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Av. Sos Baynat s/n, 12071 Castellón de la Plana, Spain
†Pattern Recognition Lab

Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology

P.O. Box 5031, 2600GA Delft, The Netherlands

Abstract—In many real world data applications, objects may
have missing attributes. Conventional techniques used to classify
this kind of data are represented in a feature space. However, usu-
ally they need imputation methods and/or changing the classifiers.
In this paper, we propose two classification alternatives based
on dissimilarities. These techniques promise to be appealing
for solving the problem of classification of data with missing
attributes. Results obtained with the two approaches outperform
the results of the techniques based in the feature space. Besides,
the proposed approaches have the advantage that they hardly
require additional computations like imputations or classifier
updating.

I. INTRODUCTION

Data classification is one of the main tasks in pattern recog-

nition. It aims to predict a label for every object according

to the class that it belongs to, using a classification model

that has been built from a training set. Usually, objects in

classification systems are represented by features, also called

attributes. In many predictive modeling applications for some

objects not contain all attribute values may be given. There are

several reasons why this can happen, such as delays or failures

in communication lines, noise, measurement costs, or simply

because they do not exist. In biomedical applications e.g., it is

very common that medical records have some lacking values,

or in telemedicine data may arrive incomplete. In urgent cases,

there might be no time to perform other tests.

Generally, the lack of attributes generates statistical varia-

tions in the data and consequently deterioration in the classi-

fication model and, as a consequence, classification accuracy

is reduced. Furthermore, incomplete objects hamper data han-

dling and analysis. Bias may result from differences between

missing and complete data. Most techniques, proposed in

the literature, to classify data with missing attributes employ

the representation in the feature space. Three methods are

commonly used in this space to handle objects with missing

attributes:

1) Skipping incomplete objects: it simply discards the in-

complete objects in the dataset in order to create a new

complete dataset. It is application dependent whether

this is an option.

2) Imputation: this is probably the most frequently used

approach. It estimates a value from the entire dataset

to fill the missing attribute. Most common imputation

techniques are mean, median, random and Hot deck [11].

3) Projection: in this case the space is reduced to one

dimension less for each missing attribute. This requires

a special computation of the classifier in the reduced

space.

Recently, Zhang [12] proposed a partial imputation tech-

nique. It consists of the imputation of missing data using

complete objects in a small neighborhood of the incomplete

ones. Delavallade and Ha [13] proposed a new approach,

using the entropy to estimate the missing values. Their results

showed that this approach can outperform other traditional

imputation techniques, as mean and mode. Farhangfar at al.

[2] studied the influence of the imputation of missing attributes

on the classification error for five imputation methods: mean,

the Hot deck method, Naı̈ve Bayes, multiple imputation and

framework method using Naı̈ve Bayes and Hot deck. Their

analysis shows that, in general, imputation is beneficial for

the classification of objects with missing attributes.

Generally, methods for incomplete data classification based

on features require additional computations like imputation or

classifier updating. Consequently, these methods tend to be

computationally expensive.

This paper focuses on investigating the use of the dissim-

ilarity representation [7] in the classification of incomplete

data. For this purpose, we propose two simple approaches

for which the object representation is based on dissimilarity

values. The first one uses a classifier trained with complete

objects in the dissimilarity space and applies this classifier

to objects with missing data using the possibility to compute

object dissimilarities even if objects are incompletely given.

The second approach is similar, but uses a correction factor

that is applied to the dissimilarities of incomplete objects. The

aim of this factor is to compensate the lack of the missing

attributes. These two techniques require much less additional

computations than those based on a feature space, because

they do not need imputation or recomputed classifiers.

The paper is organized as follows. Section II provides an

introduction to classification in the dissimilarity space, a de-
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scription of the proposed approaches and also the description

of an imputation technique in the feature space that is used in

our analysis. Section III explains details of the experimental

study, a description of the employed datasets, the experimental

setup conducted and it also includes the experimental results

and their respective analysis. Finally, Section IV presents a

summary of the conclusions and discusses future works.

II. CLASSIFICATION IN DISSIMILARITY SPACE

A. Introduction to dissimilarity-based classification

In the dissimilarity space (DS), objects are represented by

pairwise dissimilarities with other objects instead of attributes

as in the feature space (FS). Hereby, every object is represented

by a vector of dissimilarities to other objects [6].

In dissimilarity-based classification, the training set T of n

objects, T = {−→x 1, . . . ,
−→x n}, and the representation set R of

r objects, R = {−→p 1, . . . ,
−→p r}, are employed to built the clas-

sifier W in the dissimilarity space. R is a set of r prototypes

that contains all classes, usually R ⊆ T . Various methods have

been proposed in the literature to select the prototypes, e.g. in

[5], random and systematic selection procedures were studied

for the normal density-based quadratic classifier.

Given a dissimilarity measure d, the proximity between the

object −→x i ∈ T and the prototypes of R is D(−→x i, R) =
{d(−→x i,

−→p 1), . . . , d(−→x i,
−→p r)}, which is a vector with r dis-

tances that associates −→x i with all objects in the representation

set R. Therefore, the proximity D(T, R) is a dissimilarity

matrix of size n× r, which refers objects in the training set to

all objects in the representation set. This matrix is interpreted

as a set of row vectors that is used to build the classifier in

the dissimilarity space of dimension r.

Given a test set S with s objects, its representation in the

dissimilarity space is obtained by calculating the distances

between its objects and prototypes in R, D(S, R), which is

a s × r matrix.

The dissimilarity measure is small when the objects xi

and ph (where i < n, and h < r) are similar. It should

be larger when the objects are more different. The distance

d(−→x i,
−→p h) = 0 when −→x i and −→p h are identical. In this paper

the dissimilarity representation is derived from the feature

space. We will use Euclidean distances. So objects with a zero

distance in the feature space will also have a zero distance in

the dissimilarity space as all their dissimilarities in the feature

space are equal.

Classifiers computed in a dissimilarity space may perform

well in comparison with those computed in a feature space

[5]. This is partially caused by the non-linear relation between

these spaces. When a linear classifier in the dissimilarity space

reaches a certain performance, a more complex non-linear

classifier in the feature space is required to achieve the same

performance. Therefore, a simple linear classification model in

the dissimilarity space could more easily separate the classes

than the same model in the feature space.

B. Dissimilarity approaches for missing attributes

We propose two simple alternatives to classify incomplete

data using the dissimilarity representation.

• Using the original classifier: the classifier W is built

using the dissimilarity matrix D(T, R), where T and R

are the training set and the representation set, respectively,

both with complete objects. This technique employs a

classifier in the dissimilarity space to classify objects with

missing attributes, regardless which attribute is missing.

Assume −→x i is an object from test set S to be clas-

sified. Let the attribute j be missing, that is −→x j
i =

{xi1, · · · , xi(j−1), xi(j+1), · · · , xik}1×(k−1), where k is

the number of features. To classify −→x j
i in the dissimilarity

space, distances to the objects in the representation set

should be computed. For this purpose, the attribute j of

objects in the representation set R is ignored, that is, R is

projected to one dimension less, Rj . Afterward, distances

between −→x j
i and Rj are calculated by D(−→x j

i , R
j) =

{d(−→x j
i ,
−→p j

1), d(−→x j
i ,
−→p j

2), . . . , d(−→x j
i ,
−→p j

r)} and this vec-

tor is classified by the original classifier.

• Applying correction: like the previous approach, this

technique also employs the trained classifier W with

D(T, R) to classify objects independent of which at-

tribute is missing. The difference between them is that

this approach uses a correction factor α to compensate

the lacking contribution of a missing attribute j. This

factor is applied to the distances of −→x j
i to create the

new compensated object in the dissimilarity space
−→
x

j
i as

follows:
−→
x

j
i = α · D(−→x j

i , R
j)

where the value for α is obtained from the training set.

Let j be the missing attribute of −→x j
i , T j and Rj the

training and representation sets, respectively, where the

attribute j for all their objects is ignored. Therefore, the

dissimilarity matrix with missing attributes is D(T j, Rj).
Then we estimate αj by optimizing the following crite-

rion:

αj = argminα

n∑

i=1

(D(−→x i, R) − αD(−→x j
i , R

j))2 (1)

Equation (1) is optimized by:

αj =

∑n

i=1 D(−→x j
i , R

j)D(−→x i, R)
∑n

i=1 D(−→x j
i , R

j)2
(2)

Herewith an optimal correction factor αj is obtained for

every possible missing attribute j.

C. Imputation using support vector regression

Support vector machines (SVMs) [10] are learning models

frequently used for classification. They usually represent the

data in a space with a higher dimension than the original

feature space. To this end, objects are mapped by a kernel

function to this space. Possible kernel functions are the

sigmoid, polynomials and radial basis functions. The purpose

of the SVM is to find the optimal hyperplane with the

maximum distance from the closest training objects. These

closest points are called support vectors and they lie on the

margin hyperplanes in feature space. In SVR, the regression
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function is obtained using the support vectors and a non-linear

error function.

Let (−→x 1, y1), ..., (
−→x n, yn)) ∈ <n be the vectors of the

training set, with two classes (yi ∈ {−1, 1}). Assume the

linear function of the hyperplane that separates the two classes

is described by:

f(−→x ,−→w ) = 〈−→w ,−→x 〉 + b, with −→w ∈ <n and b ∈ <

where −→w is the perpendicular normal vector to the hyperplane

and b
‖−→w‖

is the hyperplane offset to the origin. Consider an ε-

insensitive error function Eε as the non-linear function, where

the error increases linearly with respect to distance to the

insensitive area, that is given by:

Eε :

{
0 |ξ| ≤ ε

|ξ| − ε otherwise

where |ξ| is the absolute difference between the predicted

output and measured value. The optimal regression function

is described by [14]:

C

n∑

i=1

(ξi + ξ̂i) +
1

2
‖ w ‖2,

where C is a regularization parameter, ξi ≥ 0 and ξ̂i ≥ 0
are the slack variables representing upper and lower limits,

respectively, of the insensitive region.

To employ the imputation technique with SVR, assume the

object −→x i does not have the attribute j, that is, −→x j
i . Complete

objects of the training set are used to estimate the missing

attribute j. Consider yi is the class of −→x j
i . If the object −→x j

i is

unlabeled, yi may be estimated using any classification method

such as Projection (Section I).

• For the complete training objects and −→x j
i , the attribute j

is hold as output attribute (label), and original labels are

considered as input attributes.

• Complete objects of the training set are used to build the

optimal hyperplane.

• The object −→x j
i is mapped to that new feature space, in

order to predict its output attribute (missing attribute).

In [8], Honghai et al. studied the imputation technique

using SVR and compared it with the mean, median, the

mean of the two closest neighbor values and the value of

the nearest neighbor techniques. Their results showed that the

SVR technique obtained the highest precision with regards to

the others methods.

III. EXPERIMENTS AND RESULTS

The main goal of our experiments is to evaluate the

proposed approaches in order to see the behavior of the

classification error when a dissimilarity-based representation

is applied to classification of missing data. Besides, another

aim of the experiments is to compare our techniques with

other methods in features space, and to observe whether they

improve conventional approaches or not. For this purpose, we

described the employed datasets in the experiments and the

experimental setup. Afterwards, we present the results and a

discussion.

A. Datasets

Experiments are carried out over twelve real datasets, from

Ripley [3], Library1 and UCI [1] repositories, each one with

two classes. Table I shows a summary of datasets, which

are organized according to the number of objects. They are

normalized by the rank [0, +1] with the aim of avoiding

the influence of the different scales of feature values over

results. All features have numerical values. To analyze the

effect of the relevance of missing attributes in the classification

error, the least and most relevant attributes for each dataset

are considered as missing attributes. Attribute relevance is

estimated using the Jeffreys-Matusita distance [4].

TABLE I
CHARACTERISTICS OF THE REAL DATA SETS USED IN THE EXPERIMENTS

Data set Features Objects Source

crabs 6 200 Ripley
sonar 60 208 UCI

laryngeal1 16 213 Library
breast 9 277 UCI

intubation 17 302 Library
liver 6 345 UCI

spect 44 349 Library
wbc 30 569 UCI

australian 42 690 UCI
laryngeal2 16 692 Library

pima 8 768 UCI
german 24 1000 UCI

B. Experimental setup

The experiments are organized as follows:

• New objects are generated from the original datasets,

due to the small size of these datasets and with the aim

to consider 5000 objects for the test set. The objects

are created introducing random noise, in one or more

random features of the objects from the original dataset.

The probability of introducing noise to each attribute of

each new object was 0.1. The amount of noise added to

each attribute is randomly chosen uniformly in [0, 0.5]
taking into account that data is already normalized and

guaranteeing that the values are not out of the range [0, 1]
to keep them normalized.

• For each dataset, experiments are repeated five times.

Each time, different training and test sets are chosen

from the dataset in a random way to estimate a general

behaviour of the datasets.

• The training set size is k × c, where k is the number of

features and c the number of classes, as all datasets here

analyzed have two classes, the training set size is 2k.

• The training set is built with objects from the original

dataset, whereas, test set is built with remaining original

objects and with the new generated objects, for a total of

5000 test objects.

• The representation set is chosen randomly from the

training set. Its size was half of training set size, that

is k, in order to employ a small representation set.

1Library: http://www.informatics.bangor.ac.uk/∼kuncheva/activities/real
data full set.htm
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• The proximity measure used in the calculation of dissim-

ilarity matrices is the Euclidean distance.

• Three classifiers are employed in the experiments: Fisher

linear discriminant, 1-Nearest Neighbor rule (1NN) and

Naı̈ve Bayes classifier (NBC), for Naı̈ve Bayes classifier

each axis is split in bins and the objects classification

is done according to the class with maximum posterior

probability.

• The classification errors obtained over the five runs are

averaged.

The generation of new synthetic data for the test set could lead

to changes in the class distribution and therefore, can confuse

the true performance of classifiers. However, although this is

not the purpose of this study, this phenomenon could simulate,

in certain way, the concept change occurring in many real

datasets and which could be extended to future research.

C. Analysis of the Results

The objectives of this paper are to illustrate the potentials of

dissimilarity-based representation for classifying objects suf-

fering from missing attributes, and to analyze the possible ad-

vantages over procedures based on features. For this purpose,

we compared the proposed approaches with two procedures

used for feature representations. One of them employs the

Projection method (Section I). The other one performs the

Imputation with SVR (Section II-C). We compared with these

procedures as they are frequently employed in the literature

and besides, the imputation has shown its powerful ability

of resolving problems of missing data classification [15] [8]

[16]. Moreover, we also took the obtained results by applying

dissimilarity and feature representations for complete objects,

as the baselines.

We employed a method of ranking [9] in order to evaluate

the performance of the proposed approaches and compared

them with the already mentioned ones. To apply this method,

we consider the classification error averaged over the 5 runs.

To this end, we organize the results obtained by each proce-

dure, classifier and dataset, from the smallest to highest error,

ranking them by 1, 2, 3, and so on. Then, the sums of ranks

(Borda counts) are used instead of the error values, and the

ranks over all datasets, procedures and classifiers are averaged.

Tables II and III show the values obtained by applying the

ranking method, by selecting as the missing attribute the least

(respectively, the most) relevant attribute. In these tables, DS

and FS stand for dissimilarity and feature space, respectively.

Rows correspond to classifiers and columns to procedures.

Lower values correspond to better overall performances for

procedure-classifier combinations. Values in bold indicate the

best result for each table. Underlined results are the best ones

considering only procedures for missing attributes.

Analyzing the classifiers separately:

• Fisher: This classifier showed better results in the dis-

similarity space. The significant difference between the

obtained results in both spaces is possibly related to

the fact that a linear classifier in the dissimilarity space

corresponds to a non-linear classifier in the feature space.

When the missing attribute is the least relevant one, it is

worth to apply the compensation of factor α. However,

when this is the most relevant one, the effect of compen-

sation is not significant; this may be due to the fact that

the optimization procedure for α is unsupervised.

• 1NN: When the missing attribute is the least relevant

one, the nearest neighbor classifier works better with

the Projection technique in the feature space than with

the other methods. So it seems, for this classifier is

probably better to ignore the attribute than take it into

account, to impute it in the feature space or classify

it in the dissimilarity space. This is possibly related to

overtraining. In case the most relevant attribute is missing,

as expected, none of the methods used for handling

missing attributes improve the result obtained with the

complete set in the feature space. In general, the classifier

showed better results in the feature space than in the

dissimilarity space.

• NBC: As with 1NN rule, this classifier also works better

in the feature space. When the missing attribute is the

least relevant one, it is better to apply the Projection

procedure in the feature space than other procedures

for missing attributes. For the most relevant attribute,

it is better to impute it using SVR than to discard it

with the Projection technique. However, the missing data

classification using NBC is not better than for complete

objects.

We expected that results obtained by using the correction

factor α would outperform the results when it is not used, as

occurred with the 1NN classifier, since it is applied in order

to compensate the lack of the attribute. However, for Fisher

classifier this correction is useful when the missing attribute

is the least relevant one, and for NBC when it is the most

relevant one. To estimate whether the chosen α value was

the most suitable one for our approach, we varied its value

in the range [0.5, 3] and we observed the error behaviour.

Figure 1 shows the classification error in varying α for the

intubation dataset, for missing the least (left) and most (right)

relevant attributes. When α is slightly over 1, the error is

minimum. The straight line indicates α calculated for the

Fisher classifier in the experiments using (2). For this dataset,

the Fisher classifier obtained the smallest error when the

missing attribute was the least relevant one. However, when it

was the most relevant one, the use of α was more favorable

for NBC. In most datasets, we obtained suitable α values. In

order to see the improvement by applying the correction for

the Fisher classifier, we plotted the relation between the error

using the correction (y-axes) and the error without using it

(x-axes). Figure 2 shows this relation for the twelve datasets,

for the least (left) and most (right) relevant attributes. Points

under the line indicate that the correction improves the

classification error. In most datasets, the correction improves

the classification when the missing attribute is the least

relevant. Whereas, when it is the most relevant, it is better

to classify objects without the correction. This may happen

because important information on class differences is not

taken into account by optimizing the correction.
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TABLE II
TABLE OF MEAN RANKS OVER ALL CLASSIFIERS, WHEN THE MISSING ATTRIBUTE IS THE LEAST RELEVANT

Complete Complete Using original classifier Applying correction Projection Imputation SVR

(DS) (FS) (DS) and α
j (DS) (FS) (FS)

Fisher 5.333 12.833 7.125 5.875 10.750 11.333
1NN 9.458 7.417 11.083 9.250 7.292 8.250
NBC 13.917 7.500 13.917 14.000 7.750 7.917

TABLE III
TABLE OF MEAN RANKS OVER ALL CLASSIFIERS, WHEN THE MISSING ATTRIBUTE IS THE MOST RELEVANT

Complete Complete Using original classifier Applying correction Projection Imputation SVR

(DS) (FS) (DS) and α
j (DS) (FS) (FS)

Fisher 4.833 10.833 6.792 7.625 12.833 12.750
1NN 8.042 6.208 10.583 9.750 8.000 8.000
NBC 12.917 7.000 14.000 13.750 8.917 8.167
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Fig. 1. Classification error obtained with the application of the factor α, for the intubation dataset, when the missing attribute is the least (left) and most
(right) relevant.
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Fig. 2. Effect on the classification error by applying correction to incomplete objects in the dissimilarity space for the twelve datasets, when the missing
attribute is the least (left) and most (right) relevant.

IV. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we introduced two simple strategies using the

dissimilarity representation for the classification of incomplete

objects. Missing attributes considered in the experiments were

the least and most relevant ones using the twelve real datasets.

Results obtained with both approaches are promising since,

unlike the methods of handling and classifying incomplete data

in feature spaces, they have the following advantages:

• Classifiers hardly need to be updated, since the original

trained classifiers in the dissimilarity space can be used

to classify any incomplete object regardless of which

attribute is missing.

• Imputation techniques are not needed.

• As additional computations are not required, processing

time is less.

Besides, for the twelve datasets the proposed approaches

show, in general, better results than those of the Projection

technique and the Imputation method using SVR. From the

three classifiers studied in the experiments, Fisher classi-

fier shows better performance for the proposed techniques,

whereas 1NN and NBC classifiers showed better results in the

feature space. In spite of this, the proposed approaches using
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the Fisher classifier outperform other classifiers in the feature

space. Moreover, the results obtained with both approaches

for incomplete objects are better than the results for complete

objects in the feature space.

Our results are based on just a single missing attribute. In

case more attributes are missing, the obtained dissimilarities

will be more severely affected. It has to be studied to what

extend a correction can still be used and when a recomputation

of the classifier has to be preferred.

ACKNOWLEDGEMENT

This work was supported in part by the Spanish Min-

istry of Education and Science under grants TIN2009-14205,

CSD2007–00018 (Consolider–Ingenio 2010), and by the FET

programme within the EU FP7 under the project ”Similarity-

based Pattern Analysis and Recognition - SIMBAD” (contract

213250). The work was undertaken while the first author

was a guest researcher in ICT Group at Delft University of

Technology, The Netherlands, (grant BES-2007-16184).

REFERENCES

[1] A. Asuncion and D. J. Newman, UCI Machine Learning Repository,
School of Information and Computer Science, University of California,
Irvine, CA, 2007. http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[2] A. Farhangfara, L. Kurganb and J. Dy, Impact of imputation of missing
values on classification error for discrete data. Pattern Recognition, vol.
41, 2008, 3692 - 3705.

[3] B. D. Ripley, Pattern Recognition and Neural Networks, Cambridge
University Press, 1996.

[4] Bruzzone, L., Roli, R., Serpico, S.B.: An extension of the Jeffreys–
Matusita distance to multiclass cases for feature selection. IEEE Trans.

on Geoscience and Remote Sensing, vol. 33(6), 1995, 1318-1321.
[5] E. Pekalska and R.P.W. Duin, Dissimilarity-based classification for vecto-

rial representations, in: Y.Y. Tang, S.P. Wang, G. Lorette, D.S. Yeung, H.
Yan (eds.), Proc. of the 18th Int. Conf. on Pattern Recognition (ICPR2006,
Hong Kong, China, August 2006), vol. 3, IEEE Computer Society Press,
Los Alamitos, 2006, 137-140.

[6] E. Pekalska and R.P.W. Duin, Dissimilarity representations allow for
building good classifiers, Pattern Recognition Letters, vol. 23, no. 8, 2002,
943-956.

[7] E. Pekalska and R.P.W. Duin, The Dissimilarity Representation for Pattern
Recognition. Foundations and Applications, World Scientific, Singapore,
2005.

[8] F. Honghai, C. Guoshun, Y. Cheng, Y. Bingru and C. Yumei, A
SVM Regression Based Approach to Filling in Missing Values, LNCS

- Knowledge-Based Intelligent Information and Engineering Systems,
Springer Berlin - Heidelberg, vol. 3683, 2005, 581-587.

[9] M. Friedman, The Use of Ranks to Avoid the Assumption of Normality
Implicit in the Analysis of Variance, Journal of the American Statistical
Association, vol. 32(200), 1937, 675-701.

[10] N. Cristianini and J. Shawe-Taylor, Support Vector Machines and other
kernel-based learning methods. Cambridge University Press, UK, 2000.

[11] R.J.A. Little, D.B. Rubin, Statistical Analysis with Missing Data. Wiley,
New York, 1987.

[12] S. Zhang, Parimputation: From imputation and null-imputation to par-
tially imputation. IEEE Intelligent Informatics Bulletin, vol. 9(1), 2008,
32-38.

[13] T. Delavallade and T.H. Dang, Using Entropy to Impute Missing Data
in a Classification Task. In: IEEE International Conference on Fuzzy

Systems, London, 2007, 1-6.
[14] V.N. Vapnik, The Nature of Statistical Learning Theory. NY, Springer-

Verlag, 1995.
[15] W. Xian, L. Ao, J. Zhaohui, and F. Huanqing, Missing value estimation

for DNA microarray gene expression data by Support Vector Regression
imputation and orthogonal coding scheme. BMC Bioinformatics, vol. 7(1),
2006.

[16] Y. Zhang, Y. Liu, Data Imputation Using Least Squares Support Vector
Machines in Urban Arterial Streets, IEEE Signal Processing Letters, vol.
16 (5), 2009, 414-417.

298


