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Summary. Learning from given patterns is realized by learning from their appro-
priate representations. This is usually practiced either by defining a set of features
or by measuring proximities between pairs of objects. Both approaches are prob-
lem dependent and aim at the construction of some representation space, where
discrimination functions can be defined.

In most situations, some feature reduction or prototype selection is mandatory.
In this paper, a pairwise selection for creating a suitable representation space is pro-
posed. To determine an informative set of features (or prototypes), the correlations
between feature pairs are taken into account. By this, some dependencies are detec-
ted, while overtraining is avoided as the criterion is evaluated in two-dimensional
feature spaces. Several experiments show that for small sample size problems, the
proposed algorithm can outperform traditional selection methods.

1 Introduction

The construction of a proper representation space is essential for designing
successful learning procedures. Concerning both the computational efficiency
and performance of a recognition system, one is usually interested in a space
of a low dimensionality. Since the initial space may be large, some reduc-
tion methods are necessary to either detect or create informative features.
An ideal technique is capable of reducing the dimensionality effectively, while
preserving the class separability in the data. As some information is unavoid-
ably lost in this process, it is, therefore, desirable to formulate a method that
significantly reduces the dimensionality, but still preserves the information. In
this paper, we focus on feature selection approaches.

Feature selection methods rely on a quantitative criterion that measures
their performance. This criterion is used in some optimization process to de-
termine a subset of informative features. Selection methods are usually divided
into filters and wrappers [10]. Filters evaluate the relevance of features based
on a feature capacity to discriminate between the classes. Wrappers employ
a classification algorithm, used later to build the final classifier, to judge the



2 Elżbieta P
↪
ekalska, Artsiom Harol, Carmen Lai and Robert P.W. Duin

quality of a feature. Both approaches involve a combinatorial search through
the constructed space of possible feature subsets. Usually, greedy procedures
such as forward or backward eliminations are employed due to their computa-
tional attractiveness. More complex procedures such as floating searches and
genetic algorithms can also be applied [5, 10, 14, 11].

Concerning the evaluation of the criterion, selection techniques are either
univariate or multivariate. Univariate approaches are simple and fast. Mul-
tivariate approaches evaluate the relevance of features in a group, taking their
interdependencies into account. When features are correlated, these techniques
are able to construct good feature subsets, while univariate techniques may
fail. A disadvantage of multivariate approaches, however, is that they evalu-
ate features in a multidimensional space, not only demanding a considerable
computational effort, but also resulting in a loss of accuracy in case of a lim-
ited training set. Due to overfitting, feature subsets that do not ensure a good
discrimination may be still judged as ’good’. The more features have to be
selected, the worse this problem becomes.

In this paper, a pairwise feature selection procedure is investigated. Some
ideas in this direction can be found in [2], where a particular pairwise selection
algorithm was proposed for gene expression data. Since pairs of features are
considered, second order dependencies are taken into account. Multidimen-
sional spaces are now restricted to two dimensions, hence this method does
not suffer from overfitting as other multivariate approaches do.

The problem of feature selection is similar to the selection of prototypes
used to define a linear embedding of proximity data. In this case, a set of
objects is represented by a dissimilarity matrix, where each entry describes
a degree of commonality between pairs of objects. The chosen prototypes de-
termine a vector space, in which all objects are represented as points and
the corresponding dissimilarities are preserved as well as possible. Pairwise
prototype selection is an appealing alternative to random, individual and
multivariate selections [7, 12, 13], especially for low-dimensional embedded
spaces.

2 Feature selection techniques

Feature selection techniques try to determine a small subset of features, which
are sufficient for a good discrimination. Usually, some type of a combinatorial
search, in a forward (an incremental addition of features, starting from a
single one), backward (an incremental removal of features, starting from the
entire set) or floating manner is employed to find this feature subset. This
optimization relies on some specified criterion, usually related to the class
separability, and the way the relevance of a feature to be added (or removed)
is evaluated.

Three incremental selection methods are considered here. These are indi-
vidual, forward and pairwise strategies. Assume that F = {f1, f2, . . . , fm} is
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a set of m features. Denote by F̃ ⊂ F a subset of the selected features. In
each step, a feature or a pair of features is chosen according to some criterion
J and added to F̃ . Note that F̃ = ∅ in the beginning.

Individual (univariate) selection. In this approach, the informativeness
of each feature is evaluated individually according to the criterion J . In each
step, a single best feature is chosen. This can be formally written as:

F̃ := F̃ ∪ f, where f : max
fi∈F

J(fi)

F := F\f
(1)

In this procedure, features are ranked from the most to the least informat-
ive according to the criterion J and the most indicative features are finally
selected.

Forward selection. Forward feature selection starts with the single most in-
formative feature and adds next most informative features in a greedy fashion.
Each step can be formalized as follows:

F̃ := F̃ ∪ f, where f : max
fi∈F

J(F ∪ fi)

F := F\f
(2)

Pairwise selection. The relevance of features is judged by evaluating pairs
of features. In each step, the best feature pair is detected. Two approaches
are here possible. Either both features are chosen from the current unselected
feature set F or only one of them, as the other one comes from F̃ . In each
step, one has:

F̃ := F̃ ∪ {f ∪ f ′}, where {f ∪ f ′} : max
fi 6∈F̃∨(fj 6=fi∧fj 6∈F̃ )

J(fi ∪ fj)

F := F\{f ∪ f ′}
(3)

Criterion. In our experiments, the inter-intra criterion is used [8]. It is applied
in some representation space, where the between-scatter Sb and within-scatter
Sw matrices are computed. Sw measures the average dispersion of a class
sample around its mean, while Sb describes the scattering of the class means
around the overall average. Given n samples, K classes and nk samples per
class, the inter-intra criterion is given as

J = trace(S−1
w Sb), (4)

where Sw = 1
n

∑K

k=1 nkSk, Sb = 1
n

∑K

k=1 nk(mk−m)(mk−m)T , and m is the
estimated overall mean and mk and Sk are the estimated mean and covariance
matrix of the k-th class, respectively. The higher value of the criterion, the
more informative the corresponding feature. For a single feature and two-class

problems, this criterion is equivalent to the Fisher criterion [5] JFC = |m1−m2|√
s2

1
+s2

2

,

where s1 and s2 are the class standard deviations.

3 Examples

The potential of pairwise feature selection is illustrated by three examples.
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3.1 Artificial example

An artificial data set with some correlated feature pairs is generated to invest-
igate the behavior of feature selection methods in a controlled environment.
Assume that n samples and m features are given, where only q features, gen-
erated in correlated pairs, are informative. The samples for each correlated
feature pair are drawn from a Gaussian distribution with the class means
µ1 =

[

0 0
]T

and µ2 =
√

2
2

[

r −r
]T

for some r > 0. The covariance matrix,
identical for both classes, is Σ1 = Σ2 =

[

v+1 v−1
v−1 v+1

]

. The remaining m−q fea-
tures are uninformative, i.e. the two classes are drawn from a spherical Gaus-
sian distribution N (0, v√

2
I), where I is the identity matrix. We set m = 300,

q = 20, and, in order to have a class overlap, r = 3 and v =
√

40. Since
we want to simulate a small sample size problem, we chose n = 100 for the
training set, while the size of the test set is set to n = 10000.

For each selection method, a Fisher linear discriminant (FLD) [5] is trained
on a training set with a growing number of features (starting from the best
two features) and tested on an independent test set. All selection methods rely
on the criterion (4). As a result, the classification error can be plotted versus
the number of features used. The error is estimated based on 50 repetitions
of the experiments with different generations of the training set.

Figure 1, left plot, shows the behavior of different feature selection methods
as judged by the average classification error. The peaking phenomenon visible
in the plot occurs when the number of samples is comparable to the number
of features. This is due to the use of a pseudo-inverse instead of the usual
inverse of the sample covariance matrix on which the FLD relies [15]. Some
solutions to avoid this problem can be found e.g. in [16].

The univariate approach performs the worst and the pairwise selection per-
forms the best. This is expected, since pairs of features are strongly correlated.
Although the forward search reaches a higher accuracy than the univariate
technique, it is limited by the greedy procedure it is based on.

Figure 1, right plot, shows the number of detected informative features
versus the number of selected features. The results are the average of 50
experiments. The pairwise approach determines all informative features per-
fectly. In this small sample sizes problem, the forward search retrieves more
uninformative features than the univariate approach.

3.2 Feature selection example

A feature selection example on a more general data set is here presented. The
Waveform data, as described in [4], is chosen as it clearly shows what can be
gained by the pairwise selection. This three-class problem is based on sampling
triangle shaped waves and, thereby, it really needs a significant subset of the
21 original features in order to reach a proper class separation. There are 5000
objects in total, approximately equally distributed over the three classes.



Pairwise selection of features and prototypes 5

20 40 60 80 100 120 140
0

10

20

30

40

50

Number of features

A
ve

ra
ge

 e
rr

or
 (

%
 o

ve
r 

50
 e

xp
er

im
en

ts
)

Individual
Forward
Pairwise

20 40 60 80 100 120 140

20

40

60

80

100

Number of features

P
er

ce
nt

ag
e 

of
 in

fo
rm

at
iv

e 
fe

at
ur

es

Individual
Forward
Pairwise

Fig. 1. Artificial data. Left: average classification error across 50 repetitions for the
three feature selection procedures. Right: percentage of relevant features retrieved
by the selection techniques.
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Fig. 2. Waveform data. Average classification error over 50 repetitions of the NLC
for three feature selection procedures using 35 (left) and 100 (right) objects per class
for feature selection and classifier training.

Figure 2, left plot, shows the average classification error over 50 experi-
ments, in which 35 objects per class have been chosen at random. Using these
objects, feature selections are performed based on the inter-intra criterion,
formula (4). In the resulting feature spaces, a Bayes normal-density based
linear classifier (NLC), assuming class normal distributions with equal covari-
ance matrices [5], is trained on the same training set. The classifiers are tested
on the remaining objects. The resulting error rates are averaged out and the
standard deviations of the means are computed and shown in the plot. This
is a clear example, where a pairwise selection behaves equal or better than
the forward selection as well as the individual selection. For larger feature
sizes, the forward procedure cannot compute the criterion values in a suffi-
ciently accurate way, which leads to suboptimal feature subsets. The pairwise
procedure shows a continuous improvement.

Figure 2, right plot, presents the results for 100 objects per class used for
the feature selection and training. The same phenomena can be observed as
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Fig. 3. Heart disease data. Average classification error over 50 repetitions based
on 50 (left) and 150 (right) objects in total used for prototype selection, embedding
and classifier training. The NLC is trained in embedded spaces.

for 35 objects per class, but less pronounced, as the forward procedure now
suffers less from overtraining.

3.3 Prototype selection example

The heart disease data set [1] is considered for the prototype selection example.
There are 303 cases, where 139 and 164 refer to ill and healthy patients,
respectively. A subset of 13 attributes of mixed types is used to compute
a Gower’s distance representation [6], which is known to be Euclidean.

The data are split into a training set T and test set S with the same
prior probabilities (either 50 or 150 objects in total for training). The dis-
tance matrix D(T, T ) is used for prototype selection, embedding and training
the NLC. For testing, the distance matrix D(S, T ) is used. In the individual
and forward selection methods, the prototypes are determined by using the
inter-intra criterion (4) applied to D(T, T ). This means that a distance rep-
resentation is interpreted in a vector space, where each dimension describes a
distance to a particular object from T [12, 13]. Inspired by [17], the pairwise
prototype selection is realized by evaluating the criterion in two-dimensional
spaces determined by isometric embeddings of D(·, [pi pj ]), where pi and pj

are different objects. The details can be found in [17, 7]. Having found a pro-
totype set R, the classical scaling [3] is used for a linear isometric embedding
of D(R, R). The remaining D(T\R, R) are then projected to the embedded
space and the NLC is trained [3, 13]. Testing is realized by projecting D(S, T )
to the same space and applying the trained NLC. The experiments are per-
formed for growing prototype sets and repeated 50 times for various splits
into the training and test sets. The average classification error is plotted as
a function of the prototype set size; see Figure 3.

Note that the number of prototypes m defines the embedding and describes
the dimensionality p of an embedded space (m = p+1). The prototypes should
be significantly different (i.e. vectors of distances to them should differ) to pre-
serve the most of the distance information in the data. For a small number of
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prototypes, this holds for the pairwise selection and can be observed in Fig-
ure 3. The forward selection performs then the worst, since the embedding is
defined by prototypes pi and pj which are characterized by correlated vectors
of distances D(·, pi) and D(·, pj). In this case, this does not ensure yet that
the resulting embedded space will be good for discrimination. The random
selection is better here than the forward and individual selections as it tends
to choose objects that differ with respect to distance information.

4 Discussion and conclusions

The need for dimension reduction holds in a similar way for traditional fea-
ture spaces as for embedded spaces defined on the dissimilarities to a set of
prototype objects. In this paper, we presented a new procedure for dimension
reduction by selection. There are several reasons to lower the dimensional-
ity of a representation space in which classifiers have to be trained. First,
less dimensions implies less computational effort to represent new objects to
be classified: less features to be measured or less proximities to be computed.
Secondly, in low-dimensional spaces the accuracy of trained classifiers is higher
than in spaces with more dimensions. The trade-off is, however, that by re-
moving dimensions (features) the class separability is deteriorated. So, feature
selection should be done carefully.

An issue often neglected in previous studies on feature selection is that the
accuracy of the criterion itself, like the classifier, also may suffer from small
training set sizes. Procedures like backward elimination, branch and bound,
forward selection [9] and floating search [14] evaluate the criteria in a multi-
dimensional space. The estimation of the criterion values suffers from noise.
Many criteria used for judging class separability are biased for small sample
sizes: classes seem to be better separable than they are, in fact. Even when
corrections for such a bias are made, e.g. by using the F-statistics, there is still
a bias caused by the selection mechanism itself. This is for high-dimensional
spaces more severe than for low-dimensional spaces as the variance in the
criterion estimate is larger in the former case.

The individual evaluation and ranking of features suffers the least from this
problem. It is, however, entirely unable to take into account the dependency
between features in estimating the separability. The pairwise selection pro-
cedure studied in this paper makes some trade-off. Feature spaces are judged
just in various combinations of feature pairs. So, whenever the dependency
between two features is of importance, it is detected and can be used. This
procedure is expected to be almost always better than individual ranking, ex-
cept for very small sample sizes or for very large feature sets, as in these cases
also pairwise evaluation will cause an overtraining. The proposed procedure
may be better than the multivariate techniques when more than just a few
features are needed and the training set size is small. For large training sets
multivariate approaches do not suffer from overtraining and may detect higher
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order useful dependencies between features. If the problem can be solved by
a small set of features, multivariate techniques may find them as well.

In conclusion, the pairwise procedure for the selection of features or pro-
totypes may be a useful strategy in case of small sample size problems. Some
examples are presented to support this claim.
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