [3], [4], [5],[6], [7],
[8] is to determine the optimal weight for each dissimilarity.
The criterion for searching these weights is mainly based on
Fisher discriminant that maximizes the ratio of the between-
class variance and the within-class variance. Optimization
methods and heuristic approaches are also used for obtaining
the weights. Interestingly, in distance metric learning, the
squared version of dissimilarities are very commonly used and
also the optimal weights for the dissimilarities are usually
derived with the constraint that the combined dissimilarity
should be metric. In spite of the convenience of such a
setting for learning the weighted average of dissimilarities,
do the choice of squared dissimilarities and the constraintof

metric dissimilarity give better combination results thanother
possibilities? In this work, we investigate the differences of
combining dissimilarities computed with squared Euclidean
distances and combining those computed with Euclidean
distances. Combining squared Euclidean distances and then
taking the squared root of the combined distance results in
proper Euclidean distances. However, combining Euclidean
distances, on the other hand, may result in non-Euclidean
distances. Also, combining squared Euclidean distances equals
to extending feature spaces by directly concatenating features
and computing Euclidean distances in the extended space. But
combining Euclidean distances extends the feature space not
only by concatenating features but also considering the corre-
lations between features. We will discuss further in the next
section how this non-Euclideaness arises and investigate the
influences of the non-Euclideaness of combining dissimilari-
ties in the experiments. We will also experimentally investigate
the relationship between the degree of non-Euclideaness from
combining Euclidean distances and the correlations between
these Euclidean distances.

The rest of the paper is organized as follows. The differences
between combining dissimilarities computed with Euclidean
distances and combining those computed with squared Eu-
clidean distances are discussed in Section II. Simulation results
and the influences of the non-Euclideaness of combining dis-
similarities are presented in Section III. Finally, a conclusion
is given in Section IV.

II. COMBINING EUCLIDEAN DISTANCES

In this section, we would like to discuss the differences
between combining dissimilarities computed with Euclidean
distances and combining those computed with squared Eu-
clidean distances.

Given a n-dimensional data space which is withn fea-
tures f = {1, 2, · · · , n}. Suppose there are two points~p =
(p1, p2, · · · , pn) and~q = (q1, q2, · · · , qn) in this n-dimensional
data space, wherepi andqi are the feature values in dimension
i. The Euclidean distance from~p to ~q is therefore computed



by

d(~p, ~q) =

√

√

√

√

n
∑

i=1

(pi − qi)2. (1)

The n-dimensional data space can also be divided into two
subspaces by separating the feature setf into two different
setsf1 = {1, 2, · · · , k} and f2 = {k + 1, k + 2, · · · , n}. As
given in Eq.(1), we can also derive the Euclidean distances of
points~p and~q in these two different subspaces asd( ~pf1

, ~qf1
) =

√

∑k

i=1
(pi − qi)2 and d( ~pf2

, ~qf2
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Obviously,
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, ~qf2

) =
√

d2(~p, ~q). This
means that combining the dissimilarities computed with
squared Euclidean distances and then taking squared root of
the combined distance results in proper Euclidean distances.
Also, combining squared Euclidean distances is the same
as concatenating the features first and then computing the
distance in the concatenated space.

However, for Euclidean distance, this is not true because
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and therefore combining Euclidean distances from two differ-
ent spaces does not equal to concatenating these two spaces
and then computing the Euclidean distances in this space.

But if we take the square of the combined Euclidean
distances which is
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and then take the squared root on both sides of Eq.(3) as
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we can observe that combining Euclidean distances from two
different spaces is to first compute the Euclidean distancesin
the concatenated space and then cross-reference the distances
from two different spaces. Also, combining Euclidean dis-
tances from two different spaces will only equal to computing
the Euclidean distances in the concatenated space under the
condition that these two different spaces are actually iden-

tical or the cross-term
√

∑k

i=1
(pi − qi)

2 ∑n

i=K+1
(pi − qi)

2

remains a constant. If the Euclidean distances computed in
these two spaces are not very similar, the combined distances
are probably not going to be Euclidean. On the other hand, if

the Euclidean distances computed in these two different spaces
differ more, the degree of non-Euclideaness of the combined
dissimilarity is also likely to be higher.

III. E XPERIMENTS

In this section, we compare the performances of combin-
ing dissimilarities computed with Euclidean distances and
combining those computed with squared Euclidean distances,
respectively. Linear discriminant classifier (ldc), quadratic
discriminant classifier (qdc) and 1-nearest neighbor classifier
(1-nnc) are adopted in the experiments and are built with
PRTOOLS [13]. Nine real-world datasets [11], [12], [13] as
shown in Table I with the number of features, objects and
classes, are used to have a more general investigation. All the
features in the datasets are normalized with respect to their
individual variances. Each dataset is also divided into two
subsets by randomly splitting the features into two setsf1

andf2. The results in all the experiments are the average of
randomly splitting features into two sets for 1000 times. These
subsets are further used for building dissimilarity matrices
with Euclidean or squared Euclidean distances. For each
dataset, two dissimilarity matricesD1 and D2 are computed
with Euclidean distances based on the feature subsetsf1 and
f2, respectively. Similarly, dissimilarity matricesD2

1 and D2
2

are those computed with squared Euclidean distances. The
negative eigenfractions (NEF) [10] of the combined dissim-
ilarities computed with Euclidean distances are also givenin
Table I. The negative eigen-fraction describes the contribution
of negative eigenvalues and is captured by

∑

λi<0
|λi|

∑N

j=1
|λi|

, (4)

whereλi is an eigenvalue of the dissimilarity matrix, andN

is the number of objects and also the size of the dissimilarity
matrix. A higher value means the negative eigenvalues have
more contributions in the dissimilarity matrix.

A. Combining Dissimilarities

In Table II, the leave-one-out errors of the 1-nearest neigh-
bor classifiers are computed in subspaces consisting features
f1 and f2, the combined dissimilarity computed with Eu-
clidean distances, and the combined dissimilarity computed
with squared Euclidean distances. The featuresf1 and f2

are splitted randomly for 1000 times, and the leave-one-out
errors of the 1-nearest neighbor classifiers are the averageof
these 1000 times. Also, the errors with combining Euclidean
distances are given in bold if they are smaller than those
of combining squared Euclidean distances. The linear and
quadratic discriminant classifiers are not used in these exper-
iments because they cannot be built on dissimilarity matrices
directly but can only be used in vector spaces. We will use
dissimilarity representation to form such vector space forldc
and qdc in the next section.

From Table I and Table II, combining Euclidean distances
performs better than combining squared Euclidean distances
with datasets biomed, diabetes, ecoli, heart, imox and wine,



TABLE I
DATASETS.

dataset # features # classes # objects NEF of D1 + D2

biomed 5 2 194 0.1220±0.0188
diabetes 8 2 768 0.1608±0.0090

ecoli 7 3 272 0.1147±0.0345
heart 13 2 297 0.1319±0.0087
imox 8 4 192 0.1091±0.0125

ionosphere 34 2 251 0.0354± 0.0106
iris 4 3 150 0.0715±0.0275

sonar 60 2 208 0.0192± 0.0079
wine 13 3 178 0.0704± 0.0099

TABLE II
LEAVE-ONE-OUT ERROR OF 1-NEAREST NEIGHBOR CLASSIFIERS IN SUBSPACESF1 AND F2, COMBINED SQUARED EUCLIDEAN

DISSIMILARITY AND COMBINED EUCLIDEAN DISSIMILARITY, RESPECTIVELY.

dataset f1 f2

√

D2

1
+ D2

2
D1 + D2

biomed 0.2009±0.0549 0.2181±0.0659 0.1443±0.0018 0.1341±0.0148
diabetes 0.3475±0.0336 0.3438±0.0315 0.3168±0.0104 0.3034±0.0021

ecoli 0.2203±0.1299 0.1723±0.1077 0.0846±0.0072 0.0761±0.0080
heart 0.3248±0.0751 0.2778±0.0492 0.2318±0.0149 0.2222± 0.0032
imox 0.2715± 0.1973 0.1616± 0.1294 0.0625± 0.0008 0.0554± 0.0109

ionosphere 0.1049± 0.0603 0.0718± 0.0155 0.0627± 0.0051 0.0632± 0.0064
iris 0.1715± 0.1490 0.1382± 0.1258 0.0603± 0.0118 0.0800±0.0097

sonar 0.2094± 0.0756 0.1681± 0.0255 0.1490± 0.0077 0.1632± 0.0132
wine 0.1418± 0.1273 0.0752± 0.0517 0.0337± 0.0065 0.0311± 0.0082

which happen to have relatively high negative eigen-fractions.
For datasets ionosphere, iris and sonar, it is the other way
around. This suggests that negative eigen-fraction is an impor-
tant factor that makes combining Euclidean distances perform
better than combining squared Euclidean distances. The nega-
tive eigen-fraction is actually the degree of non-Euclideaness
in a dissimilarity matrix, and therefore, the non-Euclideaness
is actually beneficial for combining Euclidean distances.

To examine the cause of non-Euclideaness when combining
two Euclidean distances, the correlation between the dissimi-
larity matrices computed by these two Euclidean distances and
its relationship with the degree of non-Euclideaness of com-
bining these two dissimilarity matrices are given in Figure1.
The variance of the cross-terms for combining two Euclidean
distances and its relationship with the non-Euclideaness of
combining these two distances for each dataset is given in
Figure 2. In Figure 1, features are randomly splitted into two
subsets for 1000 times and each point indicates one randomly
splitted pair of features. Theoretically, there should be 1000
points in each subfigure. But for datasets like biomed and iris,
the number of features is very small and therefore there are
many identical splittings. As a result, only few points can be
seen in the figure because most of them are lying on top of
each other. For each pair of randomly splitted features, the
correlations between the dissimilarity matrices computedwith
these two different subsets of features and the negative eigen-
fractions of the dissimilarity matrix which are combined with
these two dissimilarity matrices are computed.

From Figure 1, we can observe that when the correlation
between two dissimilarity matrices are high, the degree of non-
Euclideaness for combining these two dissimilarity matrices is

low. On the other hand, when the correlation between two dis-
similarity matrices are low, the degree of non-Euclideaness for
combining two dissimilarity matrices becomes high. Together
with the results of Table II, we can conclude that combining
two dissimilar distance measurements might probably perform
better than combining two similar distance measurements.

Also, from Figure 2, higher variances in cross-terms usually
result in high non-Eulcideaness. But it is obviously the other
way around in datasets ionosphere and sonar which happen to
be the datasets that non-Euclideanss do not contribute much
to the performance of the classifier as given in Table II.

B. Combining Dissimilarity Representations

To compare dissimilarities with other classifiers, a repre-
sentation for embedding dissimilarities into data spaces is
necessary. Here, we adopt the dissimilarity representation
[9], [10] that the dissimilarity space uses (selected) object
dissimilarities as axes and objects as points. That is, axis
1 is the dissimilarity to object 1, axis 2 the dissimilarity
to object 2 and so on. In other words, the dissimilarity or
distances values becomes features. Object points are located
in this space by their dissimilarities to all (selected) objects.
These selected objects are also called the representation set.
With this setting, we can project the objects into a vector
space and build a classifier in it. In Table III, the errors
of 1-nnc, ldc and qdc in the dissimilarity space using20%
of objects as the representation set are the 20-fold cross-
validation errors. Combining Euclidean distances is not really
better than combining squared Euclidean distances with ldc.
But it is significantly much better than combining squared
Euclidean distances with qdc. The exceptions are the biomed
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Fig. 1. Relationships between NEF of the combined distance and the correlation of the distances to be combined in dataset(a) biomed, (b) diabetes, (c)
ecoli, (d) heart, (e) imox, (f) ionosphere, (g) iris, (h) sonar and (i) wine, respectively.

and wine dataset. The difference between the their errors with
qdc is rather small to be significant. But the difference in
wine dataset is much bigger and the dataset is again with a
small negative eigenfraction value. Therefore, in combining
dissimilarity representations, combining Euclidean distances
is very likely a better solution than combining squared Eu-
clidean distances, especially when the non-Euclideaness can
contribute.

IV. CONCLUSIONS

In this work, we investigate the differences of combin-
ing dissimilarities computed with Euclidean distances and
combining those computed with squared Euclidean distances.
Combining dissimilarities computed with Euclidean distances
will very likely result in a non-Euclidean dissimilarity. But
the non-Euclideaness is actually helpful in many situations.
Also, the degree of non-Euclideaness is highly correlated with

the correalations between distances to be combined. If two
distances are more correlated, the combined distance will
probably have a lower degree of non-Euclideaness and vice
versa. For the future directions, we would like to know whether
these phenomena also hold for other distance measurements.
Because this work is based on a very simple setting which
only averages two dissimilarities, it will also be interesting to
extend the work to a larger number of different dissimilarities
and also to dissimilarities carrying different weights.
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Fig. 2. Relationships between NEF of the combined distance and the variance of the cross-terms in dataset (a) biomed, (b)diabetes, (c) ecoli, (d) heart, (e)
imox, (f) ionosphere, (g) iris, (h) sonar and (i) wine, respectively.

TABLE III
DISSIMILARITY REPRESENTATIONS: PROTOTYPE SELECTION USING1-NNC, LDC AND QDC.

1-nnc ldc qdc

dataset
√

D2

1
+ D2

2
D1 + D2

√

D2

1
+ D2

2
D1 + D2

√

D2

1
+ D2

2
D1 + D2

biomed 0.1560± 0.0021 0.1423± 0.0114 0.1427± 0.0011 0.1419± 0.0115 0.1559± 0.0021 0.1564± 0.0202
diabetes 0.3123± 0.0018 0.3234± 0.0078 0.2934± 0.0009 0.2890± 0.0067 0.2971± 0.0008 0.2926± 0.0088

ecoli 0.0797± 0.0074 0.0781± 0.0016 0.0734± 0.0062 0.0711± 0.0009 0.0882± 0.0066 0.0871±0.0013
heart 0.2335± 0.0028 0.2308± 0.0080 0.1921± 0.0027 0.1865± 0.0057 0.1993±0.0019 0.1936± 0.0073
imox 0.0560± 0.0025 0.0573± 0.0058 0.1493± 0.0012 0.1538±0.0095 0.1473± 0.0027 0.1427± 0.0146

ionosphere 0.0614± 0.0015 0.0607± 0.0061 0.2883±0.0013 0.2886±0.0106 0.2886± 0.0106 0.2576±0.0141
iris 0.0685± 0.0013 0.0637± 0.0094 0.1133± 0.0019 0.1025±0.0199 0.1034± 0.0017 0.0942± 0.0177

sonar 0.1830± 0.0037 0.1825± 0.0068 0.3946± 0.0022 0.3918± 0.0076 0.3696±0.0032 0.3639±0.0086
wine 0.0325± 0.0012 0.0361±0.0065 0.0406± 0.0026 0.0580± 0.0219 0.0408± 0.0014 0.0575± 0.0207
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[10] E. Pȩkalska and R. P. W. Duin, The Dissimilarity Representation for
Pattern Recognition. Fundations and Applications, World Scientific,
Singapore, 2005.

[11] A. Asuncion and D. J. Newman, UCI Machine Learning Repository
[http://www.ics.uci.edu/ mlearn/MLRepository.html], Irvine, CA: Uni-
versity of California, Department of Information and Computer Science,
2007.

[12] A. K. Jain and M. D. Ramaswami,Classifier design with Parzen window,
Pattern Recogition and Artificial Intelligence, Netherlands: Elsevier,
1988.

[13] R. P. W. Duin, P. Juszczak, P. Paclik, E. Pȩkalska, D. deRidder and
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