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Abstract

In lesion diagnostics, it is sometimes hard to choose
which data normalization is the best among the other ones.
They all give a similar performance, but the information
retrieved from the data can be different. In such a case, a
combined decision of several classifiers constructed on
differently normalized data can be used. Our simulation
study performed on the autofluorescence spectra measured
in the oral cavity shows that combining different data
normalization techniques is useful, when a trained
combiner is used as an aggregating rule for combining the
classifiers.

1. Introduction

In the diagnosis of potentially cancerous lesions, one is
interested in an accurate faultless detection of lesions. This
can be done only when an accurate representation of
healthy and diseased tissues is provided. However, in
practice when taking the measurements, large variations
within one group (class) of objects (e.g. healthy tissues or
diseased tissues) may occur which are caused by the
measuring equipment and/or the diversity of measured
objects. To get rid of unnecessary deviations in the data
description it might be useful to normalize the data, making
representations of objects belonging to the same data class
similar to each other. Usually when normalizing the data,
some general information about the data classes is
retrieved. But some part of the useful information can be
lost. Different normalization techniques retrieve different
information about the data classes. Sometimes it is quite
hard to single out a normalization technique that ensures
the best performance for a particular dataset. In such a
case, it might be beneficial to combine several

normalization techniques when solving the problem. One
way to do this is to use a combined decision of several
classifiers constructed on differently normalized data
instead of a single decision of the classifier obtained on the
uniquely normalized data. 

In this paper we test this idea for lesion diagnostics
performed on the autofluorescence spectra measured in the
oral cavity [1]. We study the performance of single
classifiers constructed on differently normalized data and
the combined decision of these classifiers. This study is
carried out for a 2-class problem. We consider non-
normalized autofluorescence spectra and three types of
spectra normalization: Unit Area normalization [2],
Standard Normal Variate transformation [3,4] and
Savitzky-Golay smoothing and differentiation [4,5]. To
evaluate the quality of lesion classification, the
Regularized Linear Classifier [6] and the Regularized
Quadratic Classifier [6] assuming normal class densities
are used. We also investigate the effectiveness of different
combining rules when aggregating the classifiers.

2. Data and Normalization Techniques

The data consist of the autofluorescence spectra
acquired from healthy and diseased mucosa in the oral
cavity. The measurements were performed at the
Department of Oral and Maxillofacial Surgery of the
University Hospital of Groningen [1]. Autofluorescence
spectra were collected from 97 volunteers with no
clinically observable lesions of the oral mucosa and 137
patients having lesions in oral cavity. The measurements
were taken at 11 different anatomical locations with
excitation wavelength 365 nm. After preprocessing [1]
each spectrum consists of 199 bins (pixels/wavelengths). In
total, 857 spectra representing healthy tissue and 112
spectra representing diseased tissue were obtained. 



For spectra normalization three normalization
techniques are used: 

• Unit Area normalization (UA)

where ai is an intensity of a spectrum A={a1, ...., a199} at
bin i, i=1,...,199.

• Standard Normal Variate transformation (SNV) [3,4]

where M is the mean and S is the standard deviation of a
spectrum A. 

• Savitzky-Golay smoothing and differentiation (SG)
[4,5] which is based on performing a least squares linear
regression fit of a polynomial of degree k over s data points
around each point in the spectrum to smooth the data. We
have used the second degree (k=2) polynomial over s=11
bins for smoothing and taken the first derivative of the
smoothed spectrum. 

Additionally each spectrum (for non-normalized and
normalized data) is scaled to be within the interval [-1;1].

Non-normalized and normalized autofluorescence
spectra representing healthy and diseased tissues are
illustrated in Fig. 1. The medians of autofluorescence
spectra for healthy and diseased mucosa are presented in
Fig. 2. One can see that different normalization techniques
perform differently: dissimilar information may be
retrieved from the data. In general, normalization reduces
the variance of spectral intensity between spectra
belonging to the same data class. However, some
information is lost: the distance between the spectral
medians may become smaller. This may result in poor
lesion diagnostics. 

As the measurements at different wavelengths (bins) are
strongly correlated, the dimensionality of the problem can
be reduced. Such a reduction, in view of the limited
number of available samples (we have only 112 spectra
representing diseased tissues), can also help to construct a
better, more stable classifier [7]. To perform the
dimensionality reduction we have applied the principal
component analysis (PCA). We have retained 10 leading
principal components (that describe 99% of the total
variation in the data). 
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Figure 1. The non-normalized and normalized autoflu-
orescence spectra for healthy and diseased mucosa in
oral cavity. 
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Figure 2. The medians of non-normalized and normal-
ized autofluorescence spectra for healthy and diseased
mucosa in oral cavity. 
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3. Combining Classifiers

Let us now consider the usefulness of combining
different normalization techniques in the diagnosis of
potentially cancerous lesions. We intend to compare the
quality of lesion diagnostics when only one normalization
technique (or non-normalized data) is used with a case
when all described above normalization techniques are
involved in lesion classification. In order to evaluate the
quality of lesion diagnostics, we use 2 statistical classifiers.
The first one is the regularized Linear Classifier (LC),
which constructs a linear discriminant function assuming
normal class distributions and using a joint class
covariance matrix for both data classes. The second one is
the regularized Quadratic Classifier (QC) assuming normal
class densities, with regularization parameter λ=10-7. To
obtain our classification results the leave-one-out approach
is used. The classification errors (the average of the class
errors) of the LC and the QC obtained on leave-one-out for
non-normalized and normalized data are presented in the
upper part of table 1. The standard deviation of the
obtained classification errors is about 0.014. 

We can see that normalizing spectra is useful. But which
normalization technique should be preferred over the other
ones is a difficult question to answer. For the linear
classifier, the unit area normalization and the standard
normal variate transformation is a good choice. However,

for the quadratic classifier, they both fail. Only Savitzky-
Golay smoothing is beneficial. As all normalization
techniques transform data in a different way and therefore
retrieve different information from the data, it might be
worthwhile to use them all for the diagnosis of potentially
cancerous lesions. 

In order to involve all normalization techniques in
lesion classification, we use an approach of combining the
classifiers. In this approach, decisions of single classifiers
constructed on uniquely normalized data are aggregated
into a combined decision. To get a combined decision of all
four classifiers constructed on differently normalized data
(non-normalized, normalized by unit area, SNV
transformation and Savitzky-Golay smoothing), we
aggregated the outputs (either obtained labels L or
posterior probabilities P) of these classifiers by several
combining rules. We have used five fixed combiners:
weighted majority and simple majority voting (applied to
labels) [8], and the product, the mean and the maximum
combining rules (applied to posterior probabilities) [9]. We
have also used one trained combiner - the Nearest Mean
Classifier (NMC) [6] (that is almost identical to decision
templates method [10]) applied to both labels L and
posterior probabilities P obtained by the classifiers to be
combined. The classification errors (the average of the
class errors) of the combined decisions are also estimated
using leave-one-out cross-validation technique. They are
presented in the lower part of table 1. The standard
deviations of the classification errors are between 0.012
and 0.015.

Analysing the results of our simulation study we can see
that for our application combining different normalization
techniques was not beneficial when fixed combiners were
used. Only using a trained combiner on posterior
probabilities obtained by single classifiers constructed on
uniquely normalized data was useful. We have gained a
reasonable improvement for both linear and quadratic
classifiers. This occurred because the trained combiner (the
nearest mean classifier in our case) retrieves additional
information from confidences (the posterior class
probabilities) of single classifiers when making a final
decision, while fixed combiners are not able to perform
this. 

4. Conclusions

In lesion classification it is important to get an accurate
faultless detection of lesions. This can be challenging if
data have a high variance that is caused by measurement
techniques and/or variability of measured objects. As a
result, the overlap between data classes can be large and
lesion diagnostics becomes poor. In order to reduce the
variance in data, data normalization can be performed.
However, sometimes it is hard to determine the optimum

Table 1: The leave-one-out classification errors (the
average of the class errors) for single and combined
linear and quadratic classifiers constructed on the first
10 principal components.

LC QC

No 0.253 0.253

UA 0.210 0.326

SNV 0.200 0.310

SG 0.246 0.225

wmajority 0.214 0.243

majority 0.248 0.225

product 0.214 0.280

mean 0.214 0.279

max 0.218 0.284

NMC(L) 0.203 0.184

NMC(P) 0.156 0.174



normalization technique: they all perform equally but the
information retrieved by them is different. In this case, it is
possible to involve several normalization techniques in
lesion classification by using a combined approach when
decisions of single classifiers constructed on differently
normalized data are aggregated into a final decision. In this
case, one can benefit from using the information retrieved
by different normalization techniques in lesion diagnostics.

We have tested the approach of combining different
normalization techniques for the diagnosis of potentially
cancerous lesions performed on autofluorescence spectra
measured in the oral cavity. Our simulation study has
shown that combining single classifiers obtained on
differently normalized data is useful when a trainable
aggregating rule is used for making a final decision.
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