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Abstract

Independence between individual classifiers is typically
viewed as an asset in classifier fusion. We study the lim-
its on the majority vote accuracy when combining depen-
dent classifiers. Q statistics are used to measure the depen-
dence between classifiers. We show that dependent classi-
fiers could offer a dramatic improvement over the individual
accuracy. However, the relationship between dependency
and accuracy of the pool is ambivalent. A synthetic experi-
ment demonstrates the intuitive result that, in general, neg-
ative dependence is preferable.

1. Introduction

LetD = {Ds,..., Dy} beaset (pool) of classifiers such
that D; : ®* — Q, where Q = {w,...,w.}, assigns x €
R" a class label w; € Q.

The majority vote method of combining classifier deci-
sions, one of many methods in this important research area
[4,5,6,7,8,10, 11, 12], is to assign the class label w; to x
that is supported by the majority of the classifiers D;.

Finding independent classifiers is one aim of classifier
fusion methods for the following reason. Let L be odd,
! = {w1,w2}, and all classifiers have the same classifi-
cation accuracy p. The majority vote method with indepen-
dent classifier decisions gives an overall correct classifica-
tion accuracy calculated by the binomial formula
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Pmaj = ) pL_m(l - p)m’
where |a| denotes the largest integer smaller than a.
The probability of a correct classification for p
0.6,0.7,0.8,09 and L = 3,5,7,9 is shown in Table 1.
Then the majority vote method with independent classifiers
is guaranteed to give a higher accuracy than individual clas-
sifiers when p > 0.5.
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Table 1. Tabulated values of the majority vote
accuracy of L independent classifiers with in-
dividual accuracy p

[ L=3]L=5[L=7]L=9|
p=0.6 || 0.6480 | 0.6826 [ 0.7102 | 0.7334
p=10.7 || 0.7840 | 0.8369 | 0.8740 | 0.9012
p=0.8 || 0.8960 | 0.9421 [ 0.9667 | 0.9804
p=0.9 || 0.9720 | 09914 | 0.9973 | 0.9991

In this study we are interested in combining dependent
classifiers and establishing a relationship between the de-
pendence and the accuracy of the pool. If all classifiers are
totally positively dependent (i.e., they are identical) there
will be no improvement over p. However, if there are nega-
tively dependent, i.e., commit mistakes on strongly different
objects, we could expect improvement over the predicted
value for independent classifiers. '

2. Dependency between classifiers

Let Z = {z1,...,2n} be a labeled data set, z; € R"
coming from the classification problem in question. For
each classifier D; we design an N -dimensional output vec-
tory; = [y1,4,---,Yn,i|” of correct classification, such that
yji = L, if D; recognizes correctly z;, and 0, otherwise.
There are various statistics to assess the similarity of D;
and Dy, [1]. The Q statistic for two classifiers is

NIINOO _ NOINIO
Qix = NIIN00 1 ol pyio®

(2)

where N9 is the number of elements z; of Z for which
¥4, = a and y; r = b (see Table 2).

For statistically independent classifiers, Q;x = 0. @
varies between -1 and 1. Classifiers that tend to recognize
the same objects correctly will have positive values of Q,



Table 2. A 2 x 2 table of the relationship be-
tween a pair of classifiers

[ | Dy comrect (1) | Dy, wrong (0) |
D; correct (1) NIT N1
D; wrong (0) NUI NUO

Total, N = NO0 4 NOI 4 N10 4 N1,

and those which commit errors on different objects will ren-
der  negative.

Shown below are four 2 x 2 tables and the respective Q’s
(N = 100).

Q=-1 Q=-05 Q=0 Q=1
0 |50 30 | 30 36 | 24 50 O
50 0O 30 | 10 24 | 16 0 | 50

3. A synthetic example

Let D = {D;,D,, D3} and N = |Z| = 10. We assume
that all three classifiers have the same individual accuracy
of correct classification, p = 0.6. This is manifested by
each classifier labeling correctly 6 of the 10 elements of Z.
Given these requirements, al/ possible combinations of dis-
tributing 10 elements into the 8 combinations of outputs of
the three classifiers are shown in Table 3. For a correct over-
all decision by the majority vote for some z; € Z, at least
two of the three outputs y; should be 1. The last column of
Table 3 shows the majority vote accuracy of each of the 28
possible combinations. It is obtained as the proportion (out
of 10 elements) of the sum of the entries in columns 111’
’101°,°011” and 110 (two or more correct votes). The best
and the worst cases are highlighted in the table.

The table offers at least two interesting facts

» We can gain up to 30 % increase in the classification
accuracy over the individual rate (best case in Table 3).
This is a substantial improvement, especially noticing
that the accuracy of the majority vote of 3 independent
classifiers, each one of accuracy 0.6, is 0.648 (Table
1).

Combining classifiers using the majority vote is bene-
ficial or “neutral” in a great deal of the cases. In this
example, in 12 of the 28 cases (42.9 %) the combined
accuracy is greater than the limit for independent clas-
sifiers (Pre; > 0.7). For another 11 cases (39.3 %),
the accuracy did not improve on the individual rate
(Pmej = p = 0.6). In the remaining 5 cases (17.8
%) the overall accuracy was below the individual er-
ror rate (Ppq; < 0.6). It is unknown which of these
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Table 3. All possible combination of cor-
rect/incorrect classification of 10 objects by
three classifiers so that each classifier rec-
oghizes exactly 6 objects. The entries in the
table are the number of occurrences of the
specific binary output of the three classifiers
in the particular combination. The majority
vote accuracy P,,; is shown in the last col-
umn.

1J1]J]0JoJi1]1]o0]o
Noll 1{01110({1]0]|1]0| Punaj
1{t{tr{1lofofofo
T [0]2]2[2]4]0]0]0 0.8
2 floel2]3j1{3l1lo]o 0.8
3 0/3/3]0613]0]0]1 0.9
a [[i{i1{1({3[4(0([0T0 0.7
sfl1lt)2)2(3]t]lolo 0.7
6 1212111211110 0.7
7 1l2(21113}l0]0]1 0.8
8 (j2]o0floflalatololo 0.6
9 ft2lol1l3{3l1]lolo 0.6
wi2{o{2{2{212]0lo0 06
mffz2{tir{2i291{1]o0 0.6
12211 ]2(3j0]0/1 0.7
B2t y2y1f{2{1foli1 0.7
1afl2)2{2}o0l2]0f{0]2 0.8
503lolol3l2]l1l1]o 05
6(3{of{ol3{3]0f0]1 0.6
7 s3lolt1j2t1]2]1}0 0.5
BHs3toj1{2f{211]o0ol1 0.6
I T R A U A S SR AR IR A TR A 0.6
2003]t1{1{1]2]olo]2 0.7
2Ul4j0(0o]2(0]212]0 0.4
2 4]0 lojz 1111111 0.5
22 04]0(0)2]2)0]0]2 0.6
24 llalolilrf{r]1lol2 0.6
25 flaltfl1jol1{olol3 0.7
26 1s5]0lol1lolt1lt]2 0.5
271510011l 0]0]3 0.6
28 l6jojojolofojo]a 0.6

28 distributions is most likely to occur in a real-life ex-
periment. Therefore, even though most of the cases are
no worse than the individual classifiers, improvement
OVer p is not guaranteed.

For each pool D, there are L{L — 1)/2 pairs of clas-
sifiers. Denote by @, ; the @) value for classifiers D; and
Dj;. The @ statistic was calculated for each pair of clas-
sifiers for each of the 28 combinations. For the winning
combination (Ppqe; = 0.9), @12 = Q23 = Q1.3 = —0.5.
For the worst case (Prmo; = 0.4), Q12 = Q23 = Q13 =
0.333. Although supporting the intuition that negative de-
pendence is beneficial, this result appears to be not very
indicative. Table 4 shows the sorted P,,,; and the corre-
sponding (12, Q2,3 and Q1 3. As seen in the table, there



is no clear pattern of relationship between F,,,,; and the
@’s. For a general observation, we averaged separately the
Q’s for all 12 combinations for which Pr,q; > 0.648 (fa-
vorable) and the 16 combination for which P,,,,; < 0.648
(unfavorable). The averaged () of the favorable combina-
tions is -0.1227, and that of the unfavorable combinations
is 0.2873. However, the values of the @’s for both groups:
favorable and unfavorable, are scattered in the whole range
from -1 to 1, and extracting a consistent relationship seems
impossible. Triple dependence between classifiers for the
28 combinations was also calculated by

N111N001N010N100 - N011N101N110N000

INI11 001 010 100 4 011 101 [y 110 \y00D ’
3)

QIZS =

and is shown as the last column in Table 4.

Table 4. Sorted by F,,,; combination from Ta-
ble 3, the corresponding pairwise and triple
@Q’s. The long dash means that the value
could not be calculated (division by zero).

No | Praj Il @12 | @13 | Q23 || Qi3
21 04 0.33 0.33 0.33 1.0
15 0.5 0.88 | -0.50 | -0.50 1.0
17 0.5 0.33 | -0.50 0.33 1.0
22 0.5 0.88 0.33 0.33 1.0
26 0.5 0.88 0.88 0.88 1.0
8 0.6 1.00 { -1.00 | -1.00 _—
9 0.6 0.88 | -1.00 | -0.50 _—
10 0.6 0.33 -1.00 0.33 —_
11 0.6 033 ] -050 | -0.50 1.0
16 0.6 1.00 -0.50 -0.50 —
18 0.6 0.88 | -0.50 0.33 —
19 0.6 0.33 0.33 0.33 0.5
23 0.6 1.00 0.33 0.33
24 0.6 0.88 0.33 0.88 —
27 0.6 1.00 0.88 0.88 —_—
28 0.6 1.00 1.00 1.00 —_—
4 0.7 0.88 { -1.00 | -1.00 -—
5 0.7 0.33 | -1.00 | -0.50 —_
6 0.7 -0.50 | -0.50 | -0.50 1.0
12 0.7 0.88 | -0.50 | -0.50 -1.0
13 0.7 0.33 | -0.50 0.33 -1.0
20 0.7 0.88 0.33 0.33 -1.0
25 0.7 0.88 0.88 0.88 -1.0
1 0.8 033 | -1.00 | -1.00 —
2 0.8 -0.50 -1.00 -0.50 —
7 0.8 0.33 | -0.50 | -0.50 -1.0
14 0.8 0.33 0.33 0.33 -1.0
3 0.9 0.50 { -0.50 | -0.50 -1.0

The same type of synthetic experiment was carried out
for N = 100. From the total of 36151 possible combi-
nations, 14941 (41.3 %) have Pp,,; > 0.648 (favorable
group). The worst part of the unfavorable group, i.e., with
Ppj < 0.6, consisted of 11270 (31.2 %) combinations.
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The averaged values of () for the two groups are similar to
the values in our previous example, -0.1109 for the favor-
able group and 0.2320 for the unfavorable one. Figure 1
represents the histograms of all ’s for the favorable and
unfavorable groups of combinations. Generally, the favor-
able @)’s tend to be more on the negative side. Figure 2
shows the relationship between P,,,; and the triple depen-
dence Q 123.

Favorable

Unfavorable

14000
12000
10000
8000
6000
4000

Figure 1. Histograms of the ( statistic for the
“favorable” and “unfavorable” combinations
of classifier outputs, NV = 100.

The simulation was run for L = 3 classifiers (any num-
ber of classes ¢) with N = 10, 20, and 30 and with individ-
val accuracy p = 0.6, 0.7, 0.8 and 0.9. Table 5 shows the
minimal and the maximal accuracy Py,q;-

Table 5. The minimal and the maximal accu-
racy of the majority vote P,,,,; of L = 3 classi-
fiers of accuracy p with NV objects

73 N =10 N =20 N =30
Prraz l Prin Prax I Pmin Pmax L sz'n
0.6 0.9 0.40 0.9 0.40 0.9 0.40
0.7 1.0 0.60 1.0 0.55 1.0 0.56
0.8 1.0 0.75 1.0 0.70 1.0 0.70
0.9 1.0 0.90 1.0 0.85 1.0 0.86

To represent the overall dependence of a pool of classi-
fiers we took the average and the maximum of the three ()’s.
Shown in Table 6 are dependence thresholds for N = 10,
20, and 30, and p = 0.6, 0.7, 0.8 and 0.9. The average



Figure 2. Relationship between the majority
vote accuracy P,,; and triple dependence
Q123 for 3 classifiers

and the maximal () were retrieved for each pool D and the
maximal value of () was identified. All pools of classifiers
whose pairwise dependences @) (the average or the maxi-
mum) have been “more negative” than the threshold belong
in the favorable group, i.e., they are better than a pool of
independent classifiers.

The triple dependence ;23 did not appear to be as use-
ful as might have been expected. Neither Table 4 nor Figure
2 demonstrate an unequivocal relationship between Piq;
and Q;23.

Table 6. Threshold dependence values guar-
anteeing that the combination is “favorable”

P N =10 N =20 N = 30 |
QD-‘U l Qmaz QCL'U Qmam QCLU QmaL‘

0.6 [[ -0.375 | -05 0375 | -05 043 | 05

07 || 063 | -1.0 045 | 047 0.52 | -0.66

08 || -1.0 -1.0 -0.6 -1.0 0.7 | -10

09 || -1.0 -1.0 -1.0 -1.0 -1.0 | -1.0

4. Conclusions

By a synthetic example we explore the gain when com-
bining dependent classifiers instead of independent ones.
Our results support the intuition that negatively related clas-
sifiers are better than independent classifiers, and we also
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show that this relationship is ambivalent. In other words, if
we want to be guaranteed a result better than the predicted
accuracy for independent classifiers, we have to ensure that
Q’s are “sufficiently” negative (Table 6).
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