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Abstract. A linear, discriminative, supervised technique for reducing feature vec-
tors extracted from image data to a lower-dimensional representation is proposed.
It is derived from classical Fisher linear discriminant analysis (LDA) and useful,
for example, in supervised segmentation tasks in which high-dimensional feature
vector describes the local structure of the image. In general, the main idea of the
technique is applicable in discriminative and statistical modelling that involves
contextual data.
LDA is a basic, well-known and useful technique in many applications. Our con-
tribution is that we extend the use of LDA to cases where there is dependency
between the output variables, i.e., the class labels, and not only between the input
variables. The latter can be dealt with in standard LDA.
The principal idea is that where standard LDA merely takes into account a single
class label for every feature vector, the new technique incorporates class labels
of its neighborhood in its analysis as well. In this way, the spatial class label
configuration in the vicinity of every feature vector is accounted for, resulting
in a technique suitable for e.g. image data. This spatial LDA is derived from
a formulation of standard LDA in terms of canonical correlation analysis. The
linearly dimension reduction transformation thus obtained is called the canonical
contextual correlation projection.
An additional drawback of LDA is that it cannot extract more features than the
number of classes minus one. In the two-class case this means that only a re-
duction to one dimension is possible. Our contextual LDA approach can avoid
such extreme deterioration of the classification space and retain more than one
dimension.
The technique is exemplified on a pixel-based segmentation problem. An illus-
trative experiment on a medical image segmentation task shows the performance
improvements possible employing the canonical contextual correlation projection.

1 Introduction

This paper describes a supervised technique for linearly reducing the dimensionality
of image feature vectors (e.g. observations in images describing the local gray level
structure at certain positions) taking contextual label information into account (e.g.
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the local class label configuration in a segmentation task). The technique is based on
canonical correlation analysis and called the canonical contextual correlation projection
(CCCP).

In general, the main goal of reducing the dimensionality of feature data is to prevent
the subsequently used model from over-fitting in the training phase [9,12]. An important
additional effect in, for example, pattern classifiers is often the decreased amount of
time and memory required to perform the necessary operations. Consequently image
segmentation, object classification, object detection, etc. may benefit from the technique,
and also other discriminative methods may gain from it.

The problem this paper is concerned with is of great practical importance within real-
world, discriminative and statistical modelling tasks, because in many of these image
analysis and computer vision tasks the dimensionality, say n, of the feature data can be
relatively large. For example, because it is not clear a priori what image information is
needed for a good performance in a pixels classification task, many features per pixel may
be included, which results in a high-dimensional feature vector. This already happens
in 2-dimensional image processing, but when processing large hyper-spectral images,
medical 3-dimensional volumes, or 4-dimensional space/time image data, it may even
be less clear what features to take and consequently more features are added. However,
high-dimensional data often leads to inferior results due to the curse of dimensionality [4,
12] even if all relevant information for accurate classification is contained in the feature
vector. Hence, lowering the dimensionality of the feature vectors can lead to a significant
gain in performance.

The CCCP is an extension to linear discriminant analysis (LDA), which is a well-
known supervised dimensionality reduction technique from statistical pattern recog-
nition [9,12]. LDA is capable of taking contextual information in the input variables
into account, however contextual information in the output variables is not explicitly
dealt with. The CCCP does take this information into account and therefore models this
contextual information more accurately.

Another principal drawback of LDA is that it cannot extract more features than the
number of classes minus one [7,9]. In the two-class case—often encountered in image
segmentation or object detection—this means that we can only reduce the dimensionality
of the data to one, and even though reducing the dimensionality could improve the
performance it is not plausible that one single feature can describe class differences
accurately. CCCP can avoid such extreme deterioration of the classification space and
retain more than one dimension even in the case of two-class data.

LDA was originally proposed by Fisher [5,6] for the two-class case and extended
by Rao [14] to the multi-class case. The technique is supervised, i.e., input and output
patterns which are used for training have to be provided. Quite a few linear dimension
reduction techniques have been proposed of which many are variations and extensions
to Fisher’s LDA, see [3,9,16]. Within the field of image classification, [1] and [13]
show how classification performance can benefit from linear dimension reduction. The
novel extension to LDA given in this paper explicitly deals with the contextual spatial
characteristics of image data. To come to this extension of LDA, a formulation of this
technique in terms of canonical correlation analysis (CCA, [11]) is used (see [9,16]),
which enables us to not only to include the class labels of the pixel that is considered—as
in classical LDA, but also to encode information from the surrounding class labelling
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structure. Related to our approach is the work of Borga [2] in which CCA is also used
as a framework for image analysis.

Finally, it is mentioned that there is a close relationship of the LDA considered here
and a form of LDA which is used for classification. The latter is also known as a linear
discriminant classifier or Fisher’s linear discriminant [9,16]. Here, however, LDA for
dimensionality reduction is considered.

1.1 Outline

Section 2 formulates the general problem statement within the context of supervised
image segmentation. However, we stress that the technique is not restricted to this task.
Techniques like object detection or object classification can also benefit from the di-
mension reduction scheme proposed. Section 3 introduces LDA and discusses its link
to CCA. Subsection 3.4 presents the CCCP. Subsection 3.5 discusses the drawback of
obtaining too few dimensions with LDA, and explains how CCCP can overcome this
limitation. Subsection 3.6 summarizes the main approach. Section 4 presents illustrative
results on a lung filed segmentation task in chest radiographs. Finally, Section 5 provides
a discussion and conclusions.

2 Problem Statement

To make the exposition more clear, the technique presented is directly related to the
specific task of image segmentation, and it is not discussed in its full generality.

An image segmentation task in terms of pixel classification is considered—however,
we may as well use other image primitives on a regular lattice. Based on image features
associated to a pixel, it is decided to which of the possible classes this pixel belongs.
Having classified all pixels in the image gives a segmentation of this image. Examples of
features associated to a pixel are its gray level, gray levels of neighboring pixels, texture
features, the position in the image, gray levels after linear or non-linear filtering of the
image, etc.

Pixels are denoted by pi and the features extracted from the image associated to pi are
represented in an n-dimensional feature vector xi. A classifier maps xi to a certain class
label coming from a set of K possibilities {l1, . . . , lK}. All pixels having the same label
belong to the same segment and define the segmentation of the image. The classifier,
e.g. a quadratic classifier, Fisher’s linear discriminant, a support vector machine, or a k
nearest neighbor classifier [9,12], is constructed using train data: example images and
their associated segmentations should be provided beforehand from which the classifier
learns how to map a given feature vector to a certain class label.

Before training the classifier, a reduction of dimensionality can be performed using
the train data. This is done by means of a linear projection L from n to d (d < n)
dimensions, which can be seen as a d×n-matrix that is applied to the n-dimensional
feature vectors xi to get a d-dimensional feature representation Lxi . The matrix L is
determined using the train data. Subsequently, the feature vectors of the train data are
transformed to the lower dimensional feature vectors and the classifier is constructed
using these transformed feature vectors. The following section presents a novel way to
determine such a matrix L.
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3 Canonical Contextual Correlation Projections

3.1 Linear Discriminant Analysis

The classical approach to supervised linear dimensionality reduction is based on LDA.
This approach defines the optimal transformation matrix L to be the one that maximizes
the so-called Fisher criterion J

J(L) = tr((LSW Lt)−1LSBLt) , (1)

where L is the d×n transformation matrix, SW is the mean within-class covariance ma-
trix, and SB is the between-class covariance matrix. The n×n-matrix SW is a weighted
mean of class covariance matrices and describes the (co)variance that is (on average)
present within every class.Then×n-matrix SB describes the covariance present between
the several classes. In Equation (1), LSW Lt and LSBLt are the d×d within-class and
between-class covariance matrices of the feature data after reducing the dimensionality
of the data to d using the linear transform L.

When maximizing (1), one simultaneously minimizes the within-class covariance
and maximizes the between-class covariance. The criterion tries to determine a transform
L that maps the feature vectors belonging to one and the same class as close as possible
to each other, while trying to keep the vectors that do not belong to the same class as far
from each other as possible. The matrix that does so in the optimal way, as defined by
(1), is the transform associated to LDA.

Once the covariance matrices SW and SB have been estimated from the train data,
the maximization problem in (1) can be solved by means of a generalized eigenvalue
decomposition involving the matrices SB and SW . We do not discuss these procedures
here, but refer to [3,4,7] and [9].

3.2 Canonical Correlation Analysis

This paper formulates LDA in a canonical correlation framework (see [9,16]) which
enables the extension of LDA to CCCP. CCA is a technique to extract, from two feature
spaces, those lower-dimensional subspaces that exhibit a maximum mutual correlation
[11,2].

To be more precise, let X be a multivariate random variable, e.g. a feature vector,
and let Y be another multivariate random variable, e.g. a numeric representation of
the class label: (1,0, . . . ,0)t for class 1, (0,1, . . . ,0)t for class 2, etc. In addition, let a
and b be vectors (linear transformations) having the same dimensionality as X and Y ,
respectively. Furthermore, define c to be the correlation between the univariate random
variables atX and btY , i.e.,

c =
E(atXbtY )

√
E((atX)2)E((btY )2)

, (2)

where E is the expectation. The first canonical variates at
1X and bt

1Y are obtained by
those two vectors a1 and b1 that maximize the correlation in Equation (2). The second
canonical variates are those variates that maximize c under the additional constraint that
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they are outside the subspace spanned by a1 and b1, respectively. Having the first two
pairs of canonical variates, one can construct the third, by taking them outside the space
spanned by {a1,a2} and {b1,b2}, etc.

One way of solving for the canonical variates more easily is as follows. First estimate
the matrices SXX , SY Y , and SXY , that describe the covariance for the random variables
X and Y , and the covariance between these variables, i.e., estimating E(XXt), E(Y Y t),
and E(XY t), respectively. Subsequently, determine the eigenvectors ai of

SX := S−1
XXSXY S−1

Y Y St
XY (3)

and the bj of

SY = S−1
Y Y St

XY S−1
XXSXY . (4)

The two eigenvectors a1 and b1 associated with the largest eigenvalues of the matrices
SX and SY , respectively, are the vectors giving the first canonical variates at

1X and
bt

1Y . For the second canonical variates take the eigenvectors a2 and b2 with the second
largest eigenvalues associated, etc. The number of canonical variates that can be obtained
is limited by the smallest rank of both multivariate random variables considered.

3.3 LDA through CCA

LDA can be defined in terms of CCA (see for example [9] or [16]), hence avoiding the use
of the Fisher criterion (1). To do so, let X be the random variable describing the feature
vectors and let Y describe the class labels. Without loss of generality, it is assumed that
X is centered, i.e., E(X) equals the null vector. Furthermore, as already suggested in
Subsection 3.2, the class labels are numerically represented as K-dimensional standard
basis vectors: for every class one basis vector.

Performing CCA on these random variables using SX from (3), one obtains eigen-
vectors ai that span the space (or part of this space) of n-dimensional feature vectors.
A transformation matrix L, equivalent to the one maximizing the Fisher criterion, is
obtained by taking the d eigenvectors associated to the d largest eigenvalues and putting
them as row-vectors in the transformation matrix:

L = (a1,a2, . . . ,ad)t .

Linear dimensionality reduction performed with this transformation matrix gives results
equivalent to classical LDA. Note that to come to this solution, an eigenvalue decompo-
sition of SY is not needed.

The estimates of the covariance matrices used later on in our experiments are the
well-known maximum likelihood estimates. Given N pixels pi in our train data set, and
denoting the numeric class label representation of pixel pi by the K-dimensional vector
yi, SXY is estimated by the matrix

1
N

N∑

i=1

xiyt
i .

SXX and SY Y are estimated in a similar way.
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The CCA formulation of LDA enables us to extend LDA to a form of correlation
analysis that takes the spatial structure of the class labelling in the neighborhood of the
pixels into account.

3.4 Incorporating Spatial Class Label Context

In image processing, incorporating spatial gray level context into the feature vector is
readily done by not only considering the actual gray level in that pixel as a feature, but
by taking additional gray levels of neighboring pixels into account, or by adding large-
scale filter outputs to the feature vector. However, on the class label side there is also
contextual information available. Although two pixels could belong to the same class—
and thus have the same class label, the configuration of class labels in their neighborhood
can differ very much. LDA and other dimension reduction techniques, do not take into
account this difference in spatial configuration, and only consider the actual label of the
pixel.

The trivial way to incorporate these differences into LDA would be to directly dis-
tinguish more than K classes on the basis of these differences. Consider for example
the 4-neighborhood label configurations in Figure 1. In a K = 2-class case, this 4-
neighborhood could attain a maximum of 25 = 32 different configurations (of which
only four are displayed in the figure). These could then be identified as being different
classes. Say we have M of them, then every configuration possible would get its own
unique M -dimensional standard basis vector (as in Subsection 3.3) and one could sub-
sequently perform LDA based on these classes, in this way indirectly taking more than
a single class label into account when determining a dimension reducing matrix L.

However, identifying every other configuration with a different class seems too crude.
When two neighborhood label configurations differ in only a single pixel label, they
should be considered more similar to each other then two label configurations differing
in half of their neighborhood. Therefore, in our CCCP approach, a class label vector yi

is not encoded as a null vector with a single one in it, 1.e., a standard basis vector, but
as a 0/1-vector in which the central pixel label and every neighboring label is encoded
as a K-dimensional (sub)vector. Returning to our 2-class example from Figure 1, the

l1
l1 l1 l1

l1
(a)

l2
l2 l2 l2

l2
(b)

l2
l1 l1 l2

l1
(c)

l1
l2 l1 l1

l2
(d)

Fig. 1. Four possible class labellings in case a four-neighborhood context is considered. For this
two-class problem the total number of possible contextual labellings equals 25 = 32.
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four label vectors that would give the proper encoding of the class labelling within these
4-neighborhoods (a), (b), (c), and (d) are






1
0
1
0
1
0
1
0
1
0






,






0
1
0
1
0
1
0
1
0
1






,






0
1
1
0
1
0
0
1
1
0






,and






1
0
0
1
1
0
1
0
0
1






. (5)

The five pixels (the four pixels in the neighborhood and the central pixel) are traversed
left to right and top to bottom. So the first two entries of the four vectors correspond
to the labelling of the top pixel and the last two entries correspond to the bottom pixel
label.

Note that the label vectors are 10-dimensional, i.e., per pixel from the neighborhood
(five in total) a sub-vector of size two is used to encode the two possible labellings per
pixel. In general, if P is the number of pixels in the neighborhood including the central
pixel, these (KP )-dimensional vectors contain P ones, and (K − 1)P zeros, because
every pixel belongs to exactly one of K classes, and every pixels is thus represented by
a K-dimensional sub-vector. In the foregoing example where K = 2 and P = 5, there
are 5 ones and 5 zeros in the complete vector, and 1 one and 1 zero per sub-vector.

When taking the contextual label information into account in this way, gradual
changes in the neighborhood structure are appreciated. In Figure 1, configurations (a)
and (b) are as far from each other as possible (in terms of e.g. Euclidean or Hamming
distance, cf. the vectors in (5)), because in going from one configuration to the other, all
pixel sites have to change their labelling. Comparing a different pair of labellings from
Figure 1 to each other, we see that their distance is less than maximal, because it needs
less permutations to turn one contextual labelling into the other.

We propose the numeric class label encoding described above for incorporating
contextual class label information into the CCA, resulting in the canonical correlation
projection, CCCP, that can explicitly deal with gray value context—through the feature
vectors xi—as well as with class label context—through our numeric class label encoding
represented by the vectors yi. Note that CCCP encompasses classical LDA. Taking no
class label context into account but only the class label of the central pixel clearly reduces
CCCP to LDA.

3.5 Reduction to More than K −1K −1K −1 Dimensions

We return to one of the main drawbacks of LDA already mentioned: the fact that LDA
cannot reduce the dimensionality to more than K −1, i.e., the number of classes minus
1. In many segmentation tasks K is not higher than 2 or 3, in which case LDA can only
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extract 1 or 2 dimensions. Starting with a high-dimensional image feature space, it is
hardly to be expected that all relevant information is captured in this subspace.

The CCCP alleviates this limitation. The maximum number of canonical variates
that can be extracted through CCA equals min{rank(SX),rank(SY )}. When dealing
with as many as or fewer classes than the feature dimensionality, i.e., K ≤ n, the limiting
factor in the dimensionality reduction using LDA is the matrix SY which rank is equal
to (or even smaller than) K −1. However, by extending the class label context, the rank
of SY increases and can even get larger than rank(SX).

So in general, CCCP can provide more canonical variates than classical LDA by
incorporating more class label context.And consequently, for CCCP the resulting feature
dimensionality can be larger than K − 1. In the experiments in Section 4, it is shown
that this can significantly improve the segmentation results.

3.6 The CCCP Algorithm

The CCCP technique is summarized. A reduction of n-dimensional image data to d
dimensions is considered.

– define what (contextual) image feature information to use (e.g. which filters), and
which neighboring pixels to take for the class label context

– determine from the train images and associated segmentations the gray level feature
vectors xi

– determine from the same data the class label feature vectors yi, i.e., determine for
every pixel in the context its standard basis vector describing its class label and
concatenate all these vectors

– estimate the covariance matrices SXX , SXY , and SY Y

– do an eigenvalue decomposition of the matrix SX := S−1
XXSXY S−1

Y Y St
XY from (3)

– take the d rows of the d × n linear dimension reducing transformation matrix L
equal to the d eigenvectors associated to the d largest eigenvalues

– transform all xi using L to Lxi

4 Illustrative Experiments

This section exemplifies the theory by a simple illustrative example. The section is not
intended to present a full-fledged state-of-the-art solution to the task, but merely to
illustrate the possible improvements in performance when employing the CCCP instead
of the original LDA or no dimensionality reduction at all. For this reason, the task
considered is a lung field segmentation task in chest radiographs, which is based on
a simple pixel classification technique. A segmentation scheme solving this problem
properly may be based on snakes, active shape models, or some kind of Markov random
field, taking more global contextual and/or geometric information into account (cf. [8]).

4.1 Chest Radiograph Data

The data used in the experiments consists of 20 standard PA chest radiographs taken from
a tuberculosis screening programm. The size of the sub-sampled and digitized images
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Fig. 2. The left image displays a typical PA chest radiograph as used in our experiments. The right
image shows its expert lung field segmentation. The background is black, both lung fields are in
different shades of gray.

equals 128×128. An examples of a typical chest radiographs is shown in Figure 2. The
task is to segment, both lung fields.

In addition to the radiographs, the associated ground truth is given, i.e., in these
images, the the lung fields are manually delineated by an expert and the delineation is
converted to a 3-class pixel labelling. An example image is given in Figure 2 also.

4.2 Experimental Setup

In all experiment, 10 images were used for training and 10 for testing. The total number
of feature vectors equals 20 · (128−12)2 = 269,120 and train and test set both contain
half of it. Note that pixel within a distance of 6 pixels from the border are not taken into
account to avoid boundary problems in building up the contextual gray level features
(see below).

Experiments were conducted using a nonparametric 1 nearest neighbor (1NN) clas-
sifier. We chose to use a 1NN classifier for its simplicity and because it offers suitable
baseline results which makes a reasonable comparison possible [3,7,12]. Before the
1NN classifier was trained, the within-class covariance matrix SW was whitened (cf.
Subsection 3.1) based on the train data [7].

The variables in our experiments were the contextual class label information, and
the dimensionality d to which the data is to be reduced. The contextual class label
information belonging to one pixel pi is defined by all pixels coming from within a
radius of r pixels from pi. Experiments were performed with r ∈ {0,2,3}; r = 0 means
that only the central label belonging to pi is taken into account (equal to classical LDA),
r = 2 results in 13 contextual labels, and r = 3 in 29 contextual labels.

As contextual image features, we simply took the gray levels from neighboring
pixels into account, so no filtering or other preprocessing is performed. The contextual
information of pixel pi consisted of all raw gray values within a radius of 5 from this
pixel. In addition, the x and y coordinates were added to the image feature vector, which
final dimensionality totals 81 + 2 = 83. (Choosing to set the radius for the contextual gray
level information to 5 is based on a small pilot experiment using LDA. LDA performed
best with these settings.)
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The dimensionality d to reduce to were in the set {1,2,4,11,22,37,56,83}. N.B.
setting d equal to 83 means no dimensionality reduction is performed.

Using the aforementioned d, image features and contextual class label features, the
train set was used for determining the CCCP and training the 1NN classifier. Subse-
quently, using the test set, we determined the pixel classification error.

Fig. 3. The black dashed horizontal line indicates the performance of the pixel classification scheme
if no dimensionality reduction is employed and the full 83-dimensional feature vector is used in
the segmentation. The black solid line is the classification error obtained when using LDA. The
gray lines give the performance for the two different instances of CCCP. The dark gray line uses a
contextual radius of 2, while the light gray line uses a radius of 3. Their pixel classification error
is plotted against feature dimensionality d. The optimal classification errors are 0.22, 0.24, 0.12,
and 0.11, respectively.

4.3 Results

Figure 3 gives the results obtained by LDA, CCCP and no dimensionality reduction.
Note that for LDA (solid black line), the dimensionality can only be reduced to 1 or 2,
because the number of classes K is 3 (i.e., left lung field, right lung field, or background).
Note also the peaking behavior [4,12] that is visible in the plots of the CCCP results.

Both instances of CCCP clearly outperforms LDA and they give a dramatic improve-
ment over performing no dimensionality reduction as well. It should be noted, though,
that CCCP does not outperform LDA for every dimensionality d.

Figure 4 gives for the example image in Figure 2 the segmentation obtained by
the optimal LDA (left), the segmentation obtained by the optimal CCCP (middle), and
the one obtained using no reduction (right). Comparing the three images, the main
observations is that the CCCP-based segmentation gives much more coherent results
than the other segmentations. Furthermore, there seems to be less confusion between
left and right lung fields when CCCP is employed. The background classification error in
comparison with the result in the right image, however, seems to go up a bit when using
the CCCP approach. In the right image there are no misclassified background pixels, in
both other images there are.
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Fig. 4. The segmentation with optimal LDA (d = 2) is depicted on the left, the one with optimal
CCCP in the middle (d = 11 and r = 3), and on the right is the segmentation obtained using no
dimensionality reduction.

5 Discussion and Conclusions

In this work we extended classical LDA—as a dimensionality reduction technique—to
incorporate the spatial contextual structure present in the class labelling. Our extension,
called the canonical contextual correlation projection (CCCP), is based on a canonical
correlation formulation of LDA that enables the encoding of these spatial class label con-
figurations. Experiments on the task of segmenting the lung fields in chest radiographs
demonstrated that in this way significant improvement over LDA or no dimension re-
duction is possible. Furthermore, these experiments show also that using a data-driven
method for image segmentation—in which the dimension reduction is an essential part,
good results can be obtained without the additional utilization of task-dependent knowl-
edge. We expect that similar results hold in, for example, object detection, object classi-
fication or some other discriminative tasks in which CCCP can also be used to determine
low-dimensional but still discriminative features.

Clearly, regarding the experiments, improving the segmentation results should be
possible. For example, by using more complex pattern recognition techniques that can
also handle contextual class label information in their classification scheme. Typically,
such scheme employs a Markov random field approach, or something closely resem-
bling this [10,15,17]. Here CCCP could also be a valuable tool in another way. Due
to the iterative nature of these schemes they often are rather slow. In part, this may be
attributed to the large contextual neighborhoods that are taken into account. Lowering
the dimensionality of these neighborhoods can, in addition to improving the error rate,
speed up the iterative process considerably.

An interesting way to further improve the dimensionality reduction scheme is the
development of nonlinear CCCP. This is for example possible via a CCA-related tech-
nique called optimal scoring [9], which is, among other things, used for extending LDA to
nonlinear forms. Nonlinear dimensionality reduction can of course lead to a better lower-
dimensional representation of the image data, however the nonlinearity often makes such
approaches computationally hard. Nonetheless, CCCP does (via CCA) provide a proper
framework for these kind of extensions.

In conclusion, CCCP provides a general framework for linearly reducing contextual
feature data in a supervised way, it is well capable of improving LDA and can be ex-
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tended in several directions. It generalizes LDA by not only taking gray level context into
account, but incorporating contextual class label information as well. In a small segmen-
tation experiment, it was shown that CCCP can clearly give improvement performance
compared to LDA and no dimensionality reduction.
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