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Abstract

An automated histology analysis is proposed
for classification of local image patches of colon
histopathology images into four principle classes: nor-
mal, cancer, adenomatous and inflamed classes. Shape
features based on stroma, lumen and imperfectly seg-
mented nuclei are combined with texture features for
classification. The classification is analyzed under
the three scenarios: normal vs. abnormal, cancer vs.
non-cancer and four-class classification on a labeled
dataset consisting of 2000 patches per class which were
collected from 55 different slices. The proposed method
achieves 79.28% mean accuracy between normal and
abnormal; 87.67% accuracy between cancer and non-
cancer and 75.15% between the four classes with equal
class priories.

1. Introduction

Worldwide, colorectal cancer (CRC) is reported as
the third leading cause of cancer-related death in West-
ern world with more than 103,000 new cases of CRC
predicted in United States for 2012 [1]. Similar to
other cancer types, early detection of CRC is vitally
important for successful treatment and the most accu-
rate way in diagnosis is accepted to be the histopatho-
logical analysis of the biopsy samples taken during
colonoscopy. The biopsy specimen of the colon is
stained and observed by pathologists under a micro-
scope. However, visual observation, is tedious and sub-
ject to inter-observer variation [10].

The presence, level and the type of malignancy dras-
tically changes the structures (stroma, lumina, gland,
nuclei, etc) of tissue. This changing in structure are
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captured by texture and shape features in computa-
tional histopathology [7]. Sertel et.al [11] categorized
the nerve histopathology images into stroma rich and
stroma poor classes for nervous cancer prognosis using
the Haralick and Local Binary Pattern (LBP) features.
Doyle et. al [4] used texture features derived from Ga-
bor filter banks and second-order statistics for detecting
the prostatic adenocarcinoma. Esgiar et. al [5] inte-
grated the fractal features to texture features and en-
hanced the classification results on a dataset with 44
normal and 58 benign colon tissue. Lim et. al [8]
used Hough Transform based texture features on colon
dataset with 25 images from normal, adenomatous and
cancer classes.

In addition to texture features, shape features based
on glands, nuclei and also the arrangement of the nuclei
in the tissue can have diagnostic significance for some
kind of malignancy in histopathology [4, 2]. Doyle et.
al [4] evaluated the distribution of the nuclei based on
graph features for breast histopathology with 30 cancer-
ous and 18 benign images. It has, however, been indi-
cated that the histological objects in the tissue may not
need to be perfectly detected for good tissue classifica-
tion when a comprehensive set of features is available
[3].

The majority of the studies in computational
histopathology are performed on either classification
of benign and cancer images or grading the cancer if
present [5, 3, 4]. However, besides cancer, precancer-
ous or low-cancer risk diseases are also important to
detect for successful medical treatment. Lim et. al [8]
perform classification of adenomatous, cancer and nor-
mal classes from colon histopathology using 25 objects
per class. Fiscor et. al [6] separated the inflammation in
colon sections using 69 objects in four classes.

In this paper, we propose a study on automated clas-
sification of colon histopathology images into normal,
inflamed, adenomatous and cancer classes using both
textural and shape features. We performed the study
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Figure 1. Patch images from four different
classes.

on, respectively, large dataset with 2,000 samples from
each class. Further details on the data employed to-
gether with the used feature extraction, selection, and
classification algorithms are presented in Section 2. Ex-
perimental results and conclusions are given in Sections
3 and 4, respectively.

2. Dataset

A total of 55 H&E stained colon slices which are
collected from 36 different patients at Atrium Medical
Centrum are used in this study. The slices which are
about 70.000×120.000 dimension are automatically di-
vided into patches at 1024×1024 dimension. Each indi-
vidual patch is labeled by an expert pathologist and as-
signed to one of the four classes: normal, cancer, ade-
nomatous and inflamed (Fig. 1). In total, we use 2,000
patches per normal, cancer, adenomatous and inflamed
classes, respectively, to yield a total of 8,000 patches.

3. Feature Extraction and Classification

3.1. Image preprocessing and nuclei detection

Tissue images in RGB space are segmented into
background, stroma, cellular and lumina regions using
k-means clustering. The mean of the clusters are every
time initialized by the following set of RGB triplets:
{(0, 0, 0), (0.3, 0.2, 0.4), (0.9, 0.9, 0.9), (0.7, 0.5, 0.7)}
(Fig.2). The background segment is discarded in the
analysis and used for masking the patch images. The
regions of the remaining three segments are used for
feature extraction that is detailed below. In parallel, the
RGB images are transformed into gray-scale and then
normalized by stretching for nuclei detection.

Nuclei are detected by using Laplacian of Gaussian
(LoG) blob detection. The size of the LoG filter needs
to match the size of the nuclei and while nuclei in the
colon tissue may have slight variations in scale, we use
Lindeberg’s blob detection algorithm with automatic
scale selection over a range of scales [9]. With this ap-
proach, isolated nuclei at various sizes are detected. Be-

Figure 2. Segmented tissue image (left)
and the detected nuclei (centers marked
with blue).

yond some limited visual inspection, we have not evalu-
ated the accuracy of our nuclei detector. Following [3],
we expect however that the detection does not have to be
overly precise. In a last step, the connected nuclei which
frequently occur around the glands are eliminated.

3.2. Structural features

We evaluated structural features based on stroma,
cellular and lumina segments in tissue. In addition, the
number of isolated nuclei in the tissue and also the ar-
rangement of these nuclei have significant importance
for malignancy detection. To capture these nuclei-based
features, we divide the patches into 16 sub-patches and
consider only the sub-patches containing tissue. Then
the following features are extracted to get the local in-
formation in tissue: the number of nuclei per tissue area
in sub-patches, the ratio of the each structures (stroma,
cellular and lumen) to the tissue area and the pairwise
ratio of the structures in sub-patches. The density of
these structures are obtained from the segmentation re-
sult which was explained in previous section. Finally,
the variance and the mean of these extracted features
are used to get global descriptors for each patch image.

3.3. Texture features

The existence of malignancy and also the level of
malignancy may drastically change the texture of the
tissue and any change in texture may also cause a
change in color distribution after H&E staining. To cap-
ture this, we evaluate 32 bins color channel histograms
of R, G, B components of raw image after removing the
background pixels. That makes a total of 96 color fea-
tures for each patch.

In addition to color features, the raw RGB images
are transformed into HSV domain and Gabor and sec-
ond order statistical features are extracted on H,S,V
and normalized gray value component which is also
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used in nuclei detection. For second order features,
we first evaluate the gray-level co-occurrence matrix,
M(θ) ∈ RN×N in four different directions where θ ∈{
0, π4 ,

π
2 ,

3π
4

}
. Then we evaluate the following Haral-

ick features: homogeneity, contrast, energy and correla-
tion for each directions to yield 16 features. For Gabor
features, we construct a set of Gabor filters G(f, θ) for
orientation parameters θ ∈

{
0, π8 ,

2π
8 , ...,

7π
8

}
and fre-

quency parameters f ∈ {k, 2k, ..., 8k} where k is se-
lected as 1/16. With the inclusion of the filter at with
parameters (0, 0), we obtain 65 Gabor filters that are
applied to the tissue images. In addition, the average,
variance and minimum-to-maximum ratio of these fil-
tered images are evaluated for the Gabor features which
makes a total of 195 features for each image.

3.4. Feature selection and classification

Using the techniques described in this section, we
extracted a total of 1108 texture and 19 shape features
for each patch. Our feature set contains a, potentially
large, number of correlated features, which may nega-
tively affect the classification accuracy. Therefore, we
selected the best 120 features by forward feature se-
lection algorithm considering the sum of Mahalanobis
distances [13] as feature subset selection criteria. We
repeat the feature selection procedure for each classifi-
cation problem, separately.

4. Experimental Results

The patch images may contain tissue at various den-
sity (Fig.1) and patches having respectively small tis-
sue ratio (tissue/patch area) may not provide sufficient
information for analysis. Therefore, we ignore the
patches having tissue ratio less than 0.25 for the analy-
sis. Classification performance under the following two
two-class (normal versus un-normal and cancer versus
non-cancer) and four-class scenarios is studied using
10-fold cross validation. The classification accuracies
are reported for these three problems and for the two-
class problems we also report the AUC (area under the
ROC) values. Results are obtained using a logistic re-
gression classifier.

4.1. Two class classification

Normal, cancer and the pre-cancerous classes like
inflammation or adenomatous are the mainly encoun-
tered classes in colon histopathology. The inflamed ab-
normality is accepted as low cancer risk than the ade-
nomatous classes [12]. These pre-cancerous cases are
exposed to different medical treatment than the cancer.

In reality, a pathologist labels the whole slice which in-
cludes a large number of patches. The patches in a slice
may be at different classes. However, a slice having
only one cancer patch leads to be labeled as cancer. In
other words, a first objective in histopathology is to de-
tect the cancer which requires urgent treatment. If no
cancer is observed in a slice, then the attention is given
to high cancer-risk classes, like adenomatous.

Another objective, however, might be the automated
detection of normal slices as the first step. This could
be used to significantly decrease the labor cost, as
such slices could be discarded without the need for the
pathologist to study them. Therefore, we generated two
different two-class problems: normal versus abnormal
to emphasize the normal patch detection and cancer
versus non-cancer to emphasize the cancer patch detec-
tion. In the first problem, we construct the class abnor-
mal by collecting samples from cancer, inflamed and
adenomatous labeled patches against to normal class.
However, for the second problem, we construct the non-
cancer class by the collecting samples from normal,
adenomatous and inflamed labeled patches against the
cancer class.

Using a logistic regression classifier with equal class
priories, accuracies of 65.35% and 93.21% are obtained
for normal and abnormal classes in the first classifica-
tion problem, respectively. However, the accuracies of
79.64% and 95.70% are obtained for cancer and non-
cancer classes, respectively, in the second classification
problem. We also measured the area under the ROC
curves and found values of 0.90 and 0.95 for the normal
vs. abnormal and cancer vs. non-cancer classification,
respectively.

4.2. Four class classification

For the four class classification problem, we ran-
domly divide the dataset into training and test set and
present the confusion matrix over the classified test
samples. In total, 890, 887, 966 and 874 patches are
used for testing from the adenomatous, cancer, in-
flamed and normal classes, respectively.

It is observed that 48 of the 887 cancer-labeled
patches are misclassified as normal and 25 of the 874
normal-labeled patches are misclassified as cancer. A
higher number of mistakes is observed between in-
flamed, normal and adenomatous.

5. Discussion and Conclusion

A computational histology analysis is proposed for
the classification of local patches in colon slices.
Among the 1127 extracted features, we selected the best
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Estimated Labels
Adeno. Cancer Inflamed Normal

Adeno. 667 84 59 189
Cancer 44 834 73 48

Inflamed 67 71 703 159
Normal 85 25 89 799

Total 863 1014 924 1195

Table 1. Confusion matrix with the number
of the patches assigned to each class.

120 features for the analysis. It is observed that these
features are selected from the shape, Haralick and Ga-
bor features (obtained at two different scales). An anal-
ysis is performed based on two class and four class clas-
sification.

In cancer vs non-cancer classification, the false neg-
ative rate (cancer patches that are detected non-cancer)
is expected to lower. However, false positives (non-
cancer patches that are detected cancer) is tolerable at
patch level. In contrast, at normal vs. abnormal clas-
sification, false positives (abnormal patches detected as
normal) is intolerable. In both of the two class clas-
sification problem, we achieve promising AUC results
which are: 0.90 and 0.95.

In the four-class classification, slightly worse re-
sults are obtained compared to the two-class problems,
which can largely be explained from the simple fact that
we consider more classes. Another study on multi-class
colon tissue classification has been performed by [8]
using 25 patches from cancer, adenomatous and nor-
mal classes. They performed tests with 10 patches from
each class and showed that only the two of the adeno-
matous patches were mis-classified as normal. Sim-
ilarly, Fiscor et. al [6] separated the inflammation in
colon sections using 69 objects in four classes. How-
ever, the dataset they used, are not adequate for gener-
alization in computational histopathology. Because, tis-
sue histology is highly heterogenous and it needs more
training data for generalization. Compared to [8, 6], we
achieve more accurate results even in the case of four
classes. The lowest errors in four-class classification
are observed between the cancer and normal classes.
Whereas, higher errors are observed between the ade-
nomatous,inflamed and normal classes. The mean clas-
sification accuracy in four class classification is 75.15%
which can be regarded poor in pattern recognition prob-
lem. However, patches in histopathology may include
malignancy together with the normal structure. That
explains the high error rate between the normal, ade-
nomatous and inflamed classes.

In practice, a pathologist labels whole slice. There-
fore, in the future, the proposed patch-based classifi-

cation problem will be extended to slice-based classifi-
cation to better aid to pathologist for histopathological
image analysis.
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