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Abstract. Locally linear embedding (LLE) is a recently proposed
method for unsupervised nonlinear dimensionality reduction. It has a
number of attractive features: it does not require an iterative algorithm,
and just a few parameters need to be set. Two extensions of LLE to su-
pervised feature extraction were independently proposed by the authors
of this paper. Here, both methods are unified in a common framework
and applied to a number of benchmark data sets. Results show that they
perform very well on high-dimensional data which exhibits a manifold
structure.

1 Introduction

In many real-world classification problems, high-dimensional data sets are col-
lected, e.g. from sensors. Often, the ideal decision boundary between different
classes in such sets is highly nonlinear. A classifier should therefore have many
degrees of freedom, and consequently a large number of parameters. As a result,
training a classifier on such data sets is quite complicated: a large number of
parameters has to be estimated using a limited number of samples. This is the
well-known curse of dimensionality.

One can overcome this problem by first mapping the data to a high-
dimensional space in which the classes become (approximately) linearly sepa-
rable. Kernel-based techniques, such as support vector machines (SVMs), are
typical examples of this approach. An alternative is to lower the data dimen-
sionality, rather than increase it. Although it might seem information is lost, the
reduction in the number of parameters one needs to estimate can result in bet-
ter performance. Many linear methods for performing dimensionality reduction,
such as principal component analysis (PCA) and Fisher’s linear discriminant
analysis (LDA) are well-established in literature.

Here, a nonlinear dimensionality reduction method called locally linear em-
bedding (LLE, [8]) is considered. The main assumption behind LLE is that the
data set is sampled from a (possibly nonlinear) manifold, embedded in the high-
dimensional space. LLE is an unsupervised, non-iterative method, which avoids



the local minima problems plaguing many competing methods (e.g. those based
on the EM algorithm). Some other advantages of LLE are that few parameters
need to be set (selecting optimal values for these is discussed in [3, 6]) and that
the local geometry of high-dimensional data is preserved in the embedded space.

To extend the concept of LLE to multiple manifolds, each representing data
of one specific class, two supervised variants of LLE were independently proposed
in [3, 5]. In this paper, a framework unifying the unsupervised and both super-
vised methods is given. Supervised LLE is then applied as a feature extractor on
a number of benchmark data sets, and is shown to be useful for high-dimensional
data with a clear manifold structure.

2 LLE framework

2.1 LLE

As input, LLE takes a set of N D-dimensional vectors assembled in a matrix
X of size D × N . Its output is a set of N M -dimensional vectors (M � D)
assembled in a matrix Y of size M × N , where the kth column vector of Y
corresponds to the kth column vector of X. First, the N ×N Euclidean distance
matrix ∆ between all samples is constructed. For each sample xi, i = 1, . . . , N ,
its K nearest neighbours are then sought; their indices are stored in an N ×K
matrix Γ , such that Γij is the index of the j-nearest neighbour of sample xi.

In the first step, each sample xi is approximated by a weighted linear com-
bination of its K nearest neighbours, making use of the assumption that neigh-
bouring samples will lie on a locally linear patch of the nonlinear manifold. To
find the reconstruction weight matrix W , where W iΓij

contains the weight of
neighbour j in the reconstruction of sample xi, the following expression has to
be minimised w.r.t. W [8]:

εI(W ) =
N∑

i=1

‖ xi −
K∑

j=1

WiΓij
xΓij

‖2, (1)

subject to the constraint
∑K

j=1 WiΓij
= 1. It is easy to show that each weight

can be calculated individually [8]. For each sample xi, construct a matrix Q with
Qjm = 1

2 (∆iΓij
+∆iΓim

−∆ΓijΓim
). Let R = (Q+rI)−1, where r is a suitably cho-

sen regularisation constant (see [3]). Then WiΓij
= (

∑K
m=1 Rjm)/(

∑K
p,q=1 Rpq).

In the second and final step, the weights stored in W are kept fixed and an
embedding in IRM is found by minimising w.r.t. Y :

εII(Y ) =
N∑

i=1

‖ yi −
K∑

j=1

WiΓij
yΓij

‖2 . (2)

This minimisation problem can be solved by introducing the constraint that
the embedded data should have unit covariance, i.e. 1

nY Y T = I (otherwise,
Y = 0 would minimise (2)). As a result, (2) is minimised by carrying out an



eigen-decomposition of the matrix M = (I−W )T (I−W ) [8]. The eigenvectors
corresponding to the 2nd to (M + 1)st smallest eigenvalues then form the final
embedding Y ; the eigenvector corresponding to the smallest eigenvalue corre-
sponds to the mean of the embedded data, and can be discarded to obtain an
embedding centered at the origin.

After embedding, a new sample can be mapped quickly by calculating the
weights for reconstructing it by its K nearest neighbours in the training set,
as in the first step of LLE. Its embedding is then found by taking a weighted
combination of the embeddings of these neighbours [3, 9].

LLE has been shown to be useful for analysis of high-dimensional data sets [3,
5, 6, 8]. A typical example is visualisation of a sequence of images, e.g. showing a
person’s face slowly rotating from left to right. For such data sets, LLE finds em-
beddings in which the individual axes correspond (roughly) to the small number
of degrees of freedom present in the data.

2.2 Supervised LLE

Supervised LLE (SLLE, [3, 5]) was introduced to deal with data sets containing
multiple (often disjoint) manifolds, corresponding to classes. For fully disjoint
manifolds, the local neighbourhood of a sample xi from class c (1 ≤ c ≤ C)
should be composed of samples belonging to the same class only. This can be
achieved by artificially increasing the pre-calculated distances between samples
belonging to different classes, but leaving them unchanged if samples are from
the same class:

∆′ = ∆ + α max(∆)Λ, α ∈ [0, 1], (3)

where Λij = 1 if xi and xj belong to the same class, and 0 otherwise. When
α = 0, one obtains unsupervised LLE; when α = 1, the result is the fully
supervised LLE introduced in [5] (called 1-SLLE). Varying α between 0 and 1
gives a partially supervised LLE (α-SLLE) [3].

For 1-SLLE, distances between samples in different classes will be as large
as the maximum distance in the entire data set. This means neighbours of a
sample in class c will always be picked from that same class. In practice, one
therefore does not have to compute (3), but instead one can just select nearest
neighbours for a certain sample from its class only. 1-SLLE is thereby a non-
parameterised supervised LLE. In contrast, α-SLLE introduces an additional
parameter α which controls the amount of supervision. For 0 < α < 1, a map-
ping is found which preserves some of the manifold structure but introduces
separation between classes. This allows supervised data analysis, but may also
lead to better generalisation than 1-SLLE on previously unseen samples.

2.3 Feature extraction

For α = 1, the distance matrix represents C fully disconnected classes, each
of which should be mapped fairly by LLE. These added degrees of freedom
are used in the second step (2) to separate the classes, using the eigenvectors
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Fig. 1. (a) First, third and fourth feature of the iris set (N = 150, D = 4, C = 3).
(b)-(d) (S)LLE embeddings (M = 2), with trained nearest mean classifier.

corresponding to the 2nd to Cth smallest eigenvalues, just as the first one was
used to discard the mean of the data. Mapped classes are separated due to the
constraint 1

nY Y T = I, and all samples in a certain class are mapped on a single
point in IRC−1. The optimal embedding dimensionality M therefore is C−1. For
α-SLLE, this is not necessarily optimal, as this method is a trade-off between
LLE and 1-SLLE. An automatic setting for M can be found by demanding
that locally, on average, 90% of the variance is retained in the remaining M
dimensions [3]. This local intrinsic dimensionality estimate is denoted by ML.

The feature extraction process is illustrated in Figure 1: the C = 3 classes in
the iris data set [1] are mapped onto single points by 1-SLLE. α-SLLE retains
some of the class structure, but reduces within-class dispersion compared to LLE.
Clearly, SLLE is suitable as a feature extraction step prior to classification. And,
although internal structure of each class is (partially) lost during mapping, class
overlap can easily be visualised in the C − 1 dimensional space.

The idea behind SLLE is related to that of spectral clustering [10]. There,
first an affinity matrix between all samples is calculated. If clusters are present,
this matrix will have a block-diagonal structure. An eigen-decomposition of the
(normalised) affinity matrix then gives an embedding in a small number of di-
mensions, in which clusters are more clearly separated than in the original space.
SLLE uses class label information to construct an artificial off-diagonal block ma-
trix Λ, and applies this to change the distance matrix used as the basis for LLE.
The resulting matrix W , which is already sparse (containing only K non-zero
entries in each row), is changed towards a block-diagonal matrix. As a result,
a mixture between unsupervised LLE and supervised spectral clustering is ob-
tained.

3 Experiments

3.1 Setup

To verify the feature extraction capabilities of SLLE, it was applied to a number
of data sets varying in number of samples N , dimensions D and classes C. The
sets, together with the experimental results, are given in Tables 1 (D ≤ 30) and 2



(D > 30). Most of the sets were obtained from the UCI repository [1], some were
used in our earlier work. The chromosomes set contains 30 gray-values sampled
from chromosome banding profiles. The two textures sets contain 12×12-pixel
gray-value image patches of either natural (i.e. unstructured) or structured (i.e.
regular) Brodatz textures [2]. The nist digits set consists of 16 × 16-pixel
gray-value images of pre-processed handwritten digits, taken from the NIST
database [2]. Finally, the paper set contains 857 multiresolution local binary
patterns, calculated on images of different types of paper [7].

The experiments were set up as follows: a set was randomly split into a
training set (80%) and a test set (20%). Four classifiers were used: nmc, the
nearest mean classifier; ldc and qdc, the Bayes plug-in linear and quadratic
classifiers; and knnc, the K-NN classifier, with K optimised by the leave-one-out
procedure on the training set [4]. This was repeated on data mapped by LLE and
α-SLLE to ML dimensions (see section 2.3) and by 1-SLLE to C−1 dimensions.
Mappings were calculated for a range of values of K, the neighbourhood size
parameter, and α (if applicable).

To compare the (S)LLE methods to more traditional feature extraction tech-
niques, the classifiers were also trained on data mapped to ML dimensions by
PCA, LDA and Sammon mapping. PCA and LDA are linear methods, whereas
Sammon mapping is nonlinear. LDA is the only supervised method of the three.

3.2 Results

Tables 1 and 2 present average errors on the test set (in %) over 10 trials,
with the standard deviation given between brackets. The best result is shown in
bold and underlined; all results falling within a standard deviation of the best
result are shown in bold as well, as they are not significantly worse. For 1-SLLE
and α-SLLE, only the best result found in the range of values for K and α
found is shown. Ideally, these optimal values should be found on an independent
validation set, but the size of many of the data sets did not permit setting aside
samples for this.

The results confirm that SLLE generally leads to better classification per-
formance than LLE and, usually, any other mapping technique. This is to be
expected, as SLLE can extract nonlinear manifolds in a supervised way, and is
thereby the most general of the feature extraction methods. Besides this, there
are a number of interesting observations:

– SLLE does not work on low-dimensional data. For the low-dimensional
sets shown in Table 1, the Bayes plug-in classifiers, ldc and qdc, often work
well on the original data, as the number of parameters that need to be
estimated is still reasonably low. In these cases, SLLE will not improve clas-
sification to the point where it is better than on the original data.

– SLLE works well on high-dimensional data. In some cases, performance
is (nearly) as good as on the original data, but in others it is significantly
better (ionosphere, sonar, the textures sets). The splice set is the ex-
ception: the quadratic classifier qdc performs surprisingly well and cannot
be improved upon.



Original PCA LDA Sammon LLE 1-SLLE α-SLLE

iris [1] N = 150, C = 3, D = 4, MG = 1, ML = 3
nmc 7.7 (2.7) 9.3 (4.1) 1.7 (2.4) 8.7 (4.5) 4.7 (3.9) 3.3 (3.1) 1.7 (2.4)
ldc 1.7 (2.4) 4.0 (3.1) 1.7 (2.4) 4.7 (3.6) 1.0 (1.6) 12.0 (6.1) 1.0 (1.6)
qdc 3.3 (3.1) 4.3 (3.5) 3.3 (3.5) 5.0 (3.6) 2.3 (2.2) 23.0 (27.7) 2.3 (2.2)
knnc 2.3 (1.6) 3.3 (3.1) 3.0 (3.3) 3.7 (1.9) 2.3 (2.7) 3.3 (3.1) 2.3 (2.2)

wine [1] N = 178, C = 3, D = 13, MG = 1, ML = 2
nmc 25.3 (5.3) 27.2 (7.9) 1.1 (1.4) 27.2 (7.9) 25.3 (5.3) 4.7 (3.2) 5.8 (3.6)
ldc 1.1 (1.4) 32.8 (6.1) 1.1 (1.4) 34.2 (6.1) 26.7 (5.3) 41.1 (17.2) 15.6 (5.1)
qdc 1.1 (1.4) 27.8 (8.5) 1.4 (1.5) 28.1 (8.1) 25.8 (6.4) 46.4 (11.0) 16.4 (5.1)
knnc 24.4 (5.4) 34.2 (6.3) 1.1 (1.4) 34.7 (5.9) 24.7 (6.2) 4.7 (3.2) 11.4 (3.8)

diabetes [1] N = 768, C = 2, D = 8, MG = 2, ML = 4
nmc 34.5 (4.0) 39.2 (2.2) 24.2 (2.9) 34.5 (4.4) 27.1 (2.9) 25.1 (2.4) 25.5 (2.9)
ldc 22.2 (1.9) 34.5 (1.2) 22.8 (2.3) 34.2 (1.2) 24.5 (1.8) 31.6 (4.6) 24.5 (1.8)
qdc 24.9 (1.9) 34.3 (2.0) 22.5 (2.1) 34.5 (1.8) 28.1 (2.6) 35.1 (0.0) 27.5 (3.0)
knnc 24.4 (2.6) 32.9 (2.9) 23.1 (2.5) 34.8 (1.5) 24.9 (2.9) 25.1 (2.4) 24.9 (2.9)

glass [1] N = 214, C = 6, D = 9, MG = 4, ML = 3
nmc 57.0 (6.8) 51.2 (5.3) 40.7 (9.8) 50.7 (5.1) 61.2 (5.7) 29.5 (4.8) 36.5 (6.5)
ldc 36.0 (5.7) 45.8 (11.0) 37.0 (10.0) 44.4 (8.9) 44.0 (8.1) 48.1 (6.2) 39.5 (7.4)
qdc 83.5 (7.2) 47.0 (4.5) 47.2 (5.9) 47.2 (6.8) 50.2 (6.5) 59.8 (5.3) 41.2 (6.1)
knnc 28.4 (4.5) 22.8 (6.7) 38.1 (7.7) 24.4 (8.3) 33.0 (7.0) 30.0 (4.7) 33.0 (7.0)

vehicle [1] N = 846, C = 4, D = 18, MG = 1, ML = 5
nmc 61.7 (1.7) 60.1 (1.6) 20.6 (2.4) 60.6 (2.1) 50.9 (3.4) 26.6 (4.6) 23.5 (3.3)
ldc 22.0 (3.9) 63.5 (3.9) 20.7 (2.6) 62.6 (2.9) 50.8 (3.4) 59.5 (1.3) 24.6 (3.7)
qdc 14.4 (2.1) 57.2 (2.6) 19.8 (1.9) 57.5 (4.0) 47.7 (2.9) 59.5 (1.3) 47.7 (2.9)
knnc 36.9 (2.8) 46.4 (2.3) 20.9 (2.2) 45.7 (2.0) 44.9 (3.7) 26.6 (4.6) 22.0 (3.2)

hepatitis [1] N = 80, C = 2, D = 19, MG = 2, ML = 3
nmc 29.4 (9.8) 39.4 (10.6)29.4 (11.0) 38.8 (10.5)25.0 (10.6)29.4 (7.2) 25.0 (10.6)
ldc 22.5 (13.9) 46.2 (6.0) 29.4 (11.4) 45.6 (7.2) 31.2 (5.1) 33.8 (9.4) 25.0 (13.5)
qdc 32.5 (17.1) 46.2 (6.0) 29.4 (11.4) 45.6 (6.6) 30.0 (7.1) 36.2 (9.2) 25.6 (13.3)
knnc 39.4 (10.6) 48.1 (7.2) 30.0 (14.7) 46.9 (6.8) 34.4 (13.3)29.4 (7.2) 24.4 (10.0)

chromosomes N = 2520, C = 24, D = 30, MG = 8, ML = 8
nmc 33.2 (2.0) 33.0 (1.8) 24.9 (1.4) 33.1 (1.7) 31.4 (1.7) 37.4 (1.5) 28.2 (1.7)
ldc 25.1 (2.5) 24.1 (1.0) 24.9 (1.4) 23.8 (1.0) 28.4 (1.0) 93.5 (0.5) 27.6 (1.8)
qdc 27.1 (1.4) 21.4 (1.3) 21.7 (1.9) 19.3 (1.7) 22.2 (2.2) 94.1 (1.4) 22.2 (2.2)
knnc 23.6 (1.7) 23.3 (1.5) 24.5 (1.9) 23.1 (1.2) 25.2 (2.0) 37.4 (1.5) 24.3 (1.7)

Table 1. Test error (in %), low-dimensional data sets.

– 1-SLLE vs. α-SLLE: neither consistently outperforms the other.
Although α-SLLE was expected to generalise better, there are two extra
parameters to be estimated: α and the embedding dimensionality, ML. The
performance of α-SLLE is especially sensitive to the latter. Bayes plug-in
classifiers trained on 1-SLLE mapped data perform poorly: as all samples
are mapped onto a single point, there is no covariance structure left.

– SLLE works well where K-NN works well on the original data.
SLLE is a neighbourhood-based method, like the K-NN classifier. In fact,
SLLE can be seen as a generalised K-NN method, where not only the neigh-
bours’ labels play a role, but also the distances to these neighbours.



Original PCA LDA Sammon LLE 1-SLLE α-SLLE

ionosphere [1] N = 351, C = 2, D = 34, MG = 18, ML = 4
nmc 29.9 (5.5) 28.9 (7.6) 12.1 (2.7) 28.4 (7.6) 21.6 (3.8) 7.7 (3.1) 7.0 (2.5)
ldc 16.4 (7.2) 44.3 (5.9) 13.9 (2.9) 34.9 (6.9) 19.4 (4.5) 31.9 (5.7) 7.0 (2.5)
qdc 11.4 (3.8) 38.0 (4.8) 12.6 (2.7) 35.4 (7.1) 19.0 (5.5) 26.9 (2.4) 7.3 (2.1)
knnc 16.3 (3.1) 20.9 (3.4) 13.0 (2.7) 25.0 (5.1) 13.0 (2.2) 7.7 (3.1) 7.4 (1.8)

splice [1] N = 3188, C = 3, D = 60, MG = 51, ML = 18
nmc 23.9 (2.0) 44.1 (1.0) 21.3 (1.4) 37.6 (3.6) 36.2 (2.0) 19.5 (2.3) 17.2 (2.2)
ldc 19.0 (1.4) 33.2 (0.8) 19.3 (1.6) 30.9 (1.2) 35.6 (1.4) 75.9 (0.1) 17.6 (1.5)
qdc 7.0 (1.2) 32.2 (1.2) 19.0 (1.3) 30.6 (1.6) 42.5 (1.8) 75.9 (0.1) 27.1 (1.9)
knnc 20.5 (1.4) 32.7 (1.2) 18.9 (1.5) 33.4 (4.0) 32.8 (2.0) 19.5 (2.3) 18.6 (2.1)

sonar [1] N = 208, C = 2, D = 60, MG = 12, ML = 8
nmc 32.4 (7.0) 46.8 (5.6) 25.4 (10.0) 46.8 (6.3) 23.4 (6.1) 11.7 (3.0) 13.7 (4.5)
ldc 25.4 (5.2) 44.6 (6.7) 25.6 (10.6) 45.4 (4.0) 22.0 (5.7) 53.7 (0.0) 14.4 (4.8)
qdc 27.8 (5.9) 43.4 (5.6) 25.4 (10.9) 44.9 (4.9) 26.1 (5.4) 53.7 (0.0) 14.6 (3.3)
knnc 18.5 (5.3) 51.7 (3.9) 24.6 (10.1) 49.3 (5.1) 18.8 (7.4) 11.7 (3.0) 12.9 (2.3)

optdigits [1] N = 5620, C = 10, D = 64, MG = 21, ML = 10
nmc 8.6 (0.7) 10.1 (0.8) 4.7 (0.7) 10.1 (0.6) 15.6 (1.5) 1.4 (0.4) 1.4 (0.4)
ldc 55.8 (44.3) 8.4 (1.0) 4.7 (0.7) 8.8 (0.6) 10.4 (1.2) 31.0 (1.0) 2.0 (0.4)
qdc 90.1 (0.0) 4.2 (0.5) 3.1 (0.5) 4.2 (0.4) 5.1 (1.0) 31.0 (1.0) 3.4 (0.6)
knnc 1.2 (0.4) 2.8 (0.5) 2.9 (0.3) 3.0 (0.4) 3.2 (0.5) 1.4 (0.4) 1.3 (0.2)

natural textures [2] N = 3000, C = 6, D = 144, MG = 33, ML = 6
nmc 54.8 (2.1) 54.5 (1.2) 55.2 (1.7) 55.1 (1.7) 55.8 (1.9) 30.6 (2.9) 33.3 (2.6)
ldc 54.8 (1.5) 53.9 (1.4) 55.2 (1.7) 54.9 (1.5) 55.5 (1.6) 79.7 (0.9) 38.7 (2.3)
qdc 46.1 (1.8) 41.2 (2.2) 52.4 (2.1) 43.9 (2.0) 58.2 (3.0) 79.7 (0.9) 37.3 (2.2)
knnc 34.2 (1.0) 40.9 (2.7) 53.6 (1.4) 43.2 (2.2) 48.9 (2.5) 30.6 (2.9) 30.7 (2.9)

structured textures [2] N = 3000, C = 6, D = 144, MG = 39, ML = 17
nmc 51.3 (1.4) 52.0 (1.5) 55.8 (1.9) 52.7 (1.7) 28.1 (2.1) 9.5 (0.9) 8.2 (0.8)
ldc 55.2 (1.7) 52.0 (1.5) 55.8 (1.9) 53.6 (1.2) 27.9 (1.6) 49.3 (1.9) 8.3 (0.7)
qdc 24.3 (0.8) 30.2 (1.2) 50.4 (1.6) 36.3 (1.2) 13.5 (1.2) 49.3 (1.9) 11.7 (1.1)
knnc 13.8 (1.3) 30.0 (1.9) 52.9 (1.7) 37.6 (1.0) 14.5 (1.3) 9.5 (0.9) 7.5 (0.9)

nist digits [2] N = 6250, C = 10, D = 256, MG = 52, ML = 12
nmc 16.5 (0.9) 21.5 (0.9) 10.3 (0.9) 20.1 (0.7) 17.1 (0.7) 3.4 (0.5) 2.3 (0.3)
ldc 10.8 (0.4) 17.0 (1.0) 10.3 (0.9) 17.4 (0.7) 16.1 (0.8) 40.0 (1.1) 3.2 (0.7)
qdc 89.8 (0.4) 9.3 (1.0) 7.9 (0.8) 8.8 (0.9) 10.7 (0.6) 40.0 (1.1) 10.7 (0.6)
knnc 2.5 (0.2) 6.7 (0.7) 7.0 (0.8) 7.1 (1.0) 6.7 (0.5) 3.4 (0.5) 2.5 (0.4)

paper [7] N = 1004, C = 4, D = 857, MG = 2, ML = 7
nmc 3.3 (1.2) 2.8 (1.2) 26.7 (4.1) 1.4 (0.9) 0.3 (0.3) 0.1 (0.2) 0.2 (0.3)
ldc 75.1 (0.0) 1.2 (0.9) 75.1 (0.0) 0.1 (0.2) 0.2 (0.3) 2.9 (0.8) 0.2 (0.3)
qdc 75.1 (0.0) 0.5 (0.5) 75.1 (0.0) 0.1 (0.2) 21.3 (29.4) 2.9 (0.8) 21.3 (29.4)
knnc 0.2 (0.3) 0.1 (0.2) 26.7 (4.1) 0.1 (0.2) 0.2 (0.3) 0.1 (0.2) 0.1 (0.2)

Table 2. Test error (in %), high-dimensional data sets.

– The nearest mean classifier performs well. SLLE maps the data non-
linearly such that this simple classifier can do well. This is analogous to
SVMs: after the kernel function performs the desired nonlinear mapping, a
simple linear classifier suffices.



– Local vs. global intrinsic dimensionality. A priori one would expect
SLLE to work well for sets which contain curved manifolds. Such sets would
exhibit a high global intrinsic dimensionality coupled with a low local one.
The tables show, besides the local intrinsic dimensionality estimates ML, the
number of PCA dimensions needed to preserve 90% of the variance globally,
MG. For all sets on which SLLE performs well (except splice), ML � MG.

The latter observation means that a simple test for the applicability of SLLE
would be to quickly estimate ML on a subset of samples and compare it to MG.
A significant difference indicates that good performance of SLLE is highly likely.

4 Conclusions

A common framework for unsupervised and supervised LLE was proposed. Ex-
periments on a number of benchmark data sets demonstrated that SLLE is a
powerful feature extraction method, which when coupled with simple classifiers
can yield very promising recognition results. SLLE seems to be mainly applicable
to high-dimensional data sets which clearly exhibit manifold structure.

Further research will address the problems of choosing α and ML in a more
well-founded way for α-SLLE. Computational and storage complexity is also still
a concern: as the whole data set needs to be retained and is used in mapping
new data, application to large data sets (N = O(104)) is still infeasible. Subset
selection [3] may alleviate this problem.
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Beyond locally linear embedding algorithm. Technical Report MVG-01-2002, Ma-
chine Vision Group, University of Oulu, Finland, 2002.

6. O. Kouropteva, O. Okun, and M. Pietikäinen. Selection of the optimal parameter
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