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Abstract

In image classification, multi-scale information is

usually combined by concatenating features or select-

ing scales. Their main drawbacks are that concatena-

tion increases the feature dimensionality by the number

of scales and scale selection typically loses the informa-

tion from other scales. We propose to solve this problem

by the dissimilarity representation as it enables to com-

bine various sources of information without increasing

the dimensionality of the representation space. Various

combining rules are introduced and tested with real-

world applications. Our experiments show that com-

bining with dissimilarities from all scales could indeed

improve considerably upon the performance of the best

single scale and adaptive combining can improve upon

straightforward averaging.

1. Introduction

Incorporating multi-scale information can poten-

tially improve the classification of images. Two com-

mon ways in the literature are concatenation of features

at all scales [8, 4] and selection of scales [7]. The main

drawback of concatenation is that it leads to very high

dimensional feature vectors. Scale selection may pro-

vide the best scale for the problem, but it does not make

full use of the image structure across the scales.

The dissimilarity representation [10] can be used to

combine multi-scale information without increasing the

dimensionality of the representation space. This repre-

sentation characterizes an object by measuring its dis-

similarities with a set of reference objects, called the

representation set. It is especially useful when dealing

with strings and graphs, or when the dissimilarity mea-

sure is not a distance or metric. The dissimilarity space

is an easy-to-implement, yet very effective way for the

dissimilarity representation [2]. Given a representation

set of n images R = {ℓ1, ℓ2, · · · , ℓn} and a dissimilar-
ity measure d between images, the vector D(ℓ, R) for

any image ℓ lies in the so-called dissimilarity space

D(ℓ, R) = [ d(ℓ, ℓ1), d(ℓ, ℓ2), · · · , d(ℓ, ℓn) ] . (1)

This space can be treated as an Euclidean one and thus

all statistical classifiers can be applied to it.

We propose to combine multi-scale information

by (weighted) averaging or maximizing dissimilarities

computed from all scales. Six such rules are introduced

in Sect. 2, and tested with four datasets in Sect. 3. The

experimental results are analysed in Sect. 4. The paper

ends with a conclusion.

2. Combining Multi-Scale Dissimilarities

At each scale σi, i = 1, · · · , s, the dissimilarities are
computed when the image ℓ and all images in the repre-
sentation set R are at scale i:

Di(ℓ, R) = [d(ℓi, ℓi
1
), d(ℓi, ℓi

2
), · · · , d(ℓi, ℓi

n)]. (2)

We consider the following six methods to combine

those dissimilarities into a new one. The reasons for

the particular choices are explained subsequently.

Da(ℓ, R) =

s∑

i=1

Di(ℓ, R);

Db(ℓ, R) =
s∑

i=1

1

σi

Di(ℓ, R);

Dc(ℓ, R) =

s∑

i=1

1

σ2

i

Di(ℓ, R);

Dd(ℓ, R) =

s∑

i=1

αi Di(ℓ, R);

De(ℓ, R) =

s∑

i=1

α4

i Di(ℓ, R);

Df (ℓ, R) = max
i=1,...s

Di(ℓ, R).

(3)
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Figure 1. Weights for the 30 scales used

in the colon tissue dataset. Note the dif-

ference between Db and Dc, Dd and De.

The first five rules are weighted averages of dissimi-

larities. Da is simply averaging dissimilarities from all

scales. Db assigns smaller weights for dissimilarities

from larger scales. Dc is similar to Db, but gives even

less weights for large scales. Dd assigns weights ac-

cording to the relative accuracy αi. If the classification

accuracy at scale σi is acci and the accuracy of random

classification is rndacc (e.g., when the class priors are

the same, rndacc is 1/n for a n-class problem), then αi

is defined as

αi = max (acci − rndacc, 0).

The higher the classification accuracy, the larger weight

will be assigned to a scale. If the classification is ran-

dom, then the weight becomes zero. De is similar to

Dd, but takes the fourth power of αi, which increases

the gap between large and small weights1. If αi is small,

then α4

i will be very close to zero. Df takes the maxi-

mum of the dissimilarities from all scales.

If we put dissimilarities from all scales into a vector,

V (ℓ, ℓj) = [d(ℓ1, ℓ1

j), d(ℓ2, ℓ2

j), · · · , d(ℓs, ℓs
j)], (4)

thenDa andDf are related to L1 and L∞ norms of V :

Da(ℓ, ℓj) =
1

s
‖V ‖1, Df (ℓ, ℓj) = ‖V ‖∞.

While Db and Dd have many weights of small values,

their counterparts, Dc and De respectively, typically

1The fourth power was used to make Dd and De sufficiently dif-

ferent. Other choices are possible and at times may be better.

make those small weights close to zero. A justification

of this operationmay come from [11], which shows that

combination of some good individuals can perform bet-

ter than the combination of all individuals.

As an example, the weights for the colon tissue

dataset (described in the next section) is shown in Fig-

ure 1. In comparison with Db, Dc gives much higher

weights to small scales, and about a half of the scales

are assigned close-to-zero weights. While the weights

forDd are relatively flat across scales, those forDe are

much more different. Weights for scales larger than 128

become almost zero.

It should be mentioned that combining dissimilari-

ties is not a new idea, see for example [9] for general

investigations. The focus of this paper is to use dissim-

ilarities to combine multi-scale information. In particu-

lar, combining rules Db and Dc explicitly use the scale

information for the combining, andDd andDe have not

been studied for dissimilarities before.

3. Experiment Setup

We tested different combination rules on the follow-

ing four datasets.

The first is the chicken pieces silhouettes dataset

(chicken) [1]. It has 446 pieces from 5 classes. Pieces

were represented as strings, and weighted edit distance

were computed as dissimilarities. Eleven resolutions

were used for the string representation, resulting in 11

dissimilarities of different scales.

The second is theMNIST digit (MNIST-dig) recogni-

tion [5], which is a ten-class problem classifying digits

0 to 9. Each digit had 300 examples sampled from the
training digits. The Euclidean distance between pixel

values was used to measure dissimilarities. The images

were smoothed with Gaussian kernels of 10 different

scales (standard deviations). Including the original im-

ages, a total of 11 dissimilarities were computed.

The third is the Brodatz textures (Brodatz), which

have 111 images. Following the general test protocol,

each image was partitioned into 9 subimages of size

215 × 215, resulting 999 images for classification. The
Leung-Malik filter set [6] at each scale was applied to

the images, and L1 distance between the histograms

of the response images were computed as dissimilari-

ties. Twenty-one scales sampled exponentially between

1 and 32 were used.

The fourth comes from a colon tissue dataset (colon)

acquired by Marius Nap of the Atrium Medical Cen-

ter in Heerlen, The Netherlands. The objects are mi-

croscopy image patches of size 1000 × 1000, belong-
ing to four classes: normal, inflamed, adenomatous,

and cancer. The Laplacian ∆ of different scales were
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Figure 2. Learning curves for six methods to combine multi-scale dissimilarities (cf. Eq. (3)),

the best individual scale, and the average performance of all scales. The same legends are

used as in (b). In (b), the learning curve of ‘ind. scales-min’ overlaps with those of Dc and Df .

applied to each image patch, and the Euclidean dis-

tance between the histograms of the response images

was used as the dissimilarity measure.

The results of the combining rules, the average per-

formance of all scales, and the best individual scale

which has the minimum error rate on average, are

shown in Figure 2. For each dataset, the same clas-

sifier was used for individual scales and for the com-

bined dissimilarities. For Brodatz and colon, linear

SVM with unit penalty parameter was used; for chicken

and MNIST-dig, linear discriminant analysis was used,

together with a principle component analysis for di-

mensionality reduction. Classifiers were chosen only

to illustrate the combining rules; they were not opti-

mized upon classification performances. The weights

αi for Dd and De were computed based on the cross-

validation classification with all the data. For one

dataset at each scale, all the dissimilarities were nor-

malized to make their maximum equal to one. The ex-

periments were repeated for 10 times, and the average

error rates are reported here.

4. Analysis

The learning curves of individual scales (not in-

cluded here) showed that for different datasets, the

performances across scales differ significantly. The

scale ranges in which good performance were achieved

1641



also varied: small scales for MNIST-dig and Brodatz,

medium scales for colon, and both medium and large

scales for chicken. This variation influenced the be-

haviour of combining rules, as we will see later on.

From Figure 2, the first thing to notice is that com-

bining multiple scales can improve upon the average

performance of all scales. A proper combination could

even improve upon the best individual scale signifi-

cantly. Especially for colon, all combine rules except

Dc outperformed the best individual for a large mar-

gin with more than 200 training samples per class. For

chicken and Brodatz, the best combining methods also

outperformed the best individual a lot. This justifies the

combining of multiple scales, which can potentially im-

prove performance upon individual scales.

With respect to different combining rules, the sim-

ple average ruleDa performed already fairly well. This

is in agreement with the results in [9, 3]. For chicken

and colon, Da was among the best. The worse per-

formance of Da for MNIST-dig and Brodatz may come

from the averaging of a large percentage of scales which

performedmuchworse than the best scale. How to com-

bine the scales of low performance is that task of adap-

tive combining methods.

The combining rules Db and Dc assign smaller

weights to larger scales. They were effective when

larger scales lead to worse results, as were the case for

Brodatz and MNIST-dig. For both datasets, Db and Dc

achieved performance among the best of all combining

rules. It should be noted that those larger scales, though

much worse than the best scale, could still provide valu-

able information. See for example Brodatz, Db outper-

formed the best individual with a large margin. When

the best performance are achieved at medium or large

scales, however, Db and especially Dc tend to work

bad. This explains why Dc was the worst combining

rule for chicken and colon. Db was better thanDc since

it did not penalize that much for large scales, but was

not among the best combining rules.

The combining rules Dd and De assign weights to

scales according to their classification errors. For all

four datasets, De was always among the best combin-

ing rules, and outperformed upon, or was comparable

to, the best individual scale. Dd also performed very

well on chicken and colon, but was worse than De on

MNIST-dig and Brodatz. This indicates that ‘stretching’

the weights by assigning larger weights to good scales

and close-to-zero weights to very bad scales is useful.

Combining by taking the maximum dissimilarity

across scale, Df , was among the best only for the

MNIST digits dataset. Though it can be interpreted as a

different norm as Da, their performances differed a lot.

A deeper understanding ofDf is still to be explored.

5. Conclusions

We have tested six rules to combine dissimilarities

from different scales. Our experiments show that (1)

Combining multi-scale information with the dissimilar-

ity representation could improve upon the best individ-

ual scale. (2) Combining by averaging the dissimilar-

ities across scales can already provide good classifica-

tion results. (3) Weighting dissimilarities according to

the classification accuracy at each scale is a good can-

didate for choosing weights. (4) When the classifica-

tion results at large scales are worse than those at small

scales, dissimilarities may be combined by assigning

weights inversely proportional to scale values. The

large scales still provide valuable information, which

can potentially improve the best individual scale.
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