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Abstract—Combining different distance matrices or dissimi- metric dissimilarity give better combination results thather
larity representations usually can increase the performane of possibilities? In this work, we investigate the differesiaef
individual ones. In this work, we experimentally study on tre ¢, mpining dissimilarities computed with squared Euclidea
performance of combining Euclidean distances and its rela- dist d bini th ted with Euclid
tionship with the non-Euclideaness produced from combinig !S ances an C_or_n Ining those C(_)mpu e_ wi uclidean
Euclidean distances. Also, the relationship between the dece distances. Combining squared Euclidean distances and then
of non-Euclideaness from combining Euclidean distances ah taking the squared root of the combined distance results in
the correlations between these Euclidean distances are als proper Euclidean distances. However, combining Euclidean
investigated in the experiments. distances, on the other hand, may result in non-Euclidean

From the experimental results, we observe that combining d- dist Al bini d Euclid dist |
similarities computed with Euclidean distances usually pdorms ~ d!StanCes. AlSo, combining squared Euclidean distanaesieq

better than combining dissimilarities computed with squaed !0 extending feature spaces by directly concatenatingifest
Euclidean distances. Also, the improvements are highly rated and computing Euclidean distances in the extended spacte. Bu
to the degree of non-Euclideaness. Moreover, the degree ofcombining Euclidean distances extends the feature space no
non-Euclideaness is relatively high if two highly uncorreated only by concatenating features but also considering theseor

dissimilarity matrices are combined. And the degree of non- lati bet feat We will di further in thet
Euclideaness becomes lower if two dissimilarity matricesa be '@10NS Detween leatures. Ve will diScuss further in thetnex

combined are more correlated. section how this non-Euclideaness arises and investihate t
influences of the non-Euclideaness of combining dissitnilar
|. INTRODUCTION ties in the experiments. We will also experimentally inigeste

In stead of feature-based representations, pairwisendista the relationship between the degree of non-Euclideaness fr
are also commonly used in classification problems, espgciatombining Euclidean distances and the correlations betwee
in applications where features are difficult to obtain or athese Euclidean distances.

with too high dimensionalities. However, selecting a good The rest of the paper is organized as follows. The difference
dissimilarity measure for the problem at hand is a difficufetween combining dissimilarities computed with Euclidea
task. Recently, an interesting development seeks to emtstrgistances and combining those computed with squared Eu-
a good dissimilarity from a series of dissimilarities [1P][ clidean distances are discussed in Section II. Simulaéenlts

(31, [4], [3], [6], [7], [8], [9]. The most simple way to comhe  and the influences of the non-Euclideaness of combining dis-

dissimilarities is by averaging them. But not every distamily  simijlarities are presented in Section IlI. Finally, a carsibn
should receive the same weight in the decision process, §8Gjiven in Section IV.

therefore the main force of such combination study which is
called the distance metric learning [1], [2], [3], [4], [38], [7],

[8] is to determine the optimal weight for each dissimibarit
The criterion for searching these weights is mainly based on
Fisher discriminant that maximizes the ratio of the between
class variance and the within-class variance. Optimimatio In this section, we would like to discuss the differences
methods and heuristic approaches are also used for olgairf¥¢tween combining dissimilarities computed with Euclidea
the weights. Interestingly, in distance metric learninge t distances and combining those computed with squared Eu-
squared version of dissimilarities are very commonly useti aclidean distances.

also the optimal weights for the dissimilarities are usguall Given a n-dimensional data space which is withfea-
derived with the constraint that the combined dissimyarittures f = {1,2,---,n}. Suppose there are two poinis=
should be metric. In spite of the convenience of such (@1,p2,---,p,) @andqd = (q1,q2, -, gs) in this n-dimensional
setting for learning the weighted average of dissimilasiti data space, wheyg andq: are the feature values in dimension
do the choice of squared dissimilarities and the constiainti. The Euclidean distance fropito ¢ is therefore computed

II. COMBINING EUCLIDEAN DISTANCES



by the Euclidean distances computed in these two differerttespa
differ more, the degree of non-Euclideaness of the combined
dissimilarity is also likely to be higher.

1)

IIl. EXPERIMENTS

The n-dimensional data space can also be divided into twoln this section, we compare the performances of combin-
subspaces by separating the feature fséto two different ing dissimilarities computed with Euclidean distances and
setsfy = {1,2,---,k} and fo = {k+ 1,k +2,---,n}. As combining those computed with squared Euclidean distances
given in Eq.(1), we can also derive the Euclidean distantesrespectively. Linear discriminant classifier (ldc), quetor
pointsp'andq'in these two different subspacesd#gy, ,¢7,) = discriminant classifier (qdc) and 1-nearest neighbor lass
k _ N2 N n _ N2 (1-nnc) are adopted in the experiments and are built with
Z_i:l(pz — ) and dpf, d7.) = /2 (Pi - ql)_ PRTOOLS [13]. Nine real-world datasets [11], [12], [13] as
Obviously, \/dQ(P?lzqfl) + (0 4>) :_.\/dQ(ﬁa‘T)- This  shown in Table | with the number of features, objects and
means that combining the dissimilarities computed Wwithasses, are used to have a more general investigatiorhell t
squared Euclidean distances and then taking squared rootefiyres in the datasets are normalized with respect to thei
the combined distance results in proper Euclidean dis&@ncggjvidual variances. Each dataset is also divided into two
Also, combining squared Euclidean distances is the sa@§ysets by randomly splitting the features into two séts
as concatenating the features first and then computing $ig 7,. The results in all the experiments are the average of
distance in the concatenated space. randomly splitting features into two sets for 1000 timeseJé
However, for Euclidean distance, this is not frue becausgypsets are further used for building dissimilarity massic
B - " with Euclidean or squared Euclidean distances. For each
)2 )2 )2 dataset, two dissimilarity matrice®,; and D, are computed
;(pz %)+ i:;l(pz "7 ;(pz %) with Euclidean distances based on the feature sulfsedsd

o _ _ __ f2, respectively. Similarly, dissimilarity matrice®? and D2
and therefore combining Euclidean distances from two diffe;e those computed with squared Euclidean distances. The

ent spaces does not equal to concatenating these two SpageSitive eigenfractions (NEF) [10] of the combined dissim-
and then computing the Euclidean distances in this space.jjarities computed with Euclidean distances are also given

But if we take the square of the combined Euclideafypie | The negative eigen-fraction describes the cantioh
distances which is of negative eigenvalues and is captured by

2

k n Z/\i<0 |)‘1|
Z (pi — @)’ + Z (pi — @)’ 2) ZN I\ ’ )
i=1 i=K+1 j=11
where )\; is an eigenvalue of the dissimilarity matrix, aid

2 2 2 is the number of objects and also the size of the dissimjlarit
(i = a) 2 pima) >, (pi-a) matrix. A higher value means the negative eigenvalues have
more contributions in the dissimilarity matrix.

n k n

i=1 i=1 i=K+1

and then take the squared root on both sides of Eq.(3) as
- A. Combining Dissimilarities

n

zk:( o .)2 n Z (pi — 4)2 3) In Table Il, the leave-one-out errors of the 1-nearest neigh
Pi — 4% Pi— & bor classifiers are computed in subspaces consisting ésatur

=t =R f1 and f., the combined dissimilarity computed with Eu-

n & " clidean distances, and the combined dissimilarity contgute
- Z(pi 7qi)2+ Z(pi ,qi)Q Z (ps *qi)Q, with squared Euclidean distances. The featufesand fs

i1 i1 P are splitted randomly for 1000 times, and the leave-one-out

o ) ) errors of the 1-nearest neighbor classifiers are the averhge
we can observe that combining Euclidean distances from tyse 1000 times. Also, the errors with combining Euclidean
different spaces is to first compute the Euclidean distaircesyistances are given in bold if they are smaller than those
the concatelnated space and then crossjrgference_thecdStagf combining squared Euclidean distances. The linear and
from two different spaces. Also, combining Euclidean digyyadratic discriminant classifiers are not used in theserexp
tances from two different spaces will only equal to compyitinments because they cannot be built on dissimilarity mesric
the Euclidean distances in the concatenated space underd{@gCﬂy but can only be used in vector spaces. We will use
condition that these two different spaces are actually -idegissimilarity representation to form such vector spacelder
tical or the cross-tern\/zfz1 (i — 41)* X741 (pi — ¢:)°  and qgdc in the next section.
remains a constant. If the Euclidean distances computed irfFrom Table | and Table Il, combining Euclidean distances
these two spaces are not very similar, the combined distanperforms better than combining squared Euclidean distance
are probably not going to be Euclidean. On the other handwifth datasets biomed, diabetes, ecoli, heart, imox and ,wine




TABLE |

DATASETS.
dataset # features| # classes| # objects | NEF of D1 + Do
biomed 5 2 194 0.1220+0.0188
diabetes 8 2 768 0.1608t0.0090
ecoli 7 3 272 0.114°#0.0345
heart 13 2 297 0.1319£0.0087
imox 8 4 192 0.1091+0.0125
ionosphere 34 2 251 0.0354+ 0.0106
iris 4 3 150 0.0715£0.0275
sonar 60 2 208 0.0192+ 0.0079
wine 13 3 178 0.0704t 0.0099

TABLE Il

LEAVE-ONE-OUT ERROR OF 1-NEAREST NEIGHBOR CLASSIFIERS INBSPACES1 AND F2, COMBINED SQUARED EUCLIDEAN
DISSIMILARITY AND COMBINED EUCLIDEAN DISSIMILARITY, RESPECTIVELY.

dataset f1 fa \/D3? + D3 D1+ Dy
biomed | 0.2009:0.0549 | 0.2181-0.0650 | 0.1443-0.0018 | 0.1341-0.0148
diabetes | 0.34750.0336 | 0.343800.0315 | 0.3168-0.0104 | 0.3034-0.0021
ecoli 0.2203E0.1299 | 0.1723£0.1077 | 0.0846£0.0072 0.0761£0.0080
heart 0.3248E0.0751 | 0.2778£0.0492 | 0.231850.0149 | 0.2222F 0.0032
imox 0.2715F 0.1973 | 0.1616E 0.1294 | 0.0625L 0.0008 | 0.0554+ 0.0109
jonosphere| 0.1049+ 0.0603 | 0.0718E 0.0155 | 0.0627+ 0.0051 | 0.0632=+ 0.0064
ins 0.1715F 0.1490 | 0.1382+ 0.1258 | 0.0603L 0.0118 | 0.0800-0.0097
sonar | 0.2094+ 0.0756 | 0.1681=E 0.0255 | 0.1490+ 0.0077 | 0.1632+ 0.0132
wine 0.1418F 0.1273 | 0.0752+ 0.0517 | 0.0337L 0.0065 | 0.0311x+ 0.0082

which happen to have relatively high negative eigen-foaxti low. On the other hand, when the correlation between two dis-
For datasets ionosphere, iris and sonar, it is the other wsiynilarity matrices are low, the degree of non-Euclidearies
around. This suggests that negative eigen-fraction is @otim combining two dissimilarity matrices becomes high. Togeth
tant factor that makes combining Euclidean distances parfowith the results of Table Il, we can conclude that combining
better than combining squared Euclidean distances. Tha negvo dissimilar distance measurements might probably perfo
tive eigen-fraction is actually the degree of non-Euclitess better than combining two similar distance measurements.
in a dissimilarity matrix, and therefore, the non-Euclidess  Also, from Figure 2, higher variances in cross-terms uguall
is actually beneficial for combining Euclidean distances. result in high non-Eulcideaness. But it is obviously theeoth
To examine the cause of non-Euclideaness when combiningy around in datasets ionosphere and sonar which happen to
two Euclidean distances, the correlation between therissi be the datasets that non-Euclideanss do not contribute much
larity matrices computed by these two Euclidean distannds ao the performance of the classifier as given in Table II.
its relationship with the degree of non-Euclideaness of-com o o )
bining these two dissimilarity matrices are given in Figare B- Combining Dissimilarity Representations
The variance of the cross-terms for combining two EuclideanTo compare dissimilarities with other classifiers, a repre-
distances and its relationship with the non-Euclideandss sentation for embedding dissimilarities into data spaces i
combining these two distances for each dataset is givenriacessary. Here, we adopt the dissimilarity represemtatio
Figure 2. In Figure 1, features are randomly splitted into tw[9], [10] that the dissimilarity space uses (selected) cbje
subsets for 1000 times and each point indicates one randomigsimilarities as axes and objects as points. That is, axis
splitted pair of features. Theoretically, there should B8Q 1 is the dissimilarity to object 1, axis 2 the dissimilarity
points in each subfigure. But for datasets like biomed aisd irto object 2 and so on. In other words, the dissimilarity or
the number of features is very small and therefore there afistances values becomes features. Object points areetbcat
many identical splittings. As a result, only few points can bin this space by their dissimilarities to all (selected)emts.
seen in the figure because most of them are lying on top Difiese selected objects are also called the representation s
each other. For each pair of randomly splitted features, tidth this setting, we can project the objects into a vector
correlations between the dissimilarity matrices compuwtgd space and build a classifier in it. In Table Ill, the errors
these two different subsets of features and the negatiemeigof 1-nnc, Idc and qdc in the dissimilarity space usi@x
fractions of the dissimilarity matrix which are combinedtwvi of objects as the representation set are the 20-fold cross-
these two dissimilarity matrices are computed. validation errors. Combining Euclidean distances is natlye
From Figure 1, we can observe that when the correlatitvetter than combining squared Euclidean distances with Idc
between two dissimilarity matrices are high, the degreeofn But it is significantly much better than combining squared
Euclideaness for combining these two dissimilarity masits Euclidean distances with gdc. The exceptions are the biomed
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Fig. 1. Relationships between NEF of the combined distamcethe correlation of the distances to be combined in daf@eviomed, (b) diabetes, (c)
ecoli, (d) heart, (e) imox, (f) ionosphere, (g) iris, (h) aorand (i) wine, respectively.

and wine dataset. The difference between the their errdls wihe correalations between distances to be combined. If two
gdc is rather small to be significant. But the difference idistances are more correlated, the combined distance will
wine dataset is much bigger and the dataset is again wittp@bably have a lower degree of non-Euclideaness and vice
small negative eigenfraction value. Therefore, in comgni versa. For the future directions, we would like to know wieeth
dissimilarity representations, combining Euclidean atises these phenomena also hold for other distance measurements.
is very likely a better solution than combining squared EuBecause this work is based on a very simple setting which
clidean distances, especially when the non-Euclideanass only averages two dissimilarities, it will also be intefegtto
contribute. extend the work to a larger number of different dissimilast
and also to dissimilarities carrying different weights.
V. CONCLUSIONS

In this work, we investigate the differences of combin-
ing dissimilarities computed with Euclidean distances and
combining those computed with squared Euclidean distances
Combining dissimilarities computed with Euclidean distas
will very likely result in a non-Euclidean dissimilarity. us We acknowledge financial support from the FET programme
the non-Euclideaness is actually helpful in many situationwithin the EU FP7, under the SIMBAD project (contract
Also, the degree of non-Euclideaness is highly correlatitid w213250).
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)

TABLE IlI

0}

DISSIMILARITY REPRESENTATIONS PROTOTYPE SELECTION USINA-NNC, LDC AND QDC.

1-nnc ldc gdc

dataset D? 4+ D2 D1+ Do D? + D D1 + Do D? 4+ D? Dy + Do
biomed | 0.1560-+ 0.0021 | 0.1423+ 0.0114 | 0.1427+ 0.0011| 0.1419t 0.0115 | 0.1559+ 0.0021| 0.1564+ 0.0202
diabetes | 0.3123+ 0.0018 | 0.3234+ 0.0078 | 0.2934+ 0.0009 | 0.2890+ 0.0067 | 0.2971+ 0.0008 | 0.2926+ 0.0088
ecoli 0.0797+£ 0.0074 | 0.0781+ 0.0016 | 0.0734+ 0.0062 | 0.0711+ 0.0009 | 0.0882+ 0.0066 | 0.0871:+0.0013
heart 0.2335+ 0.0028 | 0.2308E 0.0080 | 0.1921+ 0.0027 | 0.1865k 0.0057 | 0.1993+£0.0019 | 0.1936EF 0.0073
imox 0.0560+ 0.0025 | 0.0573+ 0.0058 | 0.1493+ 0.0012 | 0.1538+0.0095 | 0.1473+£ 0.0027 | 0.1427+ 0.0146
ionosphere| 0.0614+ 0.0015 | 0.0607t 0.0061 | 0.2883+0.0013 | 0.28860.0106 | 0.2886E 0.0106 | 0.2576+0.0141
iris 0.0685E 0.0013 | 0.0637t 0.0094 | 0.1133E 0.0019 | 0.1025£0.0199 | 0.1034+ 0.0017 | 0.0942k 0.0177
sonar 0.183GE 0.0037 | 0.1825=+ 0.0068 | 0.3946E 0.0022 | 0.3918+ 0.0076 | 0.3696£0.0032 | 0.3639+0.0086
wine 0.0325+ 0.0012 | 0.0361+0.0065 | 0.0406t 0.0026 | 0.0580=+ 0.0219 | 0.0408+ 0.0014 | 0.0575=+ 0.0207
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