
Learning from a Test Set

Piotr Juszczak and Robert P. W. Duin

Information and Communication Theory Group,
Faculty of Electrical Engineering, Mathematics and Computer Science,
Delft University of Technology, The Netherlands
p.juszczak@ewi.tudelft.nl, r.p.w.duin@ewi.tudelft.nl

Classification of partially labeled data requires linking the unlabeled input
distribution P (x) with the conditional distribution P (y|x) obtained from the
labeled data. The latter should, for example, vary little in high density regions.
The key problem is to articulate a general principle behind this and other such
reasonable assumptions. In this paper we provide a new approach to semi-
supervised learning based on the stability of estimated labels for the unlabeled
dataset, e.g a large test set, and the maximization of the mutual label relation.
No clustering assumptions are required and the approach remains tractable
even for continuous marginal class densities. We demonstrate the approach
on synthetic examples and UCI repository datasets.

1 Introduction

In many classification problems there is an easy access to unlabeled objects
and a specified cost, in time or money, to label them. Therefore, usually we
label a small number of objects and hope, that they are sufficiently repre-
sentative for the classification problem. However, to benefit from remaining
unlabeled objects, one must exploit implicitly or explicitly the link between
density P (x) over objects x and the conditional P (y|x) representing the pos-
terior probability of the labels y.
Most classification methods do not attempt to explicitly model or incorporate
information from the density P (x). However, some classification algorithms
such as density based algorithms as the Parzen classifier [1] or transductive
SVM [2] have a possibility to relate P (x) to P (y|x); the decision boundary is
biased to fall preferentially in low density regions of P (x).
In such algorithms, the unlabeled objects, e.g a large test set to be classified,
provide additional information about the structure of the domain while the
few labeled objects identify the classification task expressed in this structure.
A tacit assumption in this context is to associate high-density clusters in data
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with pure classes. When this assumption is appropriate, it is only required to
label a single object per cluster to classify the whole dataset.
The presented problem is in broad terms related to a number of other prob-
lems like maximum entropy discrimination [3], data clustering by information
bottleneck [4], and minimum-entropy data partitioning [5].
In this paper we investigate label propagation from a small labeled set over a
large unlabeled set for density based classifiers in the semi-supervised learn-
ing framework, using as an example the Parzen classifier. The main difference
between the various semi-supervised learning algorithms proposed in litera-
ture, such as spectral methods [6], random walks [7], graph mincuts [8] and
transductive SVM [2], lies in the way of realizing the assumption of the labels
consistency. However, the following three assumptions are often made about
the representation space where the classification problem is present:

1. nearby objects are likely to have the same label,
2. objects on the same structure, e.g. a cluster or a manifold are likely to

have the same label,
3. the decision boundary should lie in regions of low density 1.

The semi-supervised learning method proposed in this paper is based on the
stability of estimated labels for unlabeled objects. In contradiction to the
mentioned methods, in particular [6, 8, 7], there is not an implicit clustering
step involved in the label propagation process. Therefore, there is no necessity
to specify or optimize the number of clusters beforehand.
The layout of this paper is as follows. In section 2, the formal notation and
the problem description are introduced, and the proposed algorithm is pre-
sented. Section 3 shows advantages and disadvantages of the proposed al-
gorithm based on experiments on artificial and real-world data. Sections 4
presents the discussion and final conclusions.

2 Problem description

Given a partially labeled data set {(x1, y1), . . . , (xl, yl),xl+1, . . . ,xN} ⊂ Rm,
the first l objects are labeled Xl and the remaining objects xi ∈ Xu (l + 1 ≤
i ≤ N) are unlabeled. The goal is to predict the label of the unlabeled objects.
The example of such a problem is presented in figure 1.
Our classification model assumes that each data example has a label, for
x ∈ Xl or a distribution P (y|x) over the class labels for x ∈ Xu

2. These dis-
tributions are unknown and represent the parameters to be estimated. Given

1The third assumption is related to the second. An example is handwritten digit
recognition where one tries to classify e.g. 2 and 5. The probability of having a digit
which is between 2 and 5 should be lower than the probability of a distinct 2 or 5.

2P (y|x) are also called soft labels
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Fig. 1. On the left: A classification problem with four labeled objects denoted by
(∇ , �) and many unlabeled objects denoted by (·). The continuous line denotes a
classifier trained just on the labeled set and the dashed line a classifier trained on
labeled and unlabeled objects. On the right: the corresponding classification labels
for the classifier trained just on Xl.

an object xk, which may be labeled or unlabeled, we interpret its label as a
weighted sum of crisp and soft labels of its neighbors NG:

P ′(yi|xk) =
∑

xi∈NG(xk)

P (yi|xi)pMLR(yi|xi,xk) (1)

where pMLR(yi|xi,xk) is the measure of the mutual label relation between the
set of examples xi ∈ NG(xk) and the object xk. In other words pMLR(yi|xi,xk)
is the measure of the contribution of xi to the probability that xk has the label
yi. P (yi|xk) is computed over ε - neighborhood of xk defined as follows:

NG(xk) = {∀xi ∈ {Xl ∪ Xu} | pMLR(yi|xi,xk) ≥ ε}\{xk} (2)

In general, P (y|xi) are only available for labeled objects Xl and have to be
estimated for unlabeled objects Xu. We will now discuss how to estimate
P (y|xi) for the set Xu and how to choose the measure of the mutual label
relation pMLR(yi|xi,xk).

2.1 Estimation of soft labels P (y|x)

We propose to estimate P (y|xi) using the conditional maximum log-likelihood
as the criterion. The P (y|xi) is estimated for unlabeled objects for the fixed
value of pMLR(yi|xi,xk):

max
P (y|xi)

C∑
y

log
∑

xi∈NG(xk)

P (y|xi)pMLR(yi|xi,xk) (3)

where for the two-class problem, C = 2, P (y|xi) = {0, 1} for labeled objects
and 0 ≤ P (y|xi) ≤ 1 for unlabeled objects. Since pMLR(yi|xi,xk) are fixed this
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objective function is jointly convex in the free parameters and has a unique
maximum value. This convexity also guarantees that this optimization is easily
performed via the EM algorithm.

2.2 Estimation of the mutual label relation pMLR(yi|xi, xk)

In the previous subsection we assumed that the mutual label relation pMLR(yi|xi,xk)
was known and fixed. In this section we compute and optimize pMLR(yi|xi,xk)
for the set of label and unlabeled objects in the maximum likelihood sense for
the known and fixed sets of soft labels P (y|x).
Consider a set of points {x1, . . . ,xN} with a metric d(xk,xi) = ‖xk − xi‖.
Since close objects have high value of pMLR(yi|xi,xk) about their labels and
objects far away low value of pMLR(yi|xi,xk) we can relate the mutual label
relation to the distances between objects e.g. as follows pMLR(yi|xi,xk) =
exp(−‖xk−xi‖

2σ2 ) 3. The new estimate of the soft labels P ′(y|xk) of xk can be
defined now as:

P ′(yi|xk) =
∑

xi∈NG(xk)

P (yi|xi) exp
(
−‖xk − xi‖

2σ2

)
(4)

which is related to the weighted Parzen density estimator. P ′(yi|xk) is com-
puted for all labels yi ∈ C and normalized to

∑
yi∈C P ′(yi|xi) = 1.

Now we define how the information about the label of an object xi influences
the label of an object xk. In particular, the mutual label relation should
decreases when the distance between objects xk and xi increases. This is
related to the choice of σ. For large σ more distant objects have the influence
on the soft labels of an object xk and for small σ only nearby objects influence
the soft labels of an object xk. We computed σ in equation (4) based on a
leave-one out maximum likelihood estimation [9, 10]. The initial estimate σl of
σ is optimized for just the labeled objects x ∈ Xl. The final σul is optimized
for both labeled and unlabeled objects x ∈ {Xl,Xu}. In a series of n EM
algorithms σ takes the values:

σl > σ2 > . . . > σt > . . . σt−1 > σul

The change in σ from large, σl, to small, σul, values, during learning of soft
labels, changes the stress between the global labels consistency and the local
labels consistency.

2.3 Proposed algorithm

The proposed algorithm of the classification with the partially labeled dataset
is summarized in algorithm 1.

3pMLR(yi|xi,xk) can be defined in several ways e.g. as the L1 norm, a wavelet
function or a Gaussian process
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In the initial step of the algorithm the soft labels are computed using only
labeled objects, P (y|x) = 0 ∀x ∈ Xu. In the second step based on the current
estimation of σt soft labels are optimized P ′(y|x) for x ∈ Xu using the max-
imum likelihood criterion. Next, the equation (4) is recomputed using both
crisp and soft labels. Step 4 is repeated until the difference between the cur-
rent estimated labels P ′(y|xi) and the previous estimated labels P (y|xi) is
smaller than γ. The procedure is repeated for n different σ-s.

1. set a number of EM algorithms to n; compute σl and σul; set t = 1 and a
stopping criterion γ;

2. compute: σl > σ2 > . . . > σt > . . . σt−1 > σul for each EM algorithm;

while t � n

3. optimize soft labels P ′(y|x) based on equation (4) with a fixed σt; using
the former P (y|x) as initialization of the labels;

4. repeat 3 until stopping criterion is reached
e.g.

∑
i |P ′(y|xi) − P (y|xi)| < γ; t = t + 1;

end

Algorithm. 1 soft-PARZEN.

3 Experiments

Consider an example (figure 2) of classification with the proposed algorithm.
We are given 2 labeled objects per class and 196 unlabeled objects in an
intertwining two banana shape patterns. This pattern has a manifold structure
where distances are locally but not globally Euclidean, due to the curved arms.
Therefore, the pattern is difficult to classify for traditional algorithms using
locally defined relations, such as 1-nearest neighbor; figure 1b. We used the
proposed algorithm, described in algorithm 1, to incorporate unlabeled data
into the Parzen density estimator and scale the Euclidean distance between
objects using their soft labels. Figure 2 shows three different timescales. At
t = 5 the σ is overestimated, therefore there are large, Gaussian clusters and
P (y|x) are estimated ruffly. At t = 15 because σ becomes smaller local mutual
label relations in marginal regions start to change the soft labels. At t = 20
almost all objects, apart of one, have correct labels.
Next, we evaluated the performance of the presented algorithm on some of the
UCI repository datasets [11]: waveform, satellite, letter, ecoli. Datasets were
divided into two parts: labeled set Xl and the unlabeled set Xu constituted
from remaining objects, the ratio Xl

Xu
is indicated by numbers on the abscissa.

The label propagation was performed on Xu and the obtained classifier was
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Fig. 2. Label estimates for the soft-PARZEN algorithm for the banana shape
dataset. Labeled (soft and crisp labels) objects denoted by (∇ , �) and unlabeled
objects denoted by (·).

tested on the same set of unlabeled data Xu. The random division was re-
peated 50 times for each ratio Xl

Xu
. The performance of the proposed algorithm

(soft-PARZEN) is compered with the 1-nearest neighbor label propagation
( 1-NNLP) [12, 8] and the Parzen classifier trained just on labeled objects
(PARZEN). The mean error and the standard deviation are shown in figure
3. It can be seen, that the proposed soft-PARZEN algorithm outperforms
both: 1-NNLP and the Parzen classifier trained on just labeled objects, on
considered classification problems. In case of waveform and ecoli the perfor-
mance of soft-PARZEN is close to 1-NNLP and for satellite and letter there
is significant improvement.
The soft-PARZEN and 1-NNLP perform similar if distances between objects
in pure clusters and between clusters differ significantly. However, if in the
data there is not a clear cluster structure the soft-PARZEN might outperform
the 1-NNLP significantly.
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(a) waveform(500, 21, 3)
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(b) satellite (500, 36, 6)
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(c) letter(500, 16, 26)
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(d) ecoli(272, 7, 3)

Fig. 3. Mean square error and standard deviation for soft-PARZEN, 1-NNLP com-
pared with a classifier trained just on a labeled dataset PARZEN for UCI repository
datasets: waveform, satellite, letter, ecoli. Numbers in brackets indicate the size of
Xu and the number of features and classes in a dataset.

The performance of the proposed method depends on the quality of the la-
beled data and their relation to the structure of the unlabeled dataset. If the
clusters of the unlabeled data are not related to the class information it is
hard to expect that the proposed method performs well. For a broader discus-
sion about merits and disadvantages of the semi-supervised learning we point
reader to the paper [13].

4 Conclusions

The proposed algorithm based on expectation maximization of soft labels and
the mutual label relation soft-PARZEN provides a robust variable resolution
approach to classifying data sets with significant cluster structure and very few
labels. When the cluster structure in absent or unrelated to the classification
task, the proposed method can be expected to derive particular but small
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improvement over a classifier trained just on the labeled dataset. In such
cases the performance is strongly related to the quality of the already labeled
set.
In future work we will test the proposed algorithm on large, high-dimensional
datasets and explore theoretical connections to network information theory.
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