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Abstract

Spectral imaging is frequently used in various industrial sorting applications. Spectral images of objects,
moving on the conveyor belt are processed by a pattern recognition system and classified into one of pre-
specified high-level classes. Because these terminal decisions are often defined in terms of material types
(e.g. of lower-level classes), a sorting application generally poses a multi-modal pattern recognition problem
with multiple levels (spectra, objects, materials, and high-level decisions). It remains an open question how
to design high-performance and fast classifiers applicable in such situations.

In this paper, we propose a strategy based on a decomposition of the multi-modal problem into a set of
two-class sub-problems formed by pairs of clusters originating from different classes. Based on individual
spectra, a specific feature representation and classifier is derived for each sub-problem. The outcomes of
the sub-problem classifiers are fused using a trainable combiner. The final assignment on the object level is
carried on by majority voting of the per-spectrum decisions. On a set of experiments with an industrial paper
sorting dataset, we discuss the proposed methodology comparing it with several state-of-the art techniques.
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1 Introduction

Spectral imaging has become a frequently used technique in numerous industrial applications such as quality
control, material inspection or sorting. Spectral images of objects, moving on a conveyor belt, are acquired by
the imaging spectrometer and processed by pattern recognition algorithms assigning each object to one of pre-
defined categories. Although the basic building blocks used in sorting pattern recognition systems are individual
spectra or pixels, the objective is to sort objects i.e. connected groups of spectra. Moreover, as the eventual
system decisions are often defined in terms of multiple material (sub)types, a sorting application represents a
pattern recognition system operating on multiple levels, namely spectra, objects, materials and the high-level
decisions. This multi-level nature of sorting systems translates into an inherent multi-modality of corresponding
spectral datasets.

The problem of multi-modal data distributions has been recognized by several researchers. Hoffbeck and
Landgrebe [5] proposed to cluster the multi-modal data and apply the uni-modal classifier model, such as
maximum-likelihood (ML) classifier to individual modes. Berge and Solberg [2] discuss the estimation of multi-
modal class-conditional densities using a mixture model based on penalized likelihoods and an EM algorithm.
Bachmann et.al. [1] use the Projection Pursuit technique to produce lower-dimensional data representations
preserving multi-modality instead of Principal Component Analysis (PCA) which is incapable of detecting multi-
modal or non-Gaussian situations. An alternative approach dealing with multi-modal situations is based on
non-parametric techniques such as the Parzen classifier or the nearest neighbor rule. Especially the dissimilarity-
based techniques has have been shown to perform well in classification of spectra [7, 9].

Currently used approaches deal with multi-modality in spectral datasets in one step i.e. derive a single, more
complex, classifier attempting to solve the complete problem at once. We have proposed an alternative solution
decomposing a multi-modal problem into a collection of simpler sub-problems that can be tackled independently.
In this paper, we describe a preliminary study on properties and behavior of this decomposition-based algorithm
and provide first experimental results on a real-world paper sorting dataset.

2 Decomposition-based algorithm

Our starting point is a classification problem where some or all of the classes exhibit internal multi-modality.
The modes of high-level classes may be defined apriori as different materials, types of defects or known specimen
varieties. In some situations, prior information on structure of high-level classes is not available. Then, the class
modes may be identified using cluster analysis. A schematic example of the multi-modal classification problem
is given in Figure 1. Each of the two classes A and B contains two clusters.

Our proposal is to decompose a complex multi-modal classification problem into a set of simpler sub-problems
and tackle these independently. Because the eventual goal is separation of high-level classes, we define the two-
class sub-problems by considering all pairs of clusters from different classes. For each of the sub-problems,



we construct a specific data representation and a classifier. As only data examples from the two clusters are
considered in this step, not the complete dataset, the sub-problem classifiers may focus on the context specific
clues. Following the example in Figure 1, the sub-problem consisting of cluster A1 against cluster B2 will require
a simpler data representation and classifier than the sub-problem consisting of clusters A1 and B1.

We propose to leverage the local expertise of sub-problem classi-
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Figure 1: Schematic picture of a two-
class multi-modal classification prob-
lem with classes A and B. Each class
contains two clusters.

fiers by combining their outputs. We assume that the sub-problem
classifiers estimate confidences that a given observation originates
from each of the sub-problem clusters. We adopt a trained combin-
ing rule learning the pattern in the sub-problem classifier responses
from the available training data (see Figure 2). The advantage of this
approach over the fixed combining rules is that arbitrary classifier ar-
chitectures may be mixed. In order to construct a trainable combiner,
a second-stage training dataset comprising sub-problem classifier out-
puts must be build. This is done by executing the trained sub-problem
classifiers on the entire available training dataset1 The second-stage
classifier is trained on the outputs of all sub-problem classifiers, col-
lated into one set and labeled by the high-level class labels.

The proposed strategy shares some similarities with the multi-
class Bayesian Pairwise Classifier (BPC) proposed by Kumar et.al. in [6]. BPC classifier derives for each pair
of classes a separate set of features and a classifier. The combination is performed by the majority voting
on the decisions of elementary classifiers. The main difference is that the approach, proposed by us, tackles
multi-modal, multi-class problems while BPC was proposed as a general multi-class classifier.

3 Experimental setup

In order to assess the performance of the proposed decomposition-based algorithm and to compare it with other
techniques, we conducted a set of experiments on an industrial paper sorting problem. Hyperspectral images of
paper pieces (objects) on the conveyor belt were acquired by an imaging spectrograph N17 from Specim Ltd.
using a SU-128 InGaAs camera. The spectra were normalized using black and white reference images. The
dataset contains in total 108 373 spectra measured on 290 objects. The objects are grouped into two high-level
classes, one comprised of three and the other of six material types. The spectral measurements consist of 128
wavelengths.

The goal of our experiments is to understand differences
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Figure 2: Training of the proposed
decomposition-based algorithm on the
dataset 1

between various pattern recognition strategies for object sort-
ing. We assume a perfect object detector and focus solely on
the evaluation of object classification algorithms. The com-
mon strategy, used in all experiments, was to train a classifier
of individual spectra using either terminal high-level classes or
material labels. When executed on new data, all object pixels
are first labeled by a given spectral classifier. The decision on
the object as a whole is performed by majority voting. Note
that this approach is based on our prior knowledge that each
object is composed of a single material. A more complex post-
processing scheme for situations where an object may contain
multiple material classes is discussed by Leitner et.al. in [7].

For the sake of algorithm development, a design set of 133
randomly selected objects (48 721 spectra) was constructed.
During development, the algorithms were evaluated on the de-
sign set in a cross-validation fashion. The experimental results,
presented in this paper, were obtained by training a selected subset of algorithms on the full design set and
evaluating them using an independent set of 64 objects (25 474 spectra) unseen during the design stage.

Existing studies on hyperspectral object sorting systems discuss in detail per-spectrum error rates averaged
over classes [7, 12]. Although this gives an indication on the separability of given classes by the spectral sensor, it
does not provide any information on the eventual performance of the overall sorting system. In order to estimate
the sorting performance, the error over objects needs to be computed. Therefore, we present the experimental
results in a form of per-object error ROC curves relating the error rates on both classes (see Figure 3). Due
to its independence on prior probabilities, the ROC curve provides for a two-class situation more informative

1This strategy is recommended only for datasets with large number of examples. In small sample-size problems, re-using the
training set for both stages will yield a biased combiner. In such situations, the second-stage training set may be constructed using
a different strategy, such as stacked generalized [10].



performance characteristics than the average error rate. The following section gives a more detailed description
of the used algorithms and comments on the experimental results.
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D: tr.comb, material, FLD, sigm.
E: tr.comb, clusters, FLD, sigm.

(a) methods based on the proposed problem de-
composition using sub-problem classifiers and
followed by a trainable combiner.
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(b) comparison with unimodal and dissimilarity-
based algorithms

Figure 3: Per-object ROC curves expressing errors on both classes for different algorithms on paper dataset.

4 Discussion
Figure 3(b) illustrates that the methods assuming uni-modality such as PCA, followed by Fisher Linear Discrim-
inant (FLD) or SIMCA [13] provide only poor per-object classification performances. The dissimilarity-based
methods exhibit more robustness. We have exploited the prior knowledge on the existence of objects in the
dataset and used mean objects spectra as prototypes. A significant improvement over the performance of the
nearest neighbor rule (triangular markers) is reached when the correlations between dissimilarities to prototypes
are exploited (circular markers). This is done by training the FLD classifier in the dissimilarity space [8, 9].
Other experiments, omitted here for the sake of brevity, show that the derivative-based dissimilarity measure
[8, 9] performs better than the Spectral Angle Mapper and that comparable performances may be also reached
using large sets of randomly selected prototypes. This, however, leads to excessive computational requirements
as execution complexity grows linearly with the number of prototypes.

The Figure 3(a) comprises five variants of the proposed decomposition-based approach, denoted A to E. In
all cases, the FLD was used for both the base (sub-problem) classifiers and the trained combiner. We have
investigated three different design questions:

1. Is it beneficial to extract specific features for each sub-problem or to use the original wavelengths directly
as features? We have employed the top-down Generalized Local Discriminant Bases (GLDB) feature
extractor, proposed by Kumar et.al. [6]. The GLDB algorithm selects groups of adjacent wavelengths and
derives a linear extractor for each group.

2. What are the merits of normalizing the outputs of base classifiers by a non-linear sigmoid? The sigmoid
transformation is used in order to obtain comparable confidence-like outputs [4]. It introduces a non-
linearity into the second-stage training set and thereby yields a non-linear object classifier. The sigmoidal
parameter is trained in a maximum-likelihood manner.

3. What is the difference between a decomposition leveraging prior information on material classes and a
clustering-based approach? The high-level classes are composed of three and six material types respec-
tively. This means, that 18 two-class sub-problems were considered and the combiner was trained on a 36D
second-stage dataset. A stability-based clustering [11] was employed by method E using the mode-seeking
algorithm [3] operating on the derivative dissimilarity. Interestingly, also the automatically selected solu-
tion consisted of three and six clusters.

An interesting outcome of our experiments is that the non-linearity, introduced by the sigmoidal mapping,
significantly improves the algorithm performance (compare the method A versus C, and B versus D). The non-
linear methods C and D even outperform the FLD classifier trained in dissimilarity space, Figure 3(b), which is
also non-linear due to the used derivative-based distance. Note that the methods C and D somewhat resemble



a neural network architecture. The proposed algorithm differs from neural network structures in the problem
decomposition step, and deterministic two-stage training process which is less prone to overtraining.

While the extraction of specific features for each sub-problem is beneficial in case of fully-linear algorithms
A and B, it is slightly decreasing the performance in case the sigmoidal mapping is used. The decomposition
based on prior knowledge on materials is clearly beneficial to the unsupervised, clustering-based approach.
Nonetheless, the clustering-based algorithm still yields significantly better performance than classical tools or
dissimilarity-based methods employing the nearest neighbor rule.

Training the SIMCA classifier on apriori known materials and combining the per-material models using the
same trainable combiner approach (Figure 3(b), dashed line, square markers) yields worse results than when
SIMCA is applied to the multi-modal high-level classes directly (solid line with cross markers). The main
difference between the per-material SIMCA algorithm and the proposed method lays in the nature of the used
sub-problems. As a class descriptor, SIMCA models each of the materials by a PCA-like method. On the other
hand, the proposed decomposition-strategy uses between-cluster discriminants. We hypothesize that it may be
the combination of discriminants rather than of descriptors what yields high-accuracy multi-modal classifiers.

5 Conclusions

In this paper, we proposed to discriminate highly multi-modal classes using a two-stage algorithm decomposing
the problem into several simpler sub-problems, building discriminants for pairs of clusters from different classes,
and combine their outputs by a trainable combiner. The preliminary results on a real-world paper sorting
application suggest this approach delivers performance comparable to advanced dissimilarity-based classifiers
for a fraction of execution cost.
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[8] P. Pacĺık and R. P. W. Duin. Classifying spectral data using relational representation. In R. Leitner, editor, Spectral
Imaging (Proc. Int.Workshop on Spectral Imaging, Austrian Computer Society, Vienna, pages 31–34, April 2003.
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