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Abstract

Multispectral endoscopy images provide potential
for early stage cancer detection. This paper considers
this relatively novel imaging technique and presents a
supervised method for cancer detection using such mul-
tispectral data. The data under consideration include
different types of cancer. This poses a challenge for the
detection as different cancer types may exhibit different
spectral signatures. Consequently, it is not always fea-
sible to transfer the knowledge learnt from one data set
to another data set. In our approach, we select suitable
training data for a given test set based on a similarity
measurement between data sets. Experimental results
demonstrate that the classification results can be signif-
icantly improved if a few data sets that are presumably
similar to a given test set are selected for training in-
stead of using all available data sets.

1 Introduction

Early cancer detection plays an important role in in-
creasing the chance for successful cancer treatment. A
common technique for early cancer diagnosis is taking
biopsies, which requires physical removal of specimens
followed by a histopathological analysis [6]. It is diffi-
cult to determine the dysplastic and malignant regions
for biopsies and therefore the procedure may have to be
repeated many times, which delays the necessary treat-
ment.

Optical techniques, such as the autofluorescence
spectroscopy, have been investigated for early can-
cer diagnosis. Autofluorescence is the light emission
of specific substances of biological tissues, e.g. por-
phyries and proteins if the tissues are excited by a light
source. Those substances then emit light of specific
wavelengths. The spectra of the tissues then correspond

to different wavelengths measured by the spectroscopy.
Previous studies, e.g. [2] have shown that there is a
significant difference in the fluorescent properties, such
as their spectral shape and intensity, between malignant
and normal tissues. Therefore, they have been used to
identify early instances of diseases in the colon, larynx,
lung, and other organs.

The advantage of optical techniques lies in their po-
tential to perform in vivo detection without the need for
tissue removal. Therefore, they facilitate the determi-
nation of the dysplastic and malignant regions for the
biopsy. These spectroscopic diagnosis techniques are
often referred to as point-measurement methods as they
attempt to obtain the spectra of a single tissue.

Multispectral/hyperspectral endoscopy techniques
developed recently provide three-dimensional images
of the area of interest in both spatial and spectral do-
mains [3, 4, 6]. Multispectral images provide richer in-
formation than point-measurement techniques as they
are able to acquire the spectra of thousands to millions
of malignant and normal pixels at the same time. In
[4], a thresholding algorithm is used to assign pixels to
normal/malignant spectra based on the observation that
the intensity of a malignant area is brighter than that of
a normal area. In this paper, we present a supervised
method, in particular, we focus on the issue of transfer-
ring knowledge among data sets.

The data under consideration consist of eight multi-
spectral endoscopy images belonging to different types
of cancers. As different cancer types may exhibit dif-
ferent spectral signatures [1], the discriminant informa-
tion between normal and malignant tissues learnt from
a data set may not be applicable to another data set. We
address this problem by selecting suitable training data
sets for a given test set. Data sets are only selected
for training if they are similar to the test set, i.e. they
stay close to it in the feature space. Experimental re-
sults show that the classifications can be significantly
improved if a few data sets which are similar to a test set
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are selected for training instead of using all data sets.

2 Materials

Data were collected from patients with different
kinds of cancer at the hospitals for otolaryngoscopic and
thorax surgeries in Stuttgart, Germany. Multispectral
images of the investigated tissue areas were recorded
quickly after surgery so the in vivo conditions of the
tissues are commonly believed to be conserved. The
hyperspectral images were produced using an electron
multiplying charge coupled device (EMCCD) camera,
with a resolution of 1002 × 1004 pixels, an acousto-
optic tunable filter (AOTF) with wavelengths ranging
from 400nm to 650nm (FWHM 5nm), and a 10 mm la-
paroscope with a 300W Xenon light source.

The eight data sets under consideration (called M1,
M2 · · ·M8) belong to different types of cancer: Laryn-
geal cancer (data sets M3, M4, M5, and M8), Pharyn-
geal cancer (M1), Esophageal cancer (M2), Diaphragm
cancer (M6), and Parotid cancer (M7). For the M4 data
set, the exact boundary of the cancer area is unclear
since the cancer tissue is under the surface. Therefore,
it is not easily detectable by a non-penetrating optical
method. All data sets are acquired in a white light con-
dition and the number of spectral bands is 51.

3 Methods

3.1 Data preprocessing

First, each reflectance spectrum is normalized using
the area under the curve normalization in the spectral
domain. Second, spectra corresponding to the specular
reflection are removed by a simple thresholding algo-
rithm. Third, the principal component analysis (PCA) is
used to reduce the number of features from the original
space. The reconstruction of all data sets are then based
on their first eight eigenvectors which preserve 99% of
the total variance. Finally, a unit variance normalization
is applied to each data set so that each spectral band has
a zero mean and a unit variance. The main aim of this
normalization is to align all the data sets, i.e. to force
them to stay close to each other in the feature space.

3.2 Data selection for training

As the data sets are different from one to another
with respect to their class distributions, the discrimi-
nant information between normal and malignant tissues
learnt from a data set might not be suitable for another
data set. Therefore, it is essential to select suitable train-
ing sets for a given test set. We first use the Gaussian

data domain description [5] to model the distribution of
each data set. Denote q the percentage of outliers in
each data set, a pixel is considered as an outlier if its
probability density p(xi) is smaller than a threshold θ
determined by:

1
N

N∑
i=1

h(θ − p(xi)) = q

where N is the total number of pixels in the data, h(.)
the unit step function, and p(xi) the probability den-
sity of pixel xi. We then measure the similarity be-
tween two data sets by the fraction of pixels they share
in their data domain. For two data sets Mi and Mj ,
we calculate Mij the set of all pixels in Mi that be-
long to the domain of Mj and Mji the set of all pixels
in Mj that belong to the domain of Mi. The similar-
ity between Mi and Mj denoted by Sij is defined as:
Sij = |Mij |/|Mi|+ |Mji|/|Mj |. The similarity among
data sets are then used as the criterion to select the train-
ing set for a given test set. Note that we model a data set
using all the pixels contained. It is therefore possible to
measure the similarity between any two data sets, e.g.
between a training set and a test set, even when we do
not have label information of the test set.

4 Experimental results

As knowledge about the prior probabilities of nor-
mal and malignant classes is not available, we set them
to be equal in all experiments. We use the quadratic
discriminant classifier (QDC) for the classification be-
tween normal/malignant tissues.

4.1 All available data sets are used for training

We first evaluate the classification results for two
training scenarios: i) training and test data are from the
same data set, i.e. a part of a data set is used for train-
ing and the remainder is for testing; ii) training and test
data are from different data sets. For the latter, we fol-
low the leave-one-dataset-out cross validation configu-
ration, i.e. seven data sets are used for training and the
remaining data set is used for testing. Moreover, for
the second scenario we also investigate the influence of
the unit variance normalization in the data preprocess-
ing step. Since the QDC is invariant to affine trans-
formations, the classification results for the first sce-
nario remain unchanged whether this normalization is
applied or not. Table 1 shows the classification results
with respect to different training and normalization op-
tions. The table clearly shows the difference between
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Figure 1. Reconstructed color image of the
data set M8. Normal and malignant areas
are marked by green and red contours.

Figure 2. Classification result for the M8
data set using the unit variance normaliza-
tion and QDC.

Table 1. Error rate (%) for different training and normalization options
Training scenario Normalization M1 M2 M3 M4 M5 M6 M7 M8 Mean

Same set No 09.9 11.0 16.0 10.1 05.8 15.8 10.0 07.6 10.8
Different sets No 39.8 48.9 34.0 28.8 51.6 46.0 30.2 22.8 37.7
Different sets Yes 30.1 26.5 36.0 29.6 17.6 38.1 30.5 23.3 29.0

Table 2. Error rate (%) when training data selection is used
M1 M2 M3 M4 M5 M6 M7 M8 Mean

Case 1 42.0 27.0 45.4 51.2 27.2 42.7 31.9 24.0 36.4
Case 2 26.8 25.4 30.1 24.1 26.5 50.9 26.5 16.0 28.3
Case 3 30.8 27.6 32.6 28.4 20.1 45.6 28.9 18.4 29.1
Case 4 31.8 26.2 39.0 25.2 18.7 44.0 29.8 24.3 29.9
Case 5 26.8 25.3 36.9 27.7 19.0 39.6 34.3 25.1 29.3
Case 6 29.2 24.7 36.0 28.7 17.2 36.1 30.9 24.7 28.4
Case 7 30.1 26.5 36.0 29.6 17.6 38.1 30.5 23.3 29.0

Table 3. Best error rate (%) and the corresponding number of data sets used for training
M1 M2 M3 M4 M5 M6 M7 M8 Mean

Errors 21.6 20.0 28.2 22.1 13.3 29.7 23.8 13.8 21.5
#training sets 3 2 2 2 2 4 3 2 2.5

the two training scenarios. The error rate increases sub-
stantially when training and test data are not from the
same data set as they are far different from each other.
In addition, the unit variance normalization is demon-
strated to significantly improve the classification results
when the training and test data are from different data
sets. Therefore, we apply the normalization step in all
of the following experiments. Note that we also used
other classification methods, such as Parzen classifier
and the linear SVM; however, they often perform worse

than the QDC. Figure 1 displays the reconstructed color
image for the data set M8 and its normal and malignant
areas. The border of the malignant area has been anno-
tated by a medical expert. The classification on this data
set is shown in Figure 2. Detected malignant and nor-
mal areas are displayed in red and green, respectively.
Blue depicts background. The blue areas within the tis-
sues correspond to the specular reflections. They are re-
moved during the preprocessing step mentioned in Sec-
tion 3.1 and therefore not considered in the classifica-
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tion. The figure shows that the detected malignant area
tends to expand into the normal area. One reason might
be that malignant tissues in the training data are differ-
ent from one another as they belong to different can-
cer types. Thus, they exhibit mixture data distribution.
However, the QDC assumes only a single Gaussian for
each malignant/normal class. Consequently, the esti-
mated distribution of the malignant class becomes more
flat and therefore more tissues become false positive.

4.2 Training data selection

We evaluate the classification results when the train-
ing data contain similar data sets for a given test data
set. We model the data sets by using the Gaussian do-
main description in which the percentage of outlier q is
set to 0.1. For each data set, we first selected the train-
ing data as the most one, two · · · seven similar data sets
(denoted by Case 1, 2 · · · 7) according to the similar-
ity measurement defined in the Section 3.2. The QDC
is then trained on the selected training data and subse-
quently used for the classification of normal/malignant
tissues for the data set under consideration. Table 2
shows the error rates for all seven cases. Numbers in
bold emphasize the best results achieved for each data
set in all cases. Note that Case 7 corresponds to the re-
sults shown in the third row of Table 1 as all seven data
sets are included in the training data. On average, the
best classification results are obtained if the two most
similar data sets are used for training (Case 2). Increas-
ing the number of training data sets then, in most of the
time, worsens the classification as irrelevant data are in-
cluded in the training process. Case 2 yields the best
results for five over eight data sets. Case 2 does not
perform well on the data set M6 as the data set itself
is challenging: the cancer type (diaphragm) is totally
different from the other cancer types.

We also carry out experiments in which for each data
set, the training data is manually selected according to
the classification results. Table 3 shows the best error
rates and the corresponding number of data sets used
for training. Similar to the above results (cf. Table 2),
the classifier performs best when two or three data sets
are selected for training. We also noted that for any of
the three data sets M3, M5, and M8, the best classifica-
tion result is achieved if the other two data sets are in-
cluded in the training data except for the M5 where the
best training set contains M7 and M8 yielding an error
rate of 13.3%. Nevertheless, the training set containing
M3 and M8 produces a comparable result of 15.1% er-
ror rate. This confirms the fact that the three data sets
are similar as they exhibit the same type of cancer (La-
ryngeal cancer).

5 Conclusion

This paper presents a study of normal/malignant tis-
sue classification for eight multispectral endoscopy data
sets in a supervised manner. The data are heterogeneous
as they are collected from different patients and with
different types of cancer. We showed that the classifi-
cation result is improved if a subset of the data that are
similar to the test set is used for training (cf. Table 2 &
3). In other words, it is not always good to combine all
available data for training as the difference between the
data sets may result in poor classification.

We introduce an approach to select training data
based on the similarity between data sets using the
Gaussian data domain description. Experimental results
show that the method substantially improves the clas-
sification results for our heterogeneous data. Note that
we measure the similarity between data sets based on all
the pixels, i.e. from both normal and malignant classes.
For data from a patient who does not have cancer, all the
pixels should fall into the normal region of the selected
training data; therefore, our method correctly classifies
the data set as normal.

In the present paper we use PCA to reduce the
dimensionality of the feature space. To find sub-
spaces that provide discriminant information between
normal/malignant tissues in the data may also improve
the performance of the classifiers. Finally, more data
sets are essential to fully evaluate the applicability of
our method.
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