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Abstract — The learning speed of the adaptive
linear combiner is determined by the condition
number of the input correlation matrix of the
training data. With known properties of such
correlation matrices, it will be shown that
increasing the dimensionality of the feature space
of an adaptive linear combiner will never increase
its learning speed. In fact, the learning speed will
at best remain equal, but will deteriorate in most
cases. Our result can be applied in adaptive
learning problems that are time constrained, and
has possibly implications for the training of
multi-layer networks.

I. INTRODUCTION

An important problem in adaptive signal processing and
pattern recognition applications, is the determination of the
number of features (i.e. the dimensionality of the input
vector) for a learning system. Obviously when the number of
features is high much information is being processed, and it
is to be expected that a high accuracy can be reached, e.g. in a
mean square sense [1], or with respect to the classification
performance [2]. A second issue that is especially relevant in
time constrained applications, is how the learning speed is
being influenced by the dimensionality of the input data. To
be more specific, in this paper we will investigate how the
learning speed of a class of iterative learning procedures is
affected by adding an extra feature. This class consists of the
steepest descent procedure and the LMS procedure for the
Adaptive Linear Combiner, the ALC, see [1]. For these
procedures the learning speed is determined by the condition
number of the input correlation matrix of the data; i.e. the
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ratio of the smallest and largest eigenvalues of the input
correlation matrix.

A result from linear algebra will be discussed, that proves
that the learning speed of the adaptive linear combiner is
decreased, when a new correlated feature is added. This is
based on the fact that the largest eigenvalue generally
becomes larger and the smallest eigenvalue generally
becomes smaller, due to adding the new feature. Only when
the new feature is not correlated with the old features and it is
properly scaled, the learning speed will not be affected.

In the following paragraphs, we will review how the
learning speed is influenced by the condition number of the
input correlation matrix of the training data. Then, in section
3, it will be proven that the condition number decreases when
anew correlated feature is added. Finally, the discussion and
conclusions are presented in section 4.

2. THE LEARNING SPEED AND THE CONDITION NUMBER FOR THE
ALC.

An adaptive linear network, like the ALC, is described by
the following simple function:

n
Ye=X W= Xpiwi
i=1 M

That is, where t is the time, the scalar output y; is
determined by the inner product of the (n- dimensional) input
vector Xt and the weight vector Wy. During an iterative
learning procedure, the weight vector Wy is adjusted such that
the output y; approximates a certain desired output as good as
possible. For this learning procedure a set of pairs of input
vectors X with corresponding desired output dy is used. This
learning set is supposed to represent the underlying
phenomenon sufficiently well; i.e. the size of the learning set



should be large enough so that the learning set is statistically
representative for the underlying problem,

As a measure for the quality of the approximation, a
squared error criterion can be taken:

MSE=¢§; =E[(Yt -dt)2]=E[83] 6y

In order to make the necessary definitions, we follow Widrow
[1] and express this quadratic error criterion in terms of some
statistics of the training data:

E[e?]=E[a?]+ W] RW, - 2PTW, ®
Here R is the semi-positive definife symmetric input
correlation matrix, defined as E XtX"r and P is the vector
Ig['(ritXtI:,From (3) it is clear that the M§E is a quadratic
fotm in Wi, The optimal weight vector W, i.e. the location
where & has its minimal value &min, is found by taking the
derivative with respect to W. §; can be shown to depend only
on the distance between the actual and optimal weight vectors
and the input correlation matrix:

& =§min+(wt ‘W*)TR(Wt“W*) @

Now the coordinate system W can be translated to a system
V, such that Emin = &|w is located at the origin, followed

by a rotation to a coordinate system V’ in which the V’-axes
coincide with the principal axes of the paraboloid &-surface:

& =Emin+(W, —w“)TR(wt -w")
=Emin + VIRV,
=Emin+ V7 (QAQT)V,
=Emin+ VT AV,

®

Due to this transformation, R is replaced by its eigenvalue
matrix A. The eigenvectors Qj (1 < i < n) of the input

correlation matrix define the principal axes of the error
surface and the eigenvalues Aj (1 < i < n) give the second
derivatives of the error surface £ with respect to its principal
axes.

In the case of steepest descent minimization of &, the
weight vector is adjusted as follows:

Wi =W -V, ®6)

where V¢ is the gradient and 1 represents the step-size or
learning rate. Due to this iterative learning procedure, the
trajectory in weight space can be expressed as™:

Wi=W"+(1-2nR)'(Wo-W") -

Note that (7) gives the weight vector at any time t as a

function of the weight vector W at time zero. In terms of V’
(7) can be formulated as:

V'l = (I - ZT]A)tV'o ®)

from which it is apparent that for a stable learning behavior
we need to choose:

O<n< 1
Amax ©)

Also, from (8) it is clear that the speed of the learning
procedure is limited by the smallest eigenvalue Amyin, since
the term with Amin is the slowest converging term in (8)..
Apparently, the condition number of R, defined as the ratio
of the smallest and the largest eigenvalue, is a good measure
for the speed of the iterative learning procedure. In the next
section the effect on the learning speed and the condition
number caused by adding an extra feature xp41 will be
discussed.

3. ADDING A (CORRELATED) FEATURE.

Adding a new feature to the existing set of n features,
implies that the matrix R is bordered with an n-dimensional
vector U and a new diagonal element a2,

n
R =[[R ] U} (10)
uT 62
The question that should be answered now is how the
eigenvalues of R are affected by this bordering operation?
The answer to this question can be found in a number of
textbooks on linear algebra, e.g. see [3 - 5]. It is based on the
Courant-Fisher theorem and the Rayleigh theorem and states
that bordering the matrix will not decrease the largest
eigenvalue, and not increase the smallest eigenvalue of the
matrix. The condition number of the matrix will therefore
deteriorate, or at best remain equal.

* For the LMS leamning procedure, or Widrow-Hoff rule [Duda 1973],
the gradient is replaced by an unbiased estimate of the gradient. Equation
(7) is then approximately valid.
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Here, we will go one step further than the previous
(qualitative) proofs, by not only showing that the condition
number deteriorates, but we will also provide an implicit
equation for the new eigenvalues in terms of the old
eigenvalues.

A new eigenvector Q’, associated with a A", obeys the
following relation:

Rn+le =\ Qy (11)

Now Q is written as combination of an n-dimensional vector

Q and a scalar :
Uy oo | R? .
) S ) N

This equality can be split into two parts. By writing Q as a
vector ‘¥ that is rotated by the matrix Q, the first part can be
expressed as a matrix equation of the form:

Q
B

Q
B

R"
uT

U

B/

2

RnQ+BU=k|Q n ]
RY'Q¥Y+BU=A"Q¥
Q=Qw } Q¥ +p QY &

Note that equation (5) and the property QTQ = I were used.
The second equation that follows from (12) is the scalar
equation:

UTQ+o2B=A'B

a_qv }UTQ‘I' = [3(;: -02)

(14)

If (13) is multiplied with QT on both sides of the equality
sign, we find that:

AY+BQTU=1A ¥ & ¥ =X 1-A)QTU

(15)

Substituting ¥ in (14) yields:

T 1Y "1 T = L 2

U Q{B(AI A) }Q U=p(r-o?) ©
Which can finally be rewritten as:

T

n (U'Q;

SL o

i=1 (;" - an
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This is an implicit equation for the new eigenvalues A in
terms of the old eigenvalues A;. It is easily verified that the
derivative of the left part of equation (17) with respect to A
is always negative, with asymptotes for A = Aj. The new
eigenvalues are found at the locations where the left part of
(17) crosses the linear function (A - 0'2), see figure 1. From
figure 1 it is also seen that there is a new eigenvalue left of
each old eigenvalue, and one extra eigenvalue being larger
than the largest original eigenvalue. This qualitative finding
confirms the proofs that are based on the Courant-Fisher and
Rayleigh theorems, e.g. see {3 - S]. Note that the eigenvalues
do not change when the new feature is not correlated with the
previous features, i.e. when U = (0, 0, ..., O)T. Also note
that the fact that R™*1 is a correlation matrix assures that all
new eigenvalues are non-negative.

4. DISCUSSION AND CONCLUSIONS.

Two direct conclusions of the foregoing theory are, that the
smallest eigenvalue will not increase nor will the largest
eigenvalue decrease by adding an extra feature. The first
conclusion implies that the rate of convergence of equation
(8) becomes slower, and the second conclusion necessitates
the choice of a smaller step-size 1 (in equation 9), thereby
also constraining the learning speed. It is important to note
that especially this second aspect restricts the learning speed
in practice. In practical applications the smallest eigenvalues
may have neglectable influence on the final error £, so the
learning phase is generally terminated after some application
dependent time interval. Small eigenvalues becoming smaller
will probably not influence this time interval. The fact that
the largest eigenvalue becomes larger is therefore of much
more influence, since a smaller step-size constrains the speed
of the total learning process.

It should also be noted that besides these fundamental
restrictions on the learning speed, there is also the fact that
an increase of the number of features requires more
computations per step. This was not taken into account here,
but may be a relevant factor in practical applications.

Another issue that needs to be addressed is that our results
are in line with previous results that claim that the learning
speed is increased by decorrelating and scaling of the data,
e.g. see [6] and [7]. From (8) it is easily seen that the
learning speed is maximum when all eigenvalues are equal,
whereas our results show that only when the new feature is
not correlated and properly scaled there is no decrease in

leaming speed.
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Figure 1: A numerical example of the theory. The matrix ((5, 1, 2), (1, 10, 3), (2, 3, 15)) with eigenvalues 4.58,
8.59 and 16.83 is bordered with the vector (1, 2, 3, 20) '. ,The left side of equation (17) is the function with
asymptotes at the original eigenvalues. The linear function (A - 20) corresponds to the right side of (17). The new
eigenvalues are given by the locations where the two functions cross, i.e. at 4.57, 8.57, 14.42 and 22.45.

Finally, an important question is how our result
generalizes towards more complex adaptive systems like
multi-layer feed forward networks, e.g. see [8]. The problem
with multi-layer feed forward networks is that the system is
not linear, which has the effect of local minima in the error
landscape. Obviously, where the error landscape can be
locally approximated by a second order approximation, our
result holds. Therefore, (as long as the approximation is
valid) the learning will locally slow down. When the
approximation is not valid anymore, the problem may
emerge that the extension of the parameter space induces a
new path to a close local minimum. This local minimum
may then be reached much faster than some (local) minimum
in the original space. One conclusion that does generalize
towards non-linear systems, however, is that the learning rate
should be taken smaller when the number of features is
increased.
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