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Summary. The complexity of a pattern recognition problem is determined by its representa-
tion. It is argued and illustrated by examples that the sampling density of a given dataset and
the resulting complexity of a learning problem are inherently connected. A number of crite-
ria are constructed to judge this complexity for the chosen dissimilarity representation. Some
nonlinear transformations of the original representation are also investigated to illustrate that
such changes may affect the resulting complexity. If the initial sampling density is originally
insufficient, this may result in a dataset of a lower complexity and with a satisfactory sam-
pling. On the other hand, if the number of samples is originally abundant, the representation
may become more complex.

1 Introduction

In order to solve a particular problem one will be interested in its complexity to
find a short path to the solution. The analyst will face an easy and straightforward
task if the solution follows directly from the way the problem is stated. The problem
will be judged as complex if one needs to use a large set of tools and has to select
the best procedure by a trial and error approach or if one has to integrate several
partial solutions. A possible way to proceed is to simplify the initial problem, e.g. by
removing its most weakly determined aspects. In this paper, we will focus on these
two issues: judging the complexity of a problem from the way it is presented and
discussing some ways to simplify it if the complexity is judged as too large.

The complexity of pattern recognition problems has recently raised some interest
[16, 17]. It is hoped that its study may contribute to the selection of appropriate
methods to solve a given problem. As the concept of problem complexity is still
ill-defined, we will start to clarify our approach, building on some earlier work [10].

Pattern recognition problems may have some intrinsic overlap. This does not con-
tribute to the problem complexity as an existing intrinsic overlap cannot be removed
by any means. The complexity of the problem lies in difficulties one encounters in
the above sketched sense, while approaching a classification performance related to
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the intrinsic class overlap. Since problems are numerically encoded by datasets rep-
resenting the classes of objects for which either pattern classes have to be learnt or
classifiers have to be determined, the complexity of the recognition problem is the
complexity of the representation as one observes through some dataset. Such repre-
sentations heavily influence the complexity of the learning problem.

An important aspect of the representation is the nature of numerical encoding
used for the characterization of objects, as e.g. features or proximities between pairs
of objects, or proximities of objects to class models. Even if objects are first repre-
sented in a structural form such as relational graphs or strings, we will assume that
a numerical representation (e.g. by dissimilarities) is derived from such an interme-
diate description. In addition, the number of objects in the dataset, i.e. the sample
size, and the way the objects are sampled from the problem (at random or by some
systematic procedure) will influence the complexity. As the exploration or classifi-
cation problems have to be solved using a dataset based on some representation, the
complexity of the problem is reflected by the dataset and the representation.

In this paper, we will focus on the influence of sample size on the complexity of
datasets used for learning pattern classes. These classes are characterized by dissimi-
larity representations [22, 23], which are primarily identified by sample sizes and not
yet by the dimensionality of some space as feature vector representations are. Since
the given problem, the chosen representation and the derived dataset are essentially
connected, we will use the word ’complexity’ interchangeably with respect to these
three concepts.

To analyze complexity in learning, one needs to understand better what com-
plexity is. In general, complexity is defined as ‘the quality of being intricate and
compounded’ [34]. Loosely speaking, this means that an entity, a problem, a task or
a system is complex if it consists of a number of elements (components) related such
that it is hard to separate them or to follow their interrelations. Intuitively, an entity is
more complex if more components and more interdependencies can be distinguished.
So, complexity can be characterized by the levels and the kinds of distinction and de-
pendency. The former is related to the variability, i.e. the number of elements, their
size and shape, while the latter refers to the dependency between the components.
It will be a key issue of this chapter to make clear that the set of examples used to
solve the pattern recognition problem should be sufficiently large in order to meet
the complexity of the representation.

Reductionism treats an entity by the sum of its components or a collection of
parts. Holism, on the other hand, treats an entity as a whole, hence it does not ac-
count for distinguishable parts. The complexity can be seen as an interplay between
reductionism and holism: it needs to see distinct elements, but also their interrela-
tions, in order to realize that they cannot be separated without losing a part of their
meaning; see also the development of the science of complexity as sketched by Wal-
drop [31]. In fact, reductionism and holism can be seen on different, organizational
levels. For instance, to understand the complexity of an ant colony, see Hofstadter’s
chapter on ’Ant Fugue’ [18], one needs to observe the activities of individual ants as
well as the colony as a whole. On the level of individuals, they may seem to move
in random ways, yet on the level of specialized casts and the colony, clear patterns



can be distinguished. These relate to a sequential (ants following other ants), parallel
(groups of ants with a task) and simultaneous or emergent (the global movement)
behavior of the colony. Therefore, complexity might be described by hierarchical
systems, where the lowest, indivisible parts serve for building higher level structures
with additional dependencies and abstraction (symbolism or meaning).

Complexity can also be placed between order and disorder (chaos). If all ants
follow sequentially one another, then although the ant colony is composed of many
individuals, its complexity is low since the pattern present there is simple and reg-
ular. In this sense, the colony possesses redundant information. A single ant and a
direction of move will completely describe the entire colony. On the other hand, if
individual ants move in different directions, but emerge into a number of groups
with different tasks and following specified paths, the complexity of the ant colony
becomes larger. Finally, if all ants move independently in random ways without any
purpose and grouping behavior, no clear patterns can be identified. As a result, there
is no complexity as it is just chaos. Therefore, complexity may be characterized by
the surprise or unexpectedness on a low level that can be understood as following the
structure observed from a higher point of view. In brief, following Waldrop’s point
of view [31], complexity arises at the edge of structure and chaos as it is pictorially
illustrated in Fig. 1.
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Fig. 1. Complexity vs structure.

In pattern recognition one distin-
guishes the task of finding a classifier
between some real world classes of ob-
jects or phenomena. This task is defined
on a high level. The classes may have
some hidden structure that is partially
reflected in the initial representation by
which the problem is presented. For in-
stance, this can be by features, dissimi-
larities, graphs or other relations. Another part of the structure is implicitly available
in the set of examples from which the pattern classifier has to be learned. The whole-
ness of the recognition problem is thereby available to us in its reduction to a set of
examples by a chosen representation: the dataset. The path from a pattern recognition
problem to a dataset determines the complexity we encounter if we try to solve the
problem based on the given dataset. The complexity of a pattern recognition problem
(its intrinsic complexity) is simply not defined before a representation is chosen and
a set of examples is collected. In the end, the dataset depicts our problem.

The following example may illustrate this point. Imagine an automatic sorting
of apples and pears on a moving conveyor. The complexity of this problem depends
on a selection of a representative sample of apples and pears to learn from, initial
measurements done by some sensors or other devices (images, spectral images or
simple characteristics such as weight, perimeter or color) and the derived represen-
tation. In a chosen representation, the problem is complex if many examples are
necessary to capture the variability and organization within the classes as well as the
inter-relations between the classes, leading to complicated decision functions. If one
wishes to discriminate between apples and pears based on their weights only, such a



problem will likely be simple. The reason is that a few suitably chosen examples will
determine reliable thresholds on which such a decision relies, independently whether
this leads to frequent errors or not. On the other hand, if various Fourier coefficient
and shape descriptors are computed on the images of apples and pears and treated as
features, the resulting problem may become complex. Changes in light illumination
or tilts of a camera may increase the variability of the (images of) apples and pears as
perceived in their vector representations. This would require a large sample for a de-
scription. So, it is the representation that determines the complexity of the problem.
We encounter this complexity through the data that are available.

Note, that the use of the dataset as such is insufficient for solving the problem. It
is just chaos if no additional background knowledge, such as the context, the way the
examples are collected or the way the numbers are measured, is given. This is very
clearly shown by the ’no free lunch theorem’ [33] that states that without additional
knowledge, no learning algorithm is expected to be better than another. In particular,
no learning algorithm outperforms a random assignment.

A very useful and often implicitly assumed type of knowledge used for a con-
struction of the given dataset is the ’compactness hypothesis’ [1, 8]. It states that
similar real world objects have similar representations. In practice, this hypothesis
relies on some continuous mapping from an object to its (numerical) representation,
since it is expected that a small change in an object will result in a small change in
its representation. Still, the ’path’ from an object to its representation may be very
nonlinear (and thereby attributing to the complexity of the problem), resulting in the
violation of the reverse compactness hypothesis. This means that similar representa-
tions (e.g. feature vectors lying close in a feature vector space) may not necessarily
refer to similar objects. This causes a class overlap (identical representations belong
to essentially different objects as they differ in class membership) or complicates
decision boundaries.

In a given dataset of a limited cardinality the compactness might not be entirely
realized if insufficient real world objects are collected. Hence, it cannot be guar-
anteed that each object has at least one close companion. The complexity of the
problem then demands a higher sampling density of (training) examples to make its
characteristics apparent. As a result, the assumption needed for building classifiers
on the dataset is invalid and it is impossible to solve the pattern recognition prob-
lem with a sufficient accuracy. The dataset resembles chaos (as patterns cannot be
distinguished) and the structure of the problem cannot be determined.

The above discussion makes clear that complexity and sample size are inter-
related. Complex problems (due to a complicated way they are represented by the
datasets) need more samples. A question that arises now is: if the dataset is insuffi-
ciently large, is this dataset thereby less or more complex? We will return to this in
the discussion section. In brief, the following issues are more explicitly studied by
some examples:

• The influence of representation on the problem complexity.
• The relation between the problem complexity and the necessary sample size.
• The consequences of using too small sample sizes for solving complex problems.



Our examples are based on a number of dissimilarity representations, which allow
one to apply various modifications and transformations in a simple way. In section 2,
the datasets and procedures are summarized. In section 3, various criteria are pro-
posed and investigated to judge the sampling of single classes. Section 4 investigates
and discusses the complexity issues in relation to classification. A final discussion is
presented in section 5.

2 Datasets

To limit the influence of dimensionality issues on the relations between the sample
size and the complexity, we will focus on dissimilarity representations [22, 23, 26].
These are representations in which a collection of objects is encoded by their dis-
similarities to a set of chosen examples, so-called representation set. The reason we
choose this name is twofold. First, the representation set is a set of examples which
are not necessarily prototypical for the classes according to the usual understand-
ing (on the contrary, some of them might be outliers). Secondly, this set serves for
a construction of a representation space, in which both exploration and learning are
performed. The representation set may be the training set itself, its randomly or selec-
tively chosen subset or some other set. The representation set R = {p1, p2, . . . , pn}
of n examples, the (training) set T = {x1, x2, . . . , xN} of N objects and the dissim-
ilarity measure d constitute together the representation D(T,R). This is an N × n
dissimilarity matrix, in which every entry d(xj , pi) describes the difference between
the object tj and the representation object pi.

Problems with various metric and non-metric dissimilarity measures are chosen
for the study. Six datasets are used in our experiments and are briefly summarized
in Table 1. In addition to the given dissimilarity measures as listed in this table, two
monotonic power transformations will be also investigated. Concerning the original
representation D=(dij), the transformed representations are denoted as D∗2 =(d2

ij)
and D∗0.5 =(d0.5

ij ), by taking the element-wise square or square root of the dissim-
ilarities dij , respectively. Note that the metric properties of the measure d are pre-
served by a square root transformation, but not necessarily by a quadratic transforma-
tion [22]. By such modifications, it is expected that either large dissimilarities and,
thereby, more global aspects of the dataset are emphasized in D∗2 or large dissimi-
larities are suppressed in D∗0.5, by which local aspects are strengthened. Remember
that non-decreasing transformations like these do not affect the order of the given
dissimilarities. Thereby, the nearest neighbor relations are preserved.

Digits-38. The data describe a set of scanned handwritten digits of the NIST
dataset [32], originally given as 128 × 128 binary images. Just two classes of digits
’3’ and ’8’ are considered here. Each class consists of 1000 examples. The images
are first smoothed by a Gaussian kernel with σ = 8 pixels and then the Euclidean
distances between such blurred images are computed (summing up the squares of
pixel-to-pixel gray value differences followed by the square root). The smoothing is
done to make this distance representation more robust against tilting or shifting.



Table 1. Datasets used in the experiments.

Data Dissimilarity Property # classes # objects per class
Digits-38 Euclidean Euclidean 2 1000
Digits-all Template-match non-metric 10 200
Heart Gower’s Euclidean 2 139/164
Polygon Mod. Hausdorff non-metric 2 2000
ProDom Structural non-metric 4 878/404/271/1051
Tumor-mucosa l0.8-distance non-metric 2 132/856

Digits-all. The data describe a set of scanned handwritten digits of the NIST
dataset [32], originally given as 128 × 128 binary images. The similarity measure,
based on deformable template matching, as defined by Zongker and Jain [20], is
used. Let S = (sij) denote the similarities. Since the similarity is asymmetric, the
off-diagonal symmetric dissimilarities are computed as dij =(sii+sjj−sij−sji)1/2

for i 6= j. D is significantly non-metric [24].

Heart. This dataset comes from the UCI Machine Learning Repository [2]. The
goal is to detect the presence of heart disease in patients. There are 303 examples,
where 139 correspond to diseased patients. Various measurements are performed,
however, only 13 attributes are used by other researchers for the analysis, as pro-
vided in [2]. These attributes are: age, sex (1/0), chest pain type (1 - 4), resting
blood pressure, serum cholesterol, fasting blood sugar > 120 mg/dl (1/0), resting
electrocardiograph results, maximum heart rate achieved, exercise induced angina
(1/0), the slope of the peak exercise ST segment, ST depression induced by exercise
relative to rest (1 - 3), number of major vessels colored by fluoroscopy (0 - 3) and
heart condition (normal, fixed defect and reversible defect). Hence, the data consist
of mixed types: continuous, dichotomous and categorical variables. There are also
several missing values.

Gower’s dissimilarity [14] is used for the representation. Assume m features and
let xik be the k-th feature value for the i-th object. A similarity measure is defined as

sij =
∑m

k=1 wk δijk sijk∑m
k=1 wk δijk

, (1)

where sijk is the similarity between the i-th and j-th objects based on the k-th feature
fk only, and δijk =1, if the objects can legitimately be compared, and zero otherwise,
as e.g. in the case of missing values. For dichotomous variables, δijk = 0 if xik =
xjk =0 and δijk =1, otherwise. The strength of feature contributions is determined
by the weights wk, which are here omitted as all wk = 1. The similarity sijk, i, j =
1, . . . , n and k = 1, . . . ,m becomes then sijk = 1 − |xik−xjk|

rk
, if fk is quantitative,

sijk = I ((xik = xjk) = 1), if fk is dichotomous, sijk = I (xik = xjk), if fk is
categorical and sijk =1−g( |xik−xjk|

rk
), where rk is the range of fk and g is a chosen

monotonic transformation, if fk is ordinal. The Gower’s dissimilarity between the
i-th and j-th objects is defined as dij =(1− sij)1/2.



Polygon. The data consist of two classes of randomly generated polygons, con-
vex quadrilaterals and irregular heptagons [22, 24]. Each class consists of 2000
examples. First, the polygons are scaled such that their total contour lengths are
equal. Next, the modified Hausdorff distances [7] are computed between their
corners. Let A and B be two polygons. The modified Hausdorff distance is
defined as dMH(A,B) = max {d.

avr(A,B), d.
avr(B, A)}, where d.

avr(A,B) =
1
|A|

∑
a∈A minb∈B d(a, b), evaluated the polygon corners a and b. This measure is

non-metric [7, 22].

ProDom. ProDom is a comprehensive set of protein domain families [5]. A sub-
set of 2604 protein domain sequences from the ProDom set [5] was selected by Roth
[28]. These examples are chosen based on a high similarity to at least one sequence
contained in the first four folds of the SCOP database. The pairwise structural align-
ments are computed by Roth using the FASTA software [12]. Each SCOP sequence
belongs to a group as labeled by the experts [21]. We use the same set in our investi-
gations. Originally, a structural symmetric similarity S =(sij) is derived first. Then,
the non-metric dissimilarities are obtained by dij =(sii + sjj − 2sij)1/2 for i 6= j.

Tumor-mucosa. The data consist of the autofluorescence spectra acquired from
healthy and diseased mucosa in the oral cavity; see [29]. The spectra were collected
from 97 volunteers with no clinically observable lesions of the oral mucosa and 137
patients having lesions in oral cavity. The measurements were taken using the excita-
tion wavelength of 365 nm. After preprocessing [30], each spectrum consists of 199
bins. In total, 856 spectra representing healthy tissue and 132 spectra representing
diseased tissue were obtained. The spectra are normalized to a unit area. Here, we
choose the non-metric l0.8-distances (lp-distance is dp(x, y)= [

∑
k(xk − yk)p]1/p)

between the first order Gaussian-smoothed (σ = 3 samples) derivatives of the spec-
tra3. The zero-crossings of the derivatives indicate the peaks and valleys of the spec-
tra, so they are informative. Moreover, the distances between smoothed derivatives
contain some information of the order of bins. In this way, the property of a continu-
ity of a spectrum is somewhat taken into account. This dataset suffers from outliers,
which are preserved here as we intend to illustrate their influence on the complexity.

3 Criteria for sampling density

Consider an n×n dissimilarity matrix D(R,R), where R = {p1, p2, . . . , pn} is a
representation set. In general, R may be a subset of a larger learning set T , but
we assume here that R = T . Every object pi is then represented by a vector of
dissimilarities D(pi, R), i=1, 2, . . . , n, to the objects from R. The research question
to be addressed is whether n, the cardinality of R, is sufficiently large for capturing

3lp-distances, p≤ 1, may be useful for problems characterized by the presence of a scat-
tered and very heterogeneous class, such as the class of diseased people here. The effect of
large absolute differences is diminished by p < 1. Indeed, this measure was found advanta-
geous in our earlier experiments [22].



the variability in the data or, in other words, whether it is to be expected that only little
new information can be gained by increasing the number of representation objects.
This can be further rephrased as judging whether new objects can be expressed in
terms of the ones already present in R or not. Given a dissimilarity representations,
some criteria are proposed to judge its sampling sufficiency and their usefulness is
experimentally evaluated on the datasets introduced in section 2. We focus here on a
set of unlabeled objects forming a single class.

Some possible statistics that can be used are based on the compactness hypothesis
[1, 8, 9], which was introduced in section 1. As it states that similar objects are also
similar (close) in their representation, it constrains the dissimilarity measure d in the
following way. d has to be such that d(x, y) is small if the objects x and y are very
similar, i.e. it should be much smaller for similar objects than for objects that are
very different.

Assume that the dissimilarity measure d is definite, i.e. d(x, y)=0 iff the objects
x and y are identical. If the objects are identical, they belong to the same class. This
reasoning can be extended by assuming that all objects z for which d(x, z)<ε, and
the positive ε is sufficiently small, are so similar to x that they belong to the same
class as x. Consequently, the dissimilarities of x and z to the representation objects
should be close (or positively correlated, in fact). This means that d(x, pi) ≈ d(z, pi),
implying that the representations d(x,R) and d(z, R) are also close. We conclude
that for dissimilarity representations that satisfy the above continuity, the reverse
compactness hypothesis holds, as objects that are similar in their representations are
also similar in reality. Consequently, they belong to the same class.

A representation set R can be judged as sufficiently large if an arbitrary new
object of the same class is not significantly different from all other objects of that
class in the dataset. This can be expected if R already contains many objects that are
very similar, i.e. if they have a small dissimilarity to at least one other object. All
the criteria studied below are based, in one way or another, on this observation. In
pathological cases, the dataset may contain just an optimal set of objects, but if there
are no additional objects to validate this, it has to be considered as being too small.

We will illustrate the performance of our criteria on an artificial example and
present also the results for some real datasets. The artificial example is chosen to
be the l0.8-distance representation between n normally distributed points in a k-
dimensional vector space Rk. Both n and k vary between 5 and 500. If n < k,
then the generated vectors lie in an (n−1)- dimensional subspace, resulting in an
undersampled and difficult problem. If n À k, then the dataset may be judged as
sufficiently sampled. Large values of k lead to difficult (complex) problems as they
demand a large data cardinality n. The results are averaged over 20 experiments,
each time based on a new, randomly generated dataset. The criteria are presented
and discussed below.

3.1 Specification of the criteria

Sampling criteria for dissimilarity representations are directly or indirectly addressed
in three different ways: by the dissimilarity values as given, in dissimilarity vector



spaces, in which every dimension is defined by a dissimilarity to a representation
object and in embedded vector spaces, which are determined such that the original
dissimilarities are preserved; see [22, 23, 25] for more details. Each criterion is intro-
duced and illustrated by a separate figure, e.g. Fig. 2 refers to the first criterion. The
results for artificially generated Gaussian datasets with the dimensionality k varying
from 5 to 500 represented by a Euclidean distance matrix D are always shown on
the top. Then, the results of other statistics are presented as applied to the six real
datasets.

Skewness. This is a statistics which evaluates the dissimilarity values directly.
A new object added to a set of objects that is still insufficiently well sampled will
generate many large dissimilarities and just a few small ones. As a result, for unsatis-
factory sampled data, the distribution of dissimilarities will peak for small values and
will show a long tail in the direction of large dissimilarities. After the set becomes
’saturated’, however, adding new objects will cause the appearance of more and more
small dissimilarities. Consequently, the skewness will grow with the increase of |R|.
The value to which it grows depends on the problem.

Let the variable d denote now the dissimilarity value between two arbitrary ob-
jects. In practice the off-diagonal values dij from the dissimilarity matrix D = (dij)
are used for his purpose. As a criterion, the skewness of the distribution of the dis-
similarities d is considered as

Jsk =E

[
d− E[d]√

E[d− E[d]]2

]3

, (2)

where E[·] denotes the expectation. In Fig. 2, top, the skewness of the Gaussian sets
are shown. The cardinalities of small representation sets appear to be insufficient
to represent the problem well, as it can be concluded from the noisy behavior of
the graphs in that area. For large representation sets, the curves corresponding to
the Gaussian samples of the chosen dimensionality ’asymptotically’ grow to some
values of Jsk. The final values may be reached earlier for simpler problems in low
dimensions, like k=5 or 10. In general, the skewness curves for various k correspond
to the expected pattern that the simplest problems (in low-dimensional spaces) reach
the highest skewness values, while the most difficult problems are characterized by
the smallest skewness values.

Mean rank. An element dij represents the dissimilarity between the objects pi

and pj . The minimum of dij over all indices j points to the nearest neighbor of
pi, say, pz if z = argminj 6=i(dij). So, in the representation set R, pz is judged as
the most similar to pi. We now propose that a representation D(pi, R) describes
the object pi well if the representation of pz , i.e. D(pz, R) is close to D(pi, R) in
the dissimilarity space D(·, R). This can be measured by ordering the neighbors
of the vectors D(pi, R) and determining the rank number rNN

i of D(pz, R) in the
list of neighbors of D(pi, R). By this we compare the nearest neighbor as found in
the original dissimilarities with the neighbors in the dissimilarity space. For a well-
described representation, the mean relative rank



Jmr =
1
n

n∑

i=1

rNN
i − 1 (3)

is expected to be close to 0. In Fig. 3, top, the results for the Gaussian example are
shown. It can be concluded that the sizes of the representation set R larger than 100
are sufficient for Gaussian samples in 5 or in 10 dimensions.

PCA (Principal Component Analysis) dimensionality. A sufficiently large rep-
resentation set R tends to contain some objects that are very similar to each other.
This means that their representations, the vectors of dissimilarities to R, are very sim-
ilar. This suggests that the rank of D should be smaller than |R|, i.e. rank(D)<n. In
practice, this will not be true if the objects are not alike. A more robust criterion may,
therefore, be based on the principal component analysis applied to the dissimilarity
matrix D. Basically, the set is sufficiently sampled if nα, the number of eigenvec-
tors of D for which the sum of the corresponding eigenvalues equals a fixed fraction
α, such as 0.95 of the total sum of eigenvalues (hence α is the explained fraction
of the variance) is small in comparison to n. So, for well represented sets, the ratio
of nα/n is expected to be smaller than some small constant (the faster the criterion
curve drops with a growing R, the smaller intrinsic dimensionality of the dissimilar-
ity space representation). Our criterion is then defined as:

Jpca,α =
nα

n
, (4)

with nα such that α=
∑nα

i=1 λi/
∑n

i=1 λi. There is usually no integer nα for which
the above holds exactly, so it would be found by interpolation. Note that this criterion
relies on an intrinsic dimensionality4 in a dissimilarity space D(·, R).

In the experiments, in Fig. 4, top, the value of Jpca,0.95 is shown for the artificial
Gaussian example as a function of |R|. The Gaussian data are studied as generated in
spaces of a growing dimensionality k. It can be concluded that the datasets consisting
of more than 100 objects may be sufficiently well sampled for small dimensionalities
such as k =5 or k =10 as just a small fraction of the eigenvectors is needed (about
10% or less). On the other hand, the considered number of objects is too small for
the Gaussian sets of a larger dimensionality. These generate problems of a too high
complexity for the given dataset size.

4If a certain phenomenon can be described (or if it is generated) by m independent vari-
ables, then its intrinsic dimensionality is m. In practice, however, due to noise and imprecision
in measurements or some other uncontrolled factors, such a phenomenon may seem to be gen-
erated by more variables. If all these factors are not ’too dominant’ such that they completely
disturb the original phenomenon, one should be able to rediscover the proper number of sig-
nificant variables. Hence, the intrinsic dimensionality is the minimum number of variables that
explains the phenomenon in a satisfactory way. In pattern recognition, one usually discusses
the intrinsic dimensionality with respect to a collection of data vectors in the feature space.
Then, for classification, the intrinsic dimensionality can be defined as the minimum number
of features needed to obtain a similar classification performance as by using all features. In
a geometrical sense, the intrinsic dimensionality can be defined as the dimension of a man-
ifold that approximately (due to noise) embeds the data. In practice, the estimated intrinsic
dimensionality of a sample depends on the chosen criterion. Thereby, it is relative for the task.



Correlation. Correlations between objects in a dissimilarity space are also stud-
ied. Similar objects show similar dissimilarities to other objects and are, thereby, pos-
itively correlated. As a consequence, the ratio of the average of positive correlations
ρ+(D(pi, R), D(pj , R)) to the average of absolute values of negative correlations
ρ−(D(pi, R), D(pj , R)), given as

Jρ =
1

n2−n

∑n
i,j 6=i ρ+(D(pi, R), D(pj , R))

1 + 1
n2−n

∑n
i,j 6=i |ρ−(D(pi, R), D(pj , R))| (5)

will increase for large sample sizes. The constant added in the denominator prevents
Jρ from becoming very large if only small negative correlations appear. For a well-
sampled representation set, Jρ will be large and it will increase only slightly when
new objects are added (new objects should not significantly influence the averages of
either positive or negative correlations). Fig. 5, top, shows that this criterion works
well for the artificial Gaussian example. For the lower dimensional datasets (appar-
ently less complex) Jρ reaches higher values and exhibits a flattening behavior for
sets consisting of at least 100 objects.

Intrinsic embedding dimensionality. For the study of dissimilarity representa-
tions, one may perform dimensionality reduction of a dissimilarity space (as the PCA
criterion, described above, does) or choose an embedding method. Consequently, the
judgment whether R is sufficiently sampled relies on the estimate of the intrinsic
dimensionality of an underlying vector space determined such that the original dis-
similarities are preserved. This can be achieved by a linear embedding of the original
objects (provided that D is symmetric) into a (pseudo-)Euclidean space. A pseudo-
Euclidean space5 is needed if D does not exhibit the Euclidean behavior, as e.g. the
l1-distance or max-norm distance measures do [22, 23]. In this way, a vector space
is found in spite of the fact that one starts from a dissimilarity matrix D. The repre-
sentation X of m≤n dimensions is determined such that it is centered at the origin
and the derived ’features’ are uncorrelated [13, 26].

The embedding relies on linear operations. The inner product (Gram) matrix
G of the underlying configuration X is expressed by the square dissimilarities
D∗2 = (d2

ij) as G = − 1
2JD∗2J , where J = I − 1

n11T is the centering ma-
trix [13, 22, 26]. X is determined by the eigendecomposition of G = QΛQT =
Q|Λ|1/2diag(Jp′q′ ; 0) |Λ|1/2QT , where Jp′q′ = (Ip′×p′ ;−Iq′×q′) and I is the iden-
tity matrix, |Λ| is a diagonal matrix of first decreasing p′ positive eigenvalues, then
decreasing magnitudes of q′ negative eigenvalues, followed by zeros. Q is a matrix
of the corresponding eigenvectors. The sought configuration is first represented in
Rk, k=p′+q′, as Qk|Λk|1/2. Since only some eigenvalues are large (in magnitude),
the remaining ones can be disregarded as non-informative. This corresponds to the

5A pseudo-Euclidean space E :=R(p,q) is a (p+q)-dimensional non-degenerate indefinite
inner product space such that the inner product 〈·, ·〉E is positive definite (pd) on Rp and
negative definite on Rq . Therefore, 〈x, y〉E =

Pq
i=1 xiyi −

Pp+q
i=p+1 xiyi =xTJpqy, where

Jpq = diag (Ip×p;−Iq×q) and I is the identity matrix. Consequently, the square pseudo-
Euclidean distance is d2

E(x, y)==〈x−y, x−y〉E=d2
Rp(x, y)−d2

Rq (x, y).



determination of intrinsic dimensionality. The final representation X =Qm |Λm|1/2,
m=p+q <k, is defined by the largest p positive and the smallest q negative eigen-
values, since the features are uncorrelated.

This means that the number of dominant eigenvalues (describing the variances)
should reveal the intrinsic dimensionality (small variances are expected to show just
noise). (Note, however, that when all variances are similar, the intrinsic dimension-
ality is approximately n.) Let nemb

α be the number of significant variances for which
the sum of the corresponding magnitudes equals a specified fraction α, such as 0.95,
of the total sum. Since nemb

α determines the intrinsic dimensionality, the following
criterion is proposed

Jemb,α =
nemb

α

n
. (6)

For low intrinsic dimensionalities, smaller representation sets are needed to describe
the data characteristics. Fig. 6, top, presents the behavior of this criterion as a func-
tion of |R| for the Gaussian datasets. The criterion curves clearly reveal different
intrinsic embedding dimensionalities. If R is sufficiently large, then the intrinsic di-
mensionality estimate remains constant. Since the number of objects is growing, the
criterion should then decrease and reach a relatively constant small value in the end
(for very large sets). From the plot it can be concluded that datasets with more than
100 objects are satisfactorily sampled for Gaussian data of an originally low dimen-
sionality such as k≤20. In other cases, the dataset is too complex.

Compactness. As mentioned above, a symmetric distance matrix D can be em-
bedded in a Euclidean or a pseudo-Euclidean space E , depending on the Euclidean
behavior of D. When the representation set is sufficiently large, the intrinsic em-
bedding dimensionality is expected to remain constant during a further enlargement.
Consequently, the mean of the data should remain approximately the same and the
average distance to this mean should decrease (as new objects do not surprise any-
more) or be constant. The larger the average distance, the less compact the class is,
requiring more samples for its description. Therefore, a simple compactness crite-
rion can be investigated. It is estimated in the leave-one-out approach as the average
square distance to the mean vector in the embedded space E :

Jcomp =
1

n2 − n

n∑

j=1

∑

i 6=j

d2
E(x

−j
i , m−j), (7)

where x−j
i is a vector representation of the i-th object in the pseudo-Euclidean space

found by D(R−j , R−j) and R−j is a representation set of all the objects, except the
j-th one. m−j is the mean of such a configuration. This can be computed from the
dissimilarities directly without the necessity of finding the embedded configuration;
see [26]. Fig. 7, top, shows the behavior of this criterion, clearly indicating a high
degree of compactness of the low-dimensional Gaussian data. The case of k=500 is
judged as not having a very compact description.

’Gaussian’ intrinsic dimensionality. If the data points come from a spheri-
cal normal distribution in an m-dimensional Euclidean space, then m can be esti-
mated from the χ2

m distributed variable d2 denoting the pairwise square Euclidean



distances as m = 2 (E[d2])2

E[d4]−(E[d2])2 , where E[·] denotes the expectation; see [22]. If
the data points come from any other normal distribution, still some sort of an in-
trinsic dimensionality estimate can be found by the above formula. The judgement
will be influenced by the largest variances in the data. Basically, the volume of the
hyper-ellipsoidal normally distributed data is captured in the given distances. They
are then treated as if computed from a spherically symmetric Gaussian distribution.
Hence, the derived intrinsic dimensionality will reflect the dimensionality of a space
to which the original data sample is made to fit isotropically (in simple words, one
can imagine the original hyper-ellipsoidal Gaussian sample reshaped in space and
’squeezed’ in the dimensions to make it the largest hyper-spherical Gaussian sample.
The dimensionality of the latter is then estimated). Since the above formula makes
use of the distances only, it can be applied to any dissimilarity measure. The criterion
is then defined as:

JGid =2
(E[d2])2

E[d4]− (E[d2])2
, (8)

where d2 is realized by the off-diagonal square dissimilarity values d2
ij .

Boundary descriptor. A class descriptor (a one-class classifier) in a dissimilar-
ity space was proposed in [27]. It is designed as a hyperplane H : wT D(x,R) = ρ
in a dissimilarity space that bounds the target data from above (it assumed that d
is bounded) and for which some particular distance to the origin is minimized. Non-
negative dissimilarities impose both ρ≥0 and wi≥0. This is achieved by minimizing
ρ/||w||1, which is the max-norm distance of the hyperplane H to the origin in the
dissimilarity space. Therefore, H can be determined by minimizing ρ−||w||1. Nor-
malizing such that ||w||1 =1 (to avoid any arbitrary scaling of w), H is found by the
optimization of ρ only. A (target) class is then characterized by a linear proximity
function on dissimilarities with the weights w and the threshold ρ. It is defined as
I(

∑
wj 6=0 wjD(x, pj) ≤ ρ), where I is the indentificator (characteristic) function

(it takes the value of 1 if the condition is true and zero otherwise), wj are found as
the solution to a soft-margin linear programming formulation (the hard-margin case
is then straightforward) with ν∈ (0, 1] being the upper bound on the target rejection
fraction in training [27]:

Minimize ρ + 1
ν n

∑n
i=1 ξi

s.t. wT D(pi, R) ≤ ρ + ξi,
∑

j wj = 1, wj ≥ 0,

ρ ≥ 0, ξi ≥ 0, i = 1, . . . , n.

(9)

As a result, a sparse solution is obtained. This means that many weights wi become
zero and only some are positive. The objects Rso ⊆ R for which the corresponding
weights are positive are called support objects (SO). Our criterion then becomes the
number of support objects:

Jso = |Rso|. (10)

In the experiments we suffered from numerical problems for large representation set
sizes. For that reason, the solutions were found for all but one of the dimensionalities,
i.e. except for the case |R| = 500.



3.2 Discussion on sampling density experiments

While studying the results presented in Fig. 2 – 8, one should recall that the height
of the curve is a measure of the complexity and that a flat curve may indicate that the
given dataset is sufficiently sampled. For the Skewness, Mean rank and Correlation
statistics, it holds that lower values are related to a higher complexity. For the other
criteria, it is the other way around: lower values are related to a lower complexity. An
exception is the Compactness, as defined here, since its behavior is scale dependent.

For all datasets and all criteria, it can be observed that the complexity of the orig-
inal dataset D (continuous lines) increases by the square root transformation (dashed
lines) and decreases by the quadratic transformation (dotted lines). This implies that
the D∗0.5-datasets tend to be undersampled in most cases. For the original datasets,
this just holds for some of the classes of the Digits-all, the Heart and the ProDom
problems. The diseased class of the Tumor-mucosa problem shows a very irregu-
lar behavior, due to some large outliers. This is in fact useful as a number of very
different outliers is a sign of undersampling. Most D∗2-datasets may be judged as
well sampled. Exceptions are the Heart dataset and, again, the diseased class of the
Tumor-mucosa problem.

It is interesting to observe the differences between various datasets, e.g. that the
curves of the Boundary descriptor sometimes start with a linear increase or that the
Correlation curve is usually an increasing function with some exceptions in the case
of the Polygon data. The high increase of the PCA dimensionality criterion for the
artificial Gaussian dataset (Fig. 4) and for a large dimensionality k can nowhere be
observed, with an exception of the Heart dataset. A global comparison of all figures
shows that the characteristics of high-dimensional Gaussian distributions cannot be
found in real world problems. This may indicate that various methods for data analy-
sis and classification, based on the Gaussian assumption, need to be either improved
before they can be used in practice or avoided.

In general, the flattened behavior of a criterion curve implies a sufficient sam-
pling. All criteria, except for Mean rank, are very sensitive to data modifications,
indicating that quadratic transformations decrease the original dataset complexity,
while square root transformation increase it. Concerning specific approaches, the
following can be summarized.

• Skewness is informative to judge the distribution of dissimilarities. Negative
skewness denotes a tail of small dissimilarities, while positive skewness de-
scribes a tail of large dissimilarities. Large positive values indicate outliers in the
class (the Tumor-mucosa data), while large negative values indicate heterogenous
characteristic of the class (the Heart data) or a class of possible clusters having
various spreads (the ProDom data). Skewness can be noisy for very small sample
sizes.

• Mean rank is a criterion judging the consistency between the nearest neighbors
directly applied to the given dissimilarities and the nearest neighbor in a dissim-
ilarity space. For an increasing number of objects, this should approach zero. As
original nearest neighbor relations do not change after non-decreasing transfor-
mations (although they are affected in a dissimilarity space), this criterion is not



very indicative for such modifications. Except for the artificial Gaussian exam-
ples, the curves exhibit a similar behavior.

• PCA dimensionality describes the fraction of significant eigenvalues in a dissim-
ilarity space of a growing dimensionality. If the dataset is ’saturated’, then the
criterion curve approaches a value close to zero since the intrinsic dimensional-
ity should stay constant. If the criterion does not approach zero, the problem is
characterized by many relatively similar eigenvalues, hence many similar intrin-
sic variables. In such cases, the problem is judged as complex, for instance for
the Heart and the Digits-all problems.

• Correlation criterion indicates the amount of positive correlations versus nega-
tive correlations in a dissimilarity space. Positive values> 0.5 may suggest the
presence of outliers in the data as observed in the case of the ProDom and Tumor-
mucosa problems.

• Intrinsic embedding dimensionality is judged by the fraction of dominant dimen-
sions determined by the number of dominant eigenvalues in a linear embedding.
In contrast to the PCA dimensionality, it is not likely to observe the criterion
curve approaching zero. Large dissimilarities determine the embedded space and
considerably affect the presence of large eigenvalues. Therefore, the criterion
curve may be close to zero if many eigenvalues tend to be so or if there are
some notable outliers (as the diseased class of the Tumor-mucosa problem). In
this case, a flat behavior of the curve may give an evidence of an acceptable sam-
pling. However, the larger the final value of the criterion curve, the more complex
the class description (there is a larger variability in the class).

• Compactness indicates how compact a set of objects is as judged by the distances
to the mean in an embedded space. In this case, the flattened behavior of the curve
is not very indicative as all our problems for small sample sizes would be judged
as well sampled. What is more important, is the value to which the criterion curve
arrives at: the smaller the value the more compact description.

• Similarly to the criterion above, the smaller the final value to which the
’Gaussian’ intrinsic dimensionality criterion curve converges, the less complex
the problem.

• Boundary descriptor indicates the number of boundary objects necessary to char-
acterize the class. A large number of objects with respect to |R| indicates a com-
plex problem, as e.g. the Heart dataset is. The criterion curves may be noisy for
small samples, as observed for the ProDom and Tumor-mucosa cases, possibly
indicating the presence of outliers.

In brief, the most indicative and insightful criteria are: Skewness, PCA dimensional-
ity, Correlation and Boundary description. Intrinsic embedding dimensionality may
be also informative, however, a good understanding of the embedding procedure is
needed to judge it well. The remaining criteria have less impact, but they still bring
some additional information.



4 Classification experiments

4.1 Introduction

Complexity should be studied with respect to a given task such as class descrip-
tion, clustering or classification. Hence, the complexity of the dataset should describe
some of its characteristics or of an assumed model, relative to the chosen represen-
tation. In the previous section, some criteria for the complexity of unlabeled data
(data geometry and class descriptions) were studied. This section is concerned with
supervised learning.

As dataset complexity is a different issue than class overlap, its relation to clas-
sifier performance is not straightforward. We argued in the introduction that more
complex problems may need more complex tools, or more training samples, which
will be our focus here. Therefore, we will study the influence of the dataset com-
plexity on the classifier performance. The original representation will be transformed
by the same power transformations as in section 3. As it has been already observed,
D∗2-representations decrease, while D∗0.5-representations increase the dataset com-
plexity of the individual classes.

As we indicated in the introduction, an intrinsic problem complexity, as such,
does not exist. Its complexity is entirely determined by the representation and ob-
served through the dataset. If the dataset complexity is decreased by some transfor-
mation simplifying the problem, as a result, simpler classifiers may be used. Note that
no monotonic transformation of the data can either reduce or increase the intrinsic
class overlap. Transformations are applied to enable one to train classifiers that reach
a performance, which is closer to this intrinsic overlap. If the problem becomes less
complex smaller training sets will be probably sufficient. If it was originally abun-
dant, the decreased complexity may yield a better classification performance. If the
training set size was initially sufficient, the decreased complexity may decrease the
performance (due to perceived higher class overlap). An increased problem com-
plexity may open a way for constructing more complex classifiers. If the sample size
permits, these will reach an increased performance. If the sample size is insufficient,
such classifiers will be overtrained resulting in a decrease of the performance.

In addition to these effects, there is a direct relation between dataset complex-
ity and a desirable size of the representation set. Remember that this desirable size
is indicated by the stability of the measures or the observed asymptotic behavior of
the criteria identified to be useful in the preceding analysis. More complex problems
need a larger representation set. The other way around also holds: a larger represen-
tation set used for the description may indicate more complex aspects of the problem.

The above effects will be illustrated by a set of classification experiments. As-
sume that a training set of N examples is provided. First, a suitable representation
set R ⊂ T has to determined. We will proceed in two ways, starting from a full
representation D(T, T ). The representation set will chosen either as a condensed set
found by the editing-and-condensing (CNN) procedure [6] or as the set of support
objects determined in the process of constructing a sparse linear programming clas-
sifier (LPC). In the resulting dissimilarity space, a Fisher classifier on D(T,R) is
trained.



4.2 Classifiers

The following classifiers are used in our experiments.

1-Nearest Neighbor rule (1-NN). This classifier operates directly on the dissim-
ilarities computed for a test object. It assigns a test object to the class of the training
object that is the most similar as judged by the smallest dissimilarity. Since no train-
ing is required, the values in D(T, T ) are not used for the construction of this rule.

k-Nearest Neighbor rule (k-NN). Here, the test object is assigned to the most
frequent class in the set of the k-nearest neighbors. The value of k is optimized over
the original representation D(T, T ) using a leave-one-out procedure. In this way, the
training set T is somewhat used in the learning process.

Editing and condensing (CNN). An editing and condensing algorithm is applied
to the entire dissimilarity representation D(T, T ), resulting in a condensed set (CS)
RCS . Editing takes care that the noisy objects are first removed so that the prototypes
can be chosen to guarantee a good performance of the 1-NN rule, which is used
afterwards.

Linear Programming Classifier (LPC). By training a properly formulated lin-
ear classifier f(D(x, T ))=

∑N
j=1 wj d(x, pj) + w0 =wT D(x,R) + w0 in a dissim-

ilarity space D(T, T ), one may select objects from T necessary for the construction
of the classifier. The separating hyperplane is obtained by solving a linear program-
ming problem, where a sparse solution on R is imposed by minimizing the l1-norm
of the weight vector w, ||w||1 =

∑r
j=1 |wj |; see e.g. [4, 11] on the sparseness issues.

As a result, only some weights become non-zero. The corresponding objects define
the representation set.

A flexible formulation of a classification problem is proposed in [15]. The
problem is to minimize ||w||1 − µρ, which means that the margin ρ becomes
a variable of the optimization problem. To formulate such a minimization task
properly, the absolute values |wj | should be eliminated from the objective function.
Therefore, the weights wj are expressed by non-negative variables αj and βj as
wj = αj−βj . (When the pairs (αj , βj) are determined, then at least one of them is
zero.) Nonnegative slack variables ξi, accounting for possible classification errors
are additionally introduced. Let yi = +1/−1 indicate the class membership. By
imposing ||w||1 to be constant, the minimization problem for xi∈T becomes then:

Minimize 1
N

∑N
i=1 ξi − µρ

s.t.
∑N

i=1(αi + βi)=1

yi f(D(xi, T )) ≥ 1− ξi, i=1, . . . , N

ξi, αi, βi, ρ ≥ 0.

(11)

A sparse solution w is obtained, which means that important objects are selected
(by non-zero weights) from the training set T , resulting in a representation set Rso.
The solution depends on the choice of the parameter µ∈ (0, 1), which is related to a
possible class overlap [15]. To select it automatically, the following values are found



(as rough estimates based on the 1-NN error computed over a number of represen-
tations D(T, T ) for various sizes of T ). These are 0.2 for the Heart data, 0.1 for the
Digits-all and Tumor-mucosa data and 0.05 for the remaining sets.

The selection of objects described above is similar to the selection of features
by linear programming in a standard classification task; see e.g. [3, 4] . The impor-
tant point to realize is that we do not have a control over the number of selected
support objects. This can be somewhat influenced by varying the constant µ (hence
influencing the trade-off between the classifier norm and the training classification
errors).

Fisher Classifier (FC). This linear classifier minimizes the mean square error
on the training set D(T,R) with respect to the desired labels yi = +1/−1. It finds
the minimal mean square error solution of

∑N
j=1 wj d(xi, xj) + w0 = yi. Note that

the common opinion that this classifier assumes Gaussian class densities is wrong.
The truth is that in the case of Gaussian densities with equal covariance matrices,
the corresponding Bayes classifier is found (in the case of equal class priors). The
Fisher classifier, however, is neither based on a density assumption nor it tries to
minimize the probability of misclassification in a Bayesian sense. It follows a mean
square error approach. As a consequence, it does suffer from multi-modality in class
distributions.

Multi-class problems are solved for the LPC and the FC in a one-against-all-
others strategy using the classifier conditional posterior probability estimates [10].
Objects are assigned to the class that receives the highest confidence as the ’one’ in
this one-against-all-others scheme.

4.3 Discussion on the classification experiments

The classification results for the six datasets are presented in Fig. 9 – 14. In each
figure, the first plot shows the results of the LPC as a function of the training set
size. The averaged classification errors for the three modifications of the dissimilarity
measures are presented. For comparison also the results of the 1-NN, the k-NN and
the CNN rules are shown. Note that these are independent of the non-decreasing
transformations. The CNN curves are often outside the shown interval.

The resulting reduced object sets selected by the CNN, the condensed set CS, are
used as a representation set R. Then, the Fisher classifier FC is constructed on the
dissimilarity representation D(T, R). This will be denoted as FC-CS. The averaged
errors of this classifier are, again, together with the results for the 1-NN, the k-NN
and the CNN rules (these are the same as in the first graph), shown in the second
plot. All experiments are averaged over 30 repetitions in which independent training
and test sets are generated from the original set of objects.

The third plot illustrates the sizes of the reduced training sets found by the LPC
and the CNN. For most datasets, the CNN reduces the training set further than the
LPC. The resulting sample sizes of the CNN set are approximately a linear function
of the training size |T |. In all cases, the sets of support objects found by the LPC are
for the D∗2-representations smaller than for the original one, D, which are, in turn,



smaller than for the D∗0.5-representations. This is in agreement with our expectation
(see section 2) and with the results of section 3, that the dataset complexity of D∗2

is lower and the dataset complexity of D∗0.5 is higher than this of D.
The first two plots can be considered as learning curves (note, however, that

the determined representation set R increases with a growing training set T ). The
dissimilarity based classifiers, the LPC and the FC-CS, perform globally better than
the nearest neighbor rules, which is in agreement with our earlier findings; see e.g.
[22, 23, 25]. The LPC and the FC-CS are comparable. The LPC is often better than
the FC-CS for smaller sample sizes, while the FC-CS is sometimes somewhat better
than the LPC for larger sample sizes. This might be understood from the fact that the
LPC, like the support vector machine, focuses on the decision boundary, while the
FC uses the information of all objects in the training set. Where this is profitable, the
FC will reach a higher accuracy.

Learning curves usually show a monotonic decreasing behavior. For simple
datasets they will decrease fast, while for complex datasets they will decrease slowly.
The complexity is understood here in relation to single class descriptions and to the
intricateness of the decision boundary between the classes (hence their geometrical
position in a dissimilarity space). The asymptotic behavior will be similar if a more
complex representation does not reveal any additional details that are useful for the
class separation. If it does, however, a more complex representation will show a
higher asymptotic accuracy, provided that the classifier is able to use the extra infor-
mation.

Following this reasoning, it is to be expected that the learning curves for D∗2-
representations decrease fast, but may have worse asymptotic values. This appears to
be true with a few exceptions. For the Tumor-mucosa problem, Fig. 15, the expecta-
tion is definitely wrong. This is caused by the outliers as the quadratic transformation
strengthens their influence. The global behavior, expected from this transformation,
is overshadowed by a few outliers that are not representative for the problem. A sec-
ond exception can be observed in the Digits-all results, see Fig. 11, especially for
the FC. In this multi-class problem the use of the FC suffers from the multi-modality
caused by the one-against-all-others strategy.

The learning curves for the D∗0.5-datasets change in most cases, as expected,
slower than those for the original datasets. The FC-CS for the Digits-all case, Fig. 11,
is again an exception. In some cases, these two learning curves are almost on the top
of each other, in some other cases, they are very different, as for the FC-CS and the
ProDom dataset, Fig. 14. This may indicate that the dataset complexity increased by
the square root transformation is really significant.

There are a few situations for which crossing points of the learning curves can
be observed after which a more complex representation (D∗0.5 or D) enables the
classifiers to reach a higher performance than a simpler one (D or D∗2, respectively)
due to a sufficient sample size. Examples are the LPC classification of the Digits-all
data (Fig. 11) and the Polygon data (Fig. 13).

Finally, we observe that for the undersampled Heart dataset (see section 3), the
k-NN does relatively very well. This is the only case where the dissimilarity based



classifiers LPC and FC-CS perform worse than the straightforward use of the nearest
neighbor rule.

5 Discussion

A real world pattern recognition problem may have an inherent complexity: objects
of different classes may be similar, classes may consist of dissimilar subgroups, es-
sential class differences may be hidden, distributed over various attributes or may be
context dependent. All what matters, however, is the way how the problem is repre-
sented using object models, features or dissimilarity measures. The problem has to
be solved from a given representation and its complexity should be judged from that.
It is the representation that is explicitly available and it may be such that seemingly
simple problems are shown as complex or the other way around.

In this chapter we argued that the complexity of a recognition problem is deter-
mined by the given representation and observed through a dataset and may be judged
from a sample size analysis. If for a given representation, a problem is sampled suf-
ficiently well, then it is simpler than for a representation for which it appears to be
too low. In section 3, a number of tools are presented to judge the sample size for a
given unlabeled dissimilarity representation. It has been shown that these tools are
consistent with modifications of the representation that make it either more or less
complex. All the considered criteria are useful when judged as complementary to
each other. The most indicative ones, however, are: Skewness, PCA dimensionality,
Correlation, Embedding intrinsic dimensionality and Boundary descriptor.

In section 4, the same observations concerning the power transformations have
been confirmed by classification experiments. By putting emphasis on remote ob-
jects (hence considering D∗2-representations), a problem becomes simpler as local
class differences become less apparent. As a result, this simpler problem will have
a higher class overlap, but may be solved by a simpler classifier. By emphasizing
small distances between objects (hence considering D∗0.5-representations), on the
contrary, local class distances may be used better. The problem may now be solved
by a more complex classifier, requiring more samples, but resulting in a lower error
rate.

It can be understood from this study that dataset complexity is related to sampling
density if the dataset has to be used for generalization like the training of classifiers.
A more complex dataset needs a higher sampling density, and, consequently, better
classifiers may be found. If the training set is not sufficiently large, representations
having a lower complexity may perform better. This conclusion is consistent with
the earlier insights in the cause of the peaking phenomenon and the curse of dimen-
sionality [19]. The concepts of representation complexity and dataset complexity,
however, are more general than the dimensionality of a feature space.

In conclusion, we see a perspective for using the sample density to build a cri-
terion judging the complexity of a representation as given by a dataset. If sufficient
samples are available, the representation may be changed such that local details be-



come highlighted. If not, then the representation should be simplified by emphasizing
its more global aspects.
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Fig. 2. Skewness criterion applied to dissimilarity representations D∗p(R, R), p = 0.5, 1, 2,
per class. Continuous curves refer to the original representation, while the dashed and dotted
curves correspond to D∗05- and D∗2-representations, respectively. Note scale differences.



Gaussian dataset

5 10 20 50 100 200 500
0

0.1

0.2

0.3

0.4

|R|

M
ea

n 
re

la
tiv

e 
ra

nk

  5
 10
 20
 50
100
200
500

Digits-38 Digits-all

100 200 300 400 500
0

0.05

0.1

|R|

M
ea

n 
re

la
tiv

e 
ra

nk

3
8

50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

|R|

M
ea

n 
re

la
tiv

e 
ra

nk

0
1
2
3
4
5
6
7
8
9

Heart Polygons

20 40 60 80 100 120
0

0.05

0.1

|R|

M
ea

n 
re

la
tiv

e 
ra

nk

diseased
healthy

200 400 600 800 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

|R|

M
ea

n 
re

la
tiv

e 
ra

nk

quad
hepta

ProDom Tumor-mucosa

50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

|R|

M
ea

n 
re

la
tiv

e 
ra

nk

1
2
3
4

20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

|R|

M
ea

n 
re

la
tiv

e 
ra

nk

diseased
healthy

Fig. 3. Mean rank criterion applied to dissimilarity representations D∗p(R, R), p=0.5, 1, 2,
per class. Continuous curves refer to the original representation, while the dashed and dotted
curves correspond to D∗05- and D∗2-representations, respectively. Note scale differences.
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Fig. 4. PCA dimensionality criterion applied to dissimilarity representations D∗p(R, R),
p=0.5, 1, 2, per class. Continuous curves refer to the original representation, while the dashed
and dotted curves correspond to D∗05- and D∗2-representations, respectively.
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Fig. 5. Correlation criterion applied to dissimilarity representations D∗p(R, R), p=0.5, 1, 2,
per class. Continuous curves refer to the original representation, while the dashed and dotted
curves correspond to D∗05- and D∗2-representations, respectively. Note scale differences.
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Fig. 6. Intrinsic embedding dimensionality criterion applied to dissimilarity representations
D∗p(R, R), p = 0.5, 1, 2, per class. Continuous curves refer to the original representation,
while the dashed and dotted curves correspond to D∗05- and D∗2-representations, respec-
tively.
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Fig. 7. Compactness criterion applied to dissimilarity representations D∗p(R, R), p =
0.5, 1, 2, per class. Continuous curves refer to the original representation, while the dashed
and dotted curves correspond to D∗05- and D∗2-representations, respectively. Note scale dif-
ferences.
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Fig. 8. Gaussian intrinsic dimensionality criterion applied to dissimilarity representations
D∗p(R, R), p = 0.5, 1, 2, per class. Continuous curves refer to the original representation,
while the dashed and dotted curves correspond to D∗05- and D∗2-representations, respec-
tively. Note scale differences.
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Fig. 9. Boundary descriptor criterion applied to dissimilarity representations D∗p(R, R),
p=0.5, 1, 2, per class. Continuous curves refer to the original representation, while the dashed
and dotted curves correspond to D∗05- and D∗2-representations, respectively. Note scale dif-
ferences.
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Fig. 10. Results of the classification expe-
riments on the Digits-38 data.
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Fig. 11. Results of the classification expe-
riments on the Digits-all data.
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Fig. 12. Results of the classification expe-
riments on the Heart data.
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Fig. 13. Results of the classification expe-
riments on the Polygon data.
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Fig. 14. Results of the classification expe-
riments on the ProDom data.
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Fig. 15. Results of the classification expe-
riments on the Tumor-mucosa data.


