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Abstract

In classifier combination, it is believed that diverse ensembles have a better potential for improvement on the accuracy than non-

diverse ensembles. We put this hypothesis to a test for two methods for building the ensembles: Bagging and Boosting, with two

linear classifier models: the nearest mean classifier and the pseudo-Fisher linear discriminant classifier. To estimate diversity, we

apply nine measures proposed in the recent literature on combining classifiers. Eight combination methods were used: minimum,

maximum, product, average, simple majority, weighted majority, Naive Bayes and decision templates. We carried out experiments

on seven data sets for different sample sizes, different number of classifiers in the ensembles, and the two linear classifiers. Altogether,

we created 1364 ensembles by the Bagging method and the same number by the Boosting method. On each of these, we calculated

the nine measures of diversity and the accuracy of the eight different combination methods, averaged over 50 runs. The results

confirmed in a quantitative way the intuitive explanation behind the success of Boosting for linear classifiers for increasing training

sizes, and the poor performance of Bagging in this case. Diversity measures indicated that Boosting succeeds in inducing diversity

even for stable classifiers whereas Bagging does not.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A classifier is any function D by which we assign a

class label x from a set of predefined labels X ¼
fx1; . . . ;xcg to an object represented as a data point x in
a real n-dimensional space Rn. In the general case, the

classifier output is a c-dimensional vector ½d1ðxÞ; . . . ;
dcðxÞ�T where diðxÞ is the degree of ‘‘support’’ given by

classifier D to the hypothesis that x comes from class xi,

i ¼ 1; . . . ; c. Without loss of generality we can restrict

diðxÞ within the interval ½0; 1�, and call the classifier

outputs ‘‘soft labels’’. Most often diðxÞ is an estimate of

the posterior probability P ðxijxÞ. In some cases, ‘‘crisp’’
class labels are required, i.e., diðxÞ 2 f0; 1g, andPc

i¼1 diðxÞ ¼ 1. These can be obtained by ‘‘hardening’’

the soft labels by assigning the largest value to 1 (the

winning class label), and the remaining values to 0. Ties

are resolved arbitrarily.

Classifier combination aims at a higher accuracy than

that of a single D. The literature on classifier combina-

tion highlights the necessity of measuring and using

the degree of diversity, independence, orthogonality,

complementarity, etc., which are intuitively desirable
characteristics of a classifier team [5,13,16,23,29,34].

Theoretically, a group of independent classifiers will

improve upon the single classifier when majority vote

combination is used. A dependent set of classifiers may

be either better or worse [22]. Sometimes the difference

is beneficial to the ensemble and yet sometimes it might

be harmful. There is no consensus on what a ‘‘good’’

measure of diversity should be. The conceptual difficulty
in defining diversity can be illustrated by an example.

Assume that we have tested the L classifiers forming an

ensemble on a data set of N ¼ 100 (N > LP 3) objects

(data points); each classifier recognizes all but one data

points; and each classifier fails on a different point. Thus

the estimated individual accuracy of each classifier is

0.99. Obviously, the classifier outputs are highly related,

as a large amount of coincident decisions occur: the
decisions of every pair of classifiers coincide in 98 out of

100 cases. Intuitively, this means that the diversity is
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low, and there is no gain in combining the classifiers.
From another point of view, however, if we combine the

classifier outputs, e.g., by taking the majority vote, we

will arrive at a correct decision in all 100 cases. Thus the

small outstanding improvement of 1% on the individual

accuracy can be achieved through combining these ‘‘not

too diverse’’ classifiers. So the potential for improve-

ment is small, but this is all that is needed in this case. If

we want diversity to measure the potential for im-
provement, what should its value be for this example,

high or low? To account for this variety of viewpoints, in

our experiments we use nine measures of diversity.

Bagging, Boosting, 1 Arcing 2 and the Random sub-

space method are guidelines for constructing classifier

ensembles by varying the inputs. In this study we chose

Bagging and Boosting which have shown good perfor-

mance on various data sets [1,6].
Once the ensemble is put together, different combi-

nation methods can be used to derive the final class label

of an object from the individual classifier outputs. In

this study we used eight simple methods: minimum,

maximum, product, average, simple majority, weighted

majority, Naive Bayes and decision templates. These

were selected with the idea to explore the potential of the

ensemble beyond the traditional simple majority voting
for Bagging and weighted majority voting for Boosting.

We were interested whether diversity of the ensembles

constructed by Bagging and Boosting would exhibit a

relationship with the accuracy of some of the combi-

nation methods.

The rest of the paper is organized as follows. Section

2 explains Bagging and Boosting. Section 3 introduces

the nine measures of diversity and the eight combination
methods. The experiments are described in Section 4.

Section 5 offers our conclusions.

2. Bagging and Boosting

2.1. Bagging

Bagging and Boosting are strategies for creating

classifier ensembles, similar by the concept, yet with

fundamental differences [9]. Bagging was proposed by

Breiman [2] and extended further to Arcing [3,4] to ac-

commodate the adaptive incremental construction of the
ensemble which underlies the Boosting method (ex-

plained later). Bagging creates the classifiers in the en-

semble by taking random samples with replacement

(bootstrap sampling [7]) from the data set and building

one classifier on each bootstrap sample. The final clas-

sification decision for an unlabeled data point x is made

by taking the majority vote over the class labels pro-
duced by the L classifiers.

The true strength of Bagging is for unstable classifiers,

such as neural networks and decision trees. Unstable

classifiers are sensitive to small alterations in the data set.

Thus, training the same classifier model on two slightly

different training sets might result in substantially dif-

ferent classifiers. The classifiers might have similar

overall accuracies but the parameters (e.g., the weights of
the Neural Network) will differ, leading to a natural

ensemble diversity. Ideally, this diversity will appear by

the two classifiers recognizing correctly different objects

from the data set, i.e., having ‘‘expertise’’ in different

regions in the feature space. Bootstrap sampling is used

to provide the random small alterations of the data set.

Bagging has been found to be inefficient for linear

classifiers trained on large data sets, as these are stable
classifiers [1,2,6,32]. This means that if linear classifiers

(e.g., the nearest mean classifier, NMC) are trained on

two very similar large data sets (e.g., bootstrap samples)

the two classifiers will be virtually identical. Small dif-

ferences in the data, will not lead to much difference in

the estimates of the class means. So the inefficiency of

Bagging for this case can be attributed to the lack of

diversity in the ensemble. Linear classifiers might also
become unstable if the training size is small. Then any

alteration in the data set will have a major effect on the

result, thus making the classifiers different from each

other. The danger here is that, if we resort to very small

training sample sizes (as we do in this study), the overall

accuracy of the members of the ensemble will be low,

and so will be the combined one. Thus the combination

might not even reach the performance of a single linear
classifier trained on the whole training data set.

2.2. Boosting

Boosting has been proposed and refined in a series of
works by Freund and Schapire [8], leading to its most

successful implementation called AdaBoost (Adaptive

Bootstrapping). While Bagging relies on random and

independent changes in the training data implemented by

bootstrap sampling, Boosting advocates guided changes

of the training data to direct further classifiers toward

more ‘‘difficult cases’’. In this way, a certain desirable

diversity is induced in the classifier team. At each step
one classifier is added to the team. The training set for

this classifier is obtained from the data set Z ¼
fz1; . . . ; zNg, using a coefficient (weight) for each indi-

vidual sample point. This coefficient at step k, say, WkðiÞ,
corresponds to the ‘‘difficulty’’ in recognizing point zi by

the previously added member of the ensemble. The

higher the coefficient, the higher the difficulty. The co-

efficients are modified at each step. Boosting has two
major implementations: Boosting by resampling and

Boosting by reweighting. In the resampling version, the

1 From ‘‘Bootstrap aggregating’’.
2 From ‘‘Adaptive reweighting and combining’’.
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coefficients WkðiÞ are used as a probability distribution
on Z and the bootstrap sample is drawn from this dis-

tribution. Thus, multiple copies of the ‘‘difficult’’ points

are likely to appear in the next training set, focusing the

‘‘expertise’’ of the classifier onto a problematic region in

the feature space. In the reweighting implementation we

assume that the training algorithm can take in individ-

ual data weights, and so we feed WkðiÞ, and use the whole
of Z. There has been a debate about the merits of both
implementations and their theoretical backup [1,3,9] and

the evidence so far is inconclusive either way. In this

study we use the reweighting method only.

There are many versions of the Boosting algorithm

including variants of the classical AdaBoost. Below we

describe the version used in the current study. Initially, all

coefficients are set to W1ðiÞ ¼ 1=N , i ¼ 1; . . . ;N . We start

with an empty classifier ensembleD ¼ ; and initialize the
iterate counter k ¼ 1. At iterate k, we first construct the

classifierDk to be added to the ensemble (D ¼ D [ fDkg),
and then calculate its error Ek using the weights Wk

Ek ¼
XN
i¼1

WkðiÞð1� yi;kÞ; ð1Þ

where yi;k ¼ 1 if Dk gives the correct label of zi, and

yi;k ¼ 0, otherwise. In a sense, yi;k is an ‘‘oracle’’ output,

and is only applicable to the labeled data set Z. Note the
oracle output for later when diversity measures are

considered. If Ek ¼ 0 or Ek P 0:5, the weights WkðiÞ are
reinitialized to 1. Next we calculate

bk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ek

Ek

s
; Ek 2 ð0; 0:5Þ; ð2Þ

to be used in the weighted voting, and subsequently

update the individual weights

Wkþ1ðiÞ ¼
WkðiÞbð1�yi;kÞ

kPN
j¼1 WkðjÞb

ð1�yj;kÞ
k

; i ¼ 1; . . . ;N : ð3Þ

The ensemble construction procedure terminates at

iterate L, and the gradually built ensemble is D ¼
fD1; . . . ;DLg. The final decision for a new object x is

made by weighted voting between the L classifiers. First,
all classifiers give labels for x and then for allDk that gave

label xt, we calculate the support for that class by

ltðxÞ ¼
X

DkðxÞ¼xt

lnðbkÞ: ð4Þ

The class with the maximal support is chosen for x.

3. Combination methods

Let D ¼ fD1;D2; . . . ;DLg be the set of trained clas-
sifiers and X ¼ fx1; . . . ;xcg be the set of class labels.

Denote by di;jðxÞ the support given by classifier Di for

the hypothesis that the given input x comes from class
xj, i ¼ 1; . . . ; L, j ¼ 1; . . . ; c. The L classifier outputs

D1ðxÞ; . . . ; DLðxÞ are then combined to get a label for x.

Depending on the type of the classifier outputs and the

combination rule, we can get a soft final output

DðxÞ ¼ ½l1ðxÞ; . . . ; lcðxÞ�
T
or a crisp one DðxÞ 2 X.

Here we consider eight combination methods which

include the most popular choices: majority vote (Bag-

ging), weighted majority vote (Boosting), average, min-
imum, maximum, product, Naive Bayes and decision

templates [19].

For the majority vote combination, the class label

assigned to x is the one that is most represented in the

set of L crisp class labels obtained from D. The weighted

majority uses (4) with coefficients lnðbkÞ calculated as in

(2). In this case, Ek is the error of classifier Dk using (1)

with WkðiÞ ¼ 1=N .
For the remaining simple combination methods,

ljðxÞ ¼ O d1;jðxÞ; . . . ; dL;jðxÞ
� �

; j ¼ 1; . . . ; c; ð5Þ

where O is the respective operation (maximum, mini-

mum, average or product). For the case of two classes,

maximum is always equivalent to minimum [18]. 3 This

equivalence is valid only if for any classifier Di,

di;1ðxÞ þ di;2ðxÞ ¼ C, where C is a constant. If di;j are

estimates of the posterior probabilities, then C ¼ 1.
Naive Bayes combination considers crisp class labels

DiðxÞ 2 X and assumes that the probability that the true

class is xk for a given x is proportional to the product of

the probabilities P xkjDiðxÞð Þ, i ¼ 1; . . . ; L. The partici-

pating conditional probabilities are estimated from the

training data.

Decision templates method uses soft class labels [19].

The classifier outputs can be conveniently organised in
the so called decision profile as the matrix DPðxÞ ¼
½di;jðxÞ�, i ¼ 1; . . . ; L, j ¼ 1; . . . ; c. Given L (trained)

classifiers, c decision templates are calculated from the

data, one template per class

DTi ¼
1

Ni

X
zj2xi
zj2Z

DPðzjÞ; i ¼ 1; . . . ; c; ð6Þ

where Ni is the number of elements of z from xi.

DTi can be regarded as the expected DPðxÞ for class xi.

The support for the class offered by the combination of

the L classifiers, liðxÞ, is then found using a measure of

(dis)similarity between the current DPðxÞ and DTi, e.g.,

dEðDPðxÞ;DTiÞ ¼
Xc

j¼1

XL

k¼1
ðdk;jðxÞ � dtiðk; jÞÞ2; ð7Þ

where dtiðk; jÞ is the k, j-th entry in decision template

DTi. Here we use the squared Euclidean distance but

3 There were small differences in our experiments due to the random

tie break.
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other measures of (dis)similarity can also be applied [17].

The highest similarity value will determine the class label

of x. With the Euclidean distance, we can think of the

decision templates combination method as a NMC in

the L� c-dimensional space of the soft classifier outputs.

The DTi�s are the means of the classes, and the winning

label is determined by the distance to the nearest mean.

A summary of the eight classifier combination
methods is given in Table 1.

4. Measures of diversity

Diversity may be interpreted differently, as suggested

in the introduction. Hence, there are different diversity

measures in the literature. Some of these measures, such

as the Q-statistic and the correlation coefficient have

come directly from mainstream statistics, others have

their origins in software engineering and comparing of

software versions, and yet another group of measures
have been proposed specifically for the problems of

multiple classifier systems.

4.1. Pairwise measures

The joint output of two classifiers, Di and Dk, can be
represented in a 2� 2 table as shown in Table 2.

In this study we use four pairwise measures of di-

versity.

The Q-statistic (Q). Yule�s Q-statistic [37] for two

classifiers, e.g., Di and Dk, is

Qi;k ¼
ad � bc
ad þ bc

: ð8Þ

Q varies between �1 and 1, and for statistically inde-
pendent classifiers it is 0. For a set of L classifiers, we

calculate the averaged Q of all pairs.

The correlation coefficient (q). The correlation be-

tween two binary classifier outputs is

qi;k ¼
ad � bcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaþ bÞðcþ dÞðaþ cÞðbþ dÞ
p : ð9Þ

For any two classifiers, Q and q have the same sign, and

it can be proved that jqj6 jQj.
The disagreement measure (D) (used in [14,31])

Di;k ¼ bþ c: ð10Þ
The double-fault measure (DF) (used in [14,31])

DFi;k ¼ d: ð11Þ
All these pairwise measures have been proposed as

measures of similarity or dissimilarity (in a different

context) in the numerical taxonomy literature (e.g., [33]).

4.2. Non-pairwise measures

Six non-pairwise measures of diversity are described
below. Consider again the labeled data set Z ¼ fz1;
. . . ; zNg sampled from the classification problem in

question. Recall the ‘‘oracle’’ output of a classifier Di

and organize it as an N-dimensional binary vector

yi ¼ ½y1;i; . . . ; yN ;i�T, such that yj;i ¼ 1, if Di recognises

correctly zj, and 0, otherwise, i ¼ 1; . . . ; L.
Kohavi–Wolpert variance (kw). Denote by lðzjÞ the

number of classifiers from D that correctly recognise zj,
i.e., lðzjÞ ¼

PL
i¼1 yj;i. Taking the formula for the variance

from [15] and applying simple manipulations, the di-

versity measure becomes

kw ¼ 1

NL2
XN
j¼1

lðzjÞðL� lðzjÞÞ: ð12Þ

The entropy measure (Ent). The highest diversity
among classifiers for a particular zj 2 Z is manifested by

bL=2c of the votes in yj with the same value (0 or 1) and

the other L� bL=2c with the alternative value. If they all
were 0�s or all were 1�s, there is no disagreement, and the
classifiers cannot be deemed diverse. One possible

measure of diversity based on this concept is

Ent ¼ 1

N

XN
j¼1

1

ðL� dL=2eÞ min
XL

i¼1
yj;i; L

(
�
XL

i¼1
yj;i

)
:

ð13Þ
Ent varies between 0 and 1, where 0 indicates no

difference and 1 indicates the highest possible diversity.

While value 0 is achievable for any number of classifiers

L and any p, value 1 can only be attained for

p 2 ðL� 1Þ=2L; ðLþ 1Þ=2L½ �. Ent is similar up to a non-
linear monotonic transformation to the entropy measure

proposed in [5].

Table 1

A summary of the eighth combination methods used

Method Notation Classifier outputs Extra parameters

Majority vote MAJ Class labels None

Weighted ma-

jority vote

WMAJ Class labels Weights for the

classifiers

Naive Bayes NB Class labels Conditional prob-

abilities

Maximum MAX Soft labels None

Minimum MIN Soft labels None

Average AVR Soft labels None

Product PRO Soft labels None

Decision tem-

plates

DT Soft labels Decision templates

Table 2

The 2� 2 relationship table with probabilities

Dk correct (1) Dk wrong (0)

Di correct (1) a b
Di wrong (0) c d

Total, aþ bþ cþ d ¼ 1.
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The measure of difficulty (h). The idea for this mea-
sure came from a study by Hansen and Salomon [12].

We define a discrete random variable X taking values in

f0=L; 1=L; . . . ; 1g and denoting the proportion of clas-

sifiers in the ensemble that correctly classify an input x

drawn randomly from the distribution of the problem.

The measure of difficulty, h, is defined as

h ¼ VarðX Þ: ð14Þ

The higher the value of h, the worse the classifier team.

The next two measures of diversity came from the

literature on comparing different versions of software

for analysis of reliability.

Generalised diversity (GD). This measure has been
proposed in [28]. Let Y be a random variable expressing

the proportion of classifiers (out of L) that fail on a

randomly drawn object x 2 Rn. Denote by pi the prob-
ability that Y ¼ i=L. (Note that Y ¼ 1� X , where X
is the variable introduced for h). Denote by pðiÞ the

probability that i randomly chosen classifiers will fail on

a randomly chosen x. Then

pð1Þ ¼
XL

i¼1

i
L
pi; ð15Þ

and

pð2Þ ¼
XL
i¼1

i

L

ði� 1Þ
ðL� 1Þ pi: ð16Þ

The generalised diversity measure, GD, is

GD ¼ 1� pð2Þ
pð1Þ : ð17Þ

Coincident failure diversity (CFD). This is a modifi-

cation of GD proposed in [27]

CFD ¼ 0; p0 ¼ 1:0;
1

1�p0

PL
i¼1

L�i
L�1 pi; p0 < 1:



ð18Þ

4.3. Grouping of the measures

Beside pairwise and non-pairwise, we can group the

measures in two other ways. First, with respect to what

the high values indicate, the measures are

• Ascending: measures looking for diversity: the higher

the value the more diverse ð"Þ.
• Descending: measures looking for similarity: the

higher the value the less diverse ð#Þ.

The second important grouping feature is the sym-

metry of the measures with respect to the correct and the

incorrect outputs [30]. Intuitively, measures of diversity

should be symmetrical (we use the symbol �j�) because a
set of identical classifiers should be classed as non-

diverse, regardless of whether they are all correct or all
wrong. That is, if the 0�s (incorrect votes) and the 1�s
(correct votes) in the classifier outputs are swapped, the

measure of diversity should be the same. Otherwise, the

diversity measure is non-symmetrical (marked by ���).
Table 3 shows a summary of the nine measures of

diversity including their types, and literature sources.

Table 4 shows the toy example. Given are L ¼ 2

classifiers, each of accuracy 0.99. Assume that on the
training set Z consisting of N ¼ 100 labeled data points,

the two classifiers err on two different objects. Then

a ¼ 0:98, b ¼ c ¼ 0:01, and d ¼ 0 (refer to Table 2). The

ranges of the measures for L ¼ 2 classifiers are shown

first regardless of the individual accuracy, and then for an

individual accuracy of p ¼ 0:99 as in our toy example

[20]. The value of the measures for two independent

classifiers each of accuracy p ¼ 0:99 is shown in column
three. The measures for the toy example are shown in

the fourth column. At a first glance, the possible ranges

and the diversity values for the example hold conflicting

views. Judging by columns 3 and 6 only, some of the

measures class the toy ensemble as highly diverse

(compare the value to the possible ranges), (Q, DF, GD

and CFD), another group of measures find the ensemble

to be close to independent (q and h), and a third group
find it non-diverse (D, Ent, kw). Looking at the ranges

Table 3

Summary of the nine measures of diversity

Name Notation " = # P/Na Sb Source

Q-statistic Q ð#Þ P j [37]

Correlation coefficient q ð#Þ P j [33]

Disagreement measure D ð"Þ P j [14,31]

Double-fault measure DF ð#Þ P � [10]

Kohavi–Wolpert variance kw ð"Þ N j [15]

Entropy measure Ent ð"Þ N j [21]

Measure of difficulty h ð#Þ N � [12]

Generalised diversity GD ð"Þ N � [28]

Coincident failure diversity CFD ð"Þ N � [27]

a P stands for ‘‘pairwise’’, N stands for ‘‘non-pairwise’’.
b The column S shows symmetry: (j) symmetrical measures; (�) non-symmetrical measures.
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for the specific p, however, the majority of the measures

have marked the toy example as most diverse. This

observation brings in the Accuracy–Diversity dilemma,

stating generally that highly accurate classifiers cannot

be very diverse. Indeed, this is demonstrated by the low

values of D, Ent, and kw. The problem is that the in-

terval of possible values of diversity is restricted by the
high value of p. Some measures, however, do not share

this problem, e.g., Q, DF, GD and CFD. There is no

consensus on which group of measures is ‘‘better’’,

which led us to use all the measures in our study, hoping

to spot a relationship with the accuracy of the ensemble.

5. Experiments

We used the nine measures of diversity with the eight

combination methods and the two ensemble building

strategies: Bagging and Boosting. The experimental

setup is described below. Table 5 contains a description

of the seven datasets used.

1. 80-D correlated Gaussian data. This is an 80-dimen-
sional data set consisting of two Gaussian classes

with equal covariance matrices; 500 vectors sampled

from each class. The mean of the first class is zero

for all the features. The mean of the second class is

6 for the first feature, and 0 for all the remaining fea-

tures. The common covariance matrix has a variance

of 41 for the first two features and a unit variance for

all the other features. the covariances for x1 and x2

are 39, and all the remaining entries in the matrix

are 0. Thus, there are two relevant features (needed

jointly) and 78 irrelevant features.

2. 80-D rotated Gauss data. In order to spread discrimi-

nation power evenly over all features, we have rotated

the 80-dimensional correlated Gaussian data set in the

whole 80-dimensional feature space. The rotation was
performed by using a Hadamard matrix [11].

The other five data sets:

3. Pima Indians Diabetes data;

4. Ionosphere data;

5. Wisconsin Diagnostic Breast Cancer data;

6. Sonar data; and

7. German data

are available at UCI Machine Learning Repository Dat-

abase as indicated in Table 5. Table 6 shows the data

sizes sampled as the training data from each data set.

The testing was done on the remaining parts of the data

sets. The results reported next are the average of 50 in-

dependent runs with each setup.

In all cases, 11 ensemble sizes L were used: f2; 3; 4; 5;
7; 10; 20; 50; 100; 200; 250g.

We wanted to keep the experiments as simple as

possible and this led us to compromises and subsequent

limitations:

1. All data sets have only two classes.

2. Two linear classifier models have been used as base

classifiers: the NMC and the pseudo-Fisher linear dis-

Table 4

Ranges of the nine measures of diversity and values for the toy example (p ¼ 0:99)

Notation Type Possible range for

L ¼ 2, any p
Restricted range for

L ¼ 2, p ¼ 0:99

Independence value for

L ¼ 2, p ¼ 0:99

Toy example for

L ¼ 10, p ¼ 0:99

Q ð#Þ ½�1; 1� ½�1; 1� 0.0000 �1:0000
q ð#Þ ½�1; 1� ½�0:0101; 1� 0.0000 �0:0101
D ð"Þ ½0; 1� ½0; 0:0200� 0.0198 0.0200

DF ð#Þ ½0; 1� ½0; 0:01� 0.0001 0.0000

kw ð"Þ ½0; 0:5� ½0; 0:0050� 0.0050 0.0050

Ent ð"Þ ½0; 1� ½0; 0:0200� 0.0099 0.0200

h ð#Þ ½0; 0:25� ½0; 0:0099� 0.0050 0.0049

GD ð"Þ ½0; 1� ½0; 1� 0.9900 1.0000

CFD ð"Þ ½0; 1� ½0; 1� 0.9950 1.0000

Table 5

Summary of the seven two-class data sets used

Database n N P̂Pmax (%) Past usage (%) Availability

80-D correlated Gauss 80 1000 50.00 93 Delft

80-D rotated correlated Gauss 80 1000 50.00 93 Delft

Pima Indians Diabetes 8 768 65.10 80 UCI

Ionosphere 34 351 64.10 92 UCI

Wisconsin Diagnostic Breast Cancer 30 569 62.74 97.5 UCI

Sonar 60 198 56.06 90 UCI

German 24 1000 70.00 72 UCI

n: number of features; N: number of cases in the database; P̂Pmax: the largest class proportion; Past usage: shows the highest accuracy reported

elsewhere; UCI: http://www.ics.uci.edu/�mlearn/MLRepository.html; Delft: The data is available from hmarina@ph.tn.tudelft.nli.
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criminant classifier [32] which might favor Boosting

over Bagging. The classifiers that we used were unsta-

ble for small data sizes varying from three samples

per class to the ‘‘critical’’ size (dimensionality of the

feature space). The classifiers were stable for larger

data sizes making Bagging inefficient for the latter

case [32]. On the other hand, we measure diversity be-
tween the classifier outputs. Thus, if there is a strong

relationship between diversity and accuracy it will

show regardless of the classification model we used

to produce the outputs.

3. The training set was constructed with equal amount

of data point from each class, simulating equal prior

probabilities, and this was not always close to reality.

We consider the strength of our study to be the scale

of the experimentation: seven data sets, two classifier

models, eight combination methods, nine diversity

measures, 7–10 data sizes, and 11 ensemble sizes. The

relatively small training sizes and our choice of simple

base classifiers were prerequisites for a feasible experi-

ment. The choice of the training sizes was dictated by

the need to ‘‘destabilize’’ the base classifiers thereby

making them suitable for Bagging and Boosting. In-

deed, too simple classifiers trained on small data sets

might generate poor members of the ensemble, and

though diverse, they will not be much accurate alto-

gether. This is one of the caveats in our study, hence we

confine our conclusions to Bagging and Boosting of

linear classifiers.
Before setting up a study on the effect of the data size

and the number of the classifiers in the ensemble on the

relationship between diversity and accuracy, we decided

to pool the results together and look for a general pat-

tern of relationship between diversity and accuracy.

We put together all ensembles created by varying the

training data size for the seven data sets (62 combina-

tions altogether, the number of the non-empty cells in
Table 6) the number of classifiers L (11 values) and the

two classifier models. Thus, a total of 62� 11� 2 ¼ 1364

ensembles were designed by Bagging, and the same

number designed by Boosting. On each ensemble, we

calculated the accuracies of the 8 combination methods

and the nine measures of diversity. Tables 7 and 8 show

the correlation in % between the eight accuracies for

Bagging and Boosting, respectively. Given the high

Table 7

Correlation in % between the accuracies of the eight combination methods for BAGGING

WMAJ AVR MIN MAX PRO NB DT

MAJ 99 99 63 62 67 87 98

WMAJ 99 67 67 70 89 99

AVR 68 67 71 89 99

MIN 100 99 87 70

MAX 98 86 70

PRO 89 72

NB 90

Table 8

Correlation in % between the accuracies of the eight combination methods for BOOSTING

WMAJ AVR MIN MAX PRO NB DT

MAJ 90 94 88 88 92 93 88

WMAJ 98 99 99 99 98 99

AVR 98 98 100 99 98

MIN 100 99 97 99

MAX 99 97 99

PRO 98 99

NB 98

Table 6

Training data sizes for the seven data sets

Correlated Gauss 3 5 10 15 20 30 40 50 100 200

Rotated correlated Gauss 3 5 10 15 20 30 40 50 100 200

Pima Indians Diabetes 3 4 7 10 20 50 100 200

Ionosphere 3 5 10 17 30 50 100

Wisconsin Diagnostic Breast Cancer 3 5 10 15 20 30 50 100 200

Sonar 3 5 10 15 20 30 50 80

German 3 5 10 12 15 20 30 50 100 200
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positive values, especially for Boosting, we decided to

pool the results for the combination methods as well.

This led to a total of 10,944 pairs of values diversity/

accuracy for each diversity measure for Bagging, and the

same amount for Boosting.

Figs. 1–4 show the scatterplots of the accuracy versus

diversity for Bagging and Boosting. Each point in the

plots corresponds to one ensemble. Together with the
accuracy, we calculated the improvement on the single

classifier trained on the entire (respective) training set.

The resultant plots of the improvement versus diversity

are also shown.

Figs. 5 and 6 show an excerpt from the results for

the two traditional combination rules: the majority

voting for Bagging and the weighted majority voting for

Boosting, separately for the seven data sets. In Fig. 5, we

have plotted the testing accuracy versus diversity mea-

sure Q for different values of the training samples. The

line joins the diversity–accuracy points ‘‘starting’’ from

the smallest training size (denoted by a star) and ‘‘end-

ing’’ with the largest size (denoted by a gray circle). The

coordinates of each points are the averages across all

ensemble sizes, L (recall that each of these estimates is
itself an average of 50 independent runs). Fig. 6 depicts

the diversity–accuracy plots with respect to the ensemble

sizes. The coordinates of each points are the averages

across all training sizes. The figures show how the

Bagging and Boosting manage to induce diversity, and

whether the (traditional) ensemble accuracy benefits

from this diversity.

Fig. 1. (j) Symmetrical (#) measures of diversity.

Fig. 2. (�) Non-symmetrical (#) measures of diversity.
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6. Discussion

The purpose of the experiment was to allow us to spot

visually any pattern between diversity and accuracy that

can guide our further studies. This is why we grouped

the diversity measures once by their type (ð#Þ and ð"Þ)
and second by the symmetry characteristic.

The first conspicuous observation from the scatter-

plots 1–4 is that there is no strong relationship between

diversity and accuracy, whether it be linear or non-lin-

ear. There is however a general trend shown by the

Boosted ensembles whereby higher diversity means

generally higher accuracy and also higher improvement

on the single accuracy. The most visually pleasing

Fig. 3. (j) symmetrical (") measures of diversity.

Fig. 4. (�) Non-symmetrical (") measures of diversity.
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relationship is found between DF and h on the one hand
and the Boosting accuracy on the other hand. The
‘‘clouds’’ of points are stretched along a negative slope

expressing the relationship ‘‘the higher the diversity (low

values of the measures), the higher the accuracy’’.

However, this relationship is not mirrored on the right

hand side where the improvement over the single classi-

fier is plotted. We have to note here that DF and h are
non-symmetrical (�) measures, which suggests that they

are indirectly related to the accuracy of the team. In-

deed, both measures have an accuracy connotation by

definition. Whether or not this is a reasonable approach

Fig. 5. Accuracy–diversity plots for training sizes (all L together).
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for defining diversity remains an open issue. If we

wanted a measurement of accuracy, why do we not
measure the accuracy directly? Or why not use a sim-

plified version of accuracy?

Boosting was expected to fare better because it

enforces diversity by design, whereas Bagging has no
such mechanism. It relies instead on the natural diversity

of independent bootstrap samples.

Fig. 6. Accuracy–diversity plots for ensemble sizes (all training sizes together).
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Curiously, the accuracy trends for Bagging and
Boosting are diametrically opposite for all symmetrical

(j) diversity measures. For the group of non-symmet-

rical measures the Bagging accuracy plot has a peculiar

cloud shape with little regularity in it. The opposite

trends for the symmetrical measures suggest that in the

current experimental setup for Bagging, the diverse en-

sembles consisted of weak classifiers, and so could not

reach a reasonable ensemble accuracy, whereas non-
diverse ensembles consisted of better classifiers and were

more accurate altogether.

All diversity measures exhibit a ‘‘tornado’’ pattern for

the improvement on the single accuracy for Boosting. At

the lowest values of diversity, there is little or no scatter

around the single accuracy: an ensemble of identical

classifiers will not improve on the single classifier. The

higher the diversity, the bigger the spread of the possible
accuracies; some accuracies are below the single accu-

racy (due to ‘‘bad diversity’’) and majority of the ac-

curacies are above the 0 line, indicating increasing

improvement. Interestingly, the ‘‘tornado’’ pattern is

present for the corresponding Bagging scatterplots but

higher diversity in the ensemble is not coupled with

higher accuracy; only the spread shows up. This suggests

that we have not chosen a setup where Bagging is effi-
cient, and possibly, another base classifier model would

lead to a relationship pattern between diversity and ac-

curacy similar to that for Boosting, however vague that

might be.

The separate accuracy–diversity plots in Figs. 5 and 6

highlight the opposite ways in which Bagging and

Boosting behave with respect to diversity. An almost

consistent pattern through all data sets is observed in
Fig. 5. With increasing the training size, Boosting makes

use of the chance to induce diversity in the ensemble,

whereas Bagging typically brings diversity down (Q

approaching 1). Hence Boosting reaches higher accuracy

except for the Wisconsin Breast Cancer data where the

accuracies are very similar, and for the German data

where Bagging achieves a slightly higher accuracy. For

the German data, Boosting also fails to produce the
pattern seen in the other plots. Interestingly, the plot for

the Wisconsin Breast Cancer data also shows a setback

in the increasing diversity, and Boosting levels up with

the Bagging. The values of Q are noticeably higher than

these for all other plots which shows the failure of the

ensemble methods. For this data set, one single classifier

build on a large training set will suffice (the end points

of the Bagging line diagram, where Q � 1, signifying
identical classifiers). Thus five of the seven plots show a

clear behavioral pattern suggesting that Boosting bene-

fits from larger training sizes by inducing diversity while

Bagging drives the ensemble towards similar members of

generally higher individual accuracy.

The relationship between diversity and accuracy with

respect to L, the size of the ensembles, is rather blurred

(Fig. 6). Our preliminary results (not displayed here)
where plots were produced for a specific training size,

did not show a consistent relationship either, for nei-

ther small nor large training sizes. Ideally, diversity

should be helpful in deciding at what point adding new

classifiers becomes non-profitable or even deteriorating.

Such a pattern shows up for the Ionosphere data in

Fig. 6 for the Boosting polygon. The most diverse en-

semble had the highest accuracy, and increasing L be-
yond this point brought the accuracy down. The next

best alternative is to be able to stop the training at a

certain small L, assuming that the accuracy will not

improve much if we add more classifiers. A certain

tendency of this type appears on the plots for the Sonar

data and the Pima Indian Diabetes data where the

accuracy for Boosting levels off after a certain L is

reached. On all the graphs in Fig. 6 Bagging shows
little or no relationship with diversity when the en-

semble size is concerned, so measuring diversity in this

case is pointless.

7. Conclusions

This paper explores the relationship between diversity

and accuracy on a large scale experiment. Bagging and

Boosting have been nominated for the generation of

ensembles of two models of linear base classifiers. Dif-

ferent sizes of the ensembles and the training data sets

were considered using seven two-class data sets. Eight
combination methods were applied with similar accu-

racies which led us to pool all the results so that we can

plot and analyze a general ‘‘accuracy’’ versus different

measures of diversity. We noted the conceptual differ-

ences between diversity measures available in the liter-

ature but found out later in the experiments that, with

small exceptions, the measures worked rather in agree-

ment. There were no strong relationships but some in-
teresting patterns were identified and discussed in the

text. It was found out that Boosting produced more

diverse ensembles, and the general trend was that the

higher the diversity, the higher the accuracy. At higher

diversities, the improvement values are typically dis-

persed, with more of them on the positive side (ac-

counting for ‘‘good diversity’’) but yet some on the

negative side (due to ‘‘bad diversity’’), indicating that
highly diverse ensembles can be worse than the indi-

vidual average.

The separate plots in Fig. 5 confirm the intuitive

hypothesis that for linear base classifiers and large

samples Boosting is better than Bagging. Our study

suggested an answer to why this happens by looking at

different training sizes and comparing the performances

of the two ensemble building methods with regard to
their diversity. Boosting works by inducing diversity (Q
decreases and the accuracy of the ensemble increases)
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whereas Bagging relies on good ‘‘all-round experts’’ and
ultimately leads to ensembles of clones of a single most

competent expert (Q is driven towards 1).

Two caveats. First, the conclusions here are valid for

the chosen experimental setup and might differ if we

used other classifier models and training sizes. Decision

trees and neural networks are typical choices for base

classifiers. For these choices, moderate data sets should

be used because too small sets might lead to quick
overtraining and poor generalization, and too large data

sets will allow building a single good classifier, thereby

dismissing the need for an ensemble. Training of a few

thousand ensembles, some of which of 250 members,

was not seen feasible resource-wise for our experimental

plan.

Second, using the oracle classifier outputs yi is only

one way to try to quantify diversity. A drawback of this
approach is that the diversity measures can be calculated

only for labeled data. The next ‘‘level of detailization’’ of

the classifier outputs (called ‘‘abstract level’’ in [36]) is to

take the crisp labels and measure diversity on these.

Some measures for this case have already been in use,

and, in fact, we modified them to fit in our binary oracle-

output model [5,15]. At the most detailed level (‘‘mea-

surement level’’ in [36]), the soft class labels can be used
for calculating diversity. The most popular measure has

been the correlation between di;j and dk;j for class xj. A

sum of correlations for xj weighted by the prior prob-

abilities PðxjÞ, j ¼ 1; . . . ; c, has been used in [34,35]

to derive a relationship between correlation and im-

provement on the accuracy when average combination

method is used. The supposedly beneficial negative

correlation has been the backbone of the negative cor-
relation training of Neural Networks [24–26,29]. There

is a spectrum of other possible measures of diversity for

this case. It will be interesting to parallel the results

found for oracle outputs with these at the abstract and

measurement levels.

So, is the quest for quantifying and measuring di-

versity overemphasized? The lack of a general strong

relationship would suggest a positive answer. However,
the lack of a pattern might not be such a ‘‘negative’’

finding after all. Our study shows that diversity is gen-

erally beneficial but it is not a substitute for accuracy.

And it need not be! So instead of trying to find an elu-

sive relationship, maybe we should shift the focus of our

study and consider diversity as an extra dimension in the

search for better ensemble building methodologies.

References

[1] E. Bauer, R. Kohavi, An empirical comparison of voting

classification algorithms: Bagging, boosting, and variants, Ma-

chine Learning 36 (1999) 105–142.

[2] L. Breiman, Bagging predictors, Machine Learning 26 (2) (1996)

123–140.

[3] L. Breiman, Arcing classifiers, The Annals of Statistics 26 (3)

(1998) 801–849.

[4] L. Breiman, Combining predictors, in: A.J.C. Sharkey (Ed.),

Combining Artificial Neural Nets, Springer-Verlag, London,

1999, pp. 31–50.

[5] P. Cunningham, J. Carney. Diversity versus quality in classifica-

tion ensembles based on feature selection, Technical Report TCD-

CS-2000-02, Department of Computer Science, Trinity College

Dublin, 2000.

[6] T.G. Dietterich, Ensemble methods in machine learning, in: J.

Kittler, F. Roli (Eds.), Multiple Classifier Systems, Lecture Notes

in Computer Science, vol. 1857, Springer, 2000, pp. 1–15.

[7] B. Efron, R. Tibshirani, An Introduction to the Bootstrap,

Chapman & Hall, NY, 1993.

[8] Y. Freund, R.E. Schapire, A decision-theoretic generalization of

on-line learning and an application to boosting, Journal of

Computer and System Sciences 55 (1) (1997) 119–139.

[9] Y. Freund, R.E. Schapire, Discussion of the paper Arcing Classi-

fiers byLeoBreiman,TheAnnals of Statistics 26 (3) (1998) 824–832.

[10] G. Giacinto, F. Roli, Design of effective neural network ensembles

for image classification processes, Image Vision and Computing

Journal 19 (9–10) (2001) 699–707.

[11] S.W. Golomb, L.D. Baumert, The search for Hadamard matrices,

American Mathematics Monthly 70 (1963) 12–17.

[12] L.K. Hansen, P. Salamon, Neural network ensembles, IEEE

Transactions on Pattern Analysis and Machine Intelligence 12 (10)

(1990) 993–1001.

[13] S. Hashem, B. Schmeiser, Y. Yih, Optimal linear combinations of

neural networks: an overview, in: IEEE International Conference

on Neural Networks, Orlando, Florida, 1994, pp. 1507–1512.

[14] T.K. Ho, The random space method for constructing decision

forests, IEEE Transactions on Pattern Analysis and Machine

Intelligence 20 (8) (1998) 832–844.

[15] R. Kohavi, D.H. Wolpert, Bias plus variance decomposition for

zero-one loss functions, in: L. Saitta (Ed.), Machine Learning:

Proc. 13th International Conference, Morgan Kaufmann, 1996,

pp. 275–283.

[16] A. Krogh, J. Vedelsby, Neural network ensembles, cross valida-

tion and active learning, in: G. Tesauro, D.S. Touretzky, T.K.

Leen (Eds.), Advances in Neural Information Processing Systems,

vol. 7, MIT Press, Cambridge, MA, 1995, pp. 231–238.

[17] L.I. Kuncheva, Using measures of similarity and inclusion for

multiple classifier fusion by decision templates, Fuzzy Sets and

Systems 122 (3) (2001) 401–407.

[18] L.I. Kuncheva, A theoretical study on expert fusion strategies,

IEEE Transactions on Pattern Analysis and Machine Intelligence

24 (2) (2002) 281–286.

[19] L.I. Kuncheva, J.C. Bezdek, R.P.W. Duin, Decision templates for

multiple classifier fusion: an experimental comparison, Pattern

Recognition 34 (2) (2001) 299–314.

[20] L.I. Kuncheva, C.J. Whitaker, Ten measures of diversity in

classifier ensembles: limits for two classifiers, in: Proc. IEE Work-

shop on Intelligent Sensor Processing, Birmingham, IEE, 2001,

pp. 10/1–10/6.

[21] L.I. Kuncheva, C.J. Whitaker. Measures of diversity in classifier

ensembles. Machine Learning, in press.

[22] L.I. Kuncheva, C.J. Whitaker, C.A. Shipp, R.P.W. Duin, Is

independence good for combining classifiers?, in: Proc. 15th

International Conference on Pattern Recognition, Barcelona,

Spain, vol. 2, 2000, pp. 169–171.

[23] L. Lam, Classifier combinations: implementations and theoretical

issues, in: J. Kittler, F. Roli (Eds.), Multiple Classifier Systems,

Lecture Notes in Computer Science, vol. 1857, Springer, 2000, pp.

78–86.

[24] Y. Liu, X. Yao, Negatively correlated neural networks for

classification, in: Proc. 3rd International Symposium on Artificial

Life and Robotics (AROBIII�98), Japan, 1998, pp. 736–739.

L.I. Kuncheva et al. / Information Fusion 3 (2002) 245–258 257



[25] Y. Liu, X. Yao, Simultaneous learning of negatively correlated

neural network, in: Proc 9th Australian Conference on Neu-

ral Networks (ACNN�98), Brisbane, Australia, 1998, pp. 183–
187.

[26] Y. Liu, X. Yao, Ensemble learning via negative correlation,

Neural Networks 12 (1999) 1399–1404.

[27] D. Partridge, W. Krzanowski, Distinct failure diversity in multi-

version software, personal communication.

[28] D. Partridge, W.J. Krzanowski, Software diversity: practical

statistics for its measurement and exploitation, Information and

Software Technology 39 (1997) 707–717.

[29] B.E. Rosen, Ensemble learning using decorrelated neural net-

works, Connection Science 8 (3/4) (1996) 373–383.

[30] D. Ruta, B. Gabrys, Application of the evolutionary algorithms

for classifier selection in multiple classifier systems with majority

voting, in: J. Kittler, F. Roli (Eds.), Proc. Second International

Workshop on Multiple Classifier Systems, Lecture Notes in

Computer Science, vol. 2096, Springer-Verlag, 2001.

[31] D.B. Skalak, The sources of increased accuracy for two proposed

boosting algorithms, in: Proc. American Association for Artificial

Intelligence, AAAI-96, Integrating Multiple Learned Models

Workshop, 1996.

[32] M. Skurichina, Stabilizing Weak Classifiers, Ph.D. thesis, Delft

University of Technology, Delft, The Netherlands, 2001.

[33] P.H.A. Sneath, R.R. Sokal, Numerical Taxonomy, W.H. Free-

man & Co, 1973.

[34] K. Tumer, J. Ghosh, Error correlation and error reduction in

ensemble classifiers, Connection Science 8 (3/4) (1996) 385–404.

[35] K. Tumer, J. Ghosh, Linear and order statistics combiners for

pattern classification, in: A.J.C. Sharkey (Ed.), Combining Arti-

ficial Neural Nets, Springer-Verlag, London, 1999, pp. 127–161.

[36] L. Xu, A. Krzyzak, C.Y. Suen, Methods of combining multiple

classifiers and their application to handwriting recognition, IEEE

Transactions on Systems,Man, andCybernetics 22 (1992) 418–435.

[37] G.U. Yule, On the association of attributes in statistics, Philos.

Trans., A 194 (1900) 257–319.

258 L.I. Kuncheva et al. / Information Fusion 3 (2002) 245–258


	An experimental study on diversity for bagging and boosting with linear classifiers
	Introduction
	Bagging and Boosting
	Bagging
	Boosting

	Combination methods
	Measures of diversity
	Pairwise measures
	Non-pairwise measures
	Grouping of the measures

	Experiments
	Discussion
	Conclusions
	References


