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Abstract

Recent developments in defining and training statistical
classifiers make it possible to build reliable classifiers in
very small sample size problems. Using these techniques
advanced problems may be tackled, such as pixel based
image recognition and dissimilarity based object classifica-
tion. It will be explained and illustrated how recognition
systems based on support vector machines and subspace
classifiers circumvent the curse of dimensionality, and even
may find nonlinear decision boundaries for small training
sets represented in Hilbert space.

1. Introduction

The way of thinking, within the pattern recognition commu-
nity, on the sample-size / feature-size problem has been dra-
matically changed during the last decade. Traditionally it
was thought that, due to the curse of dimensionality (Rao
[1]) it is necessary to ‘fill’ the feature space with more
objects than its dimensionality in order to obtain a classifier
which generalizes well. Recently it has become clear, how-
ever, that there are several ways to construct good classifiers
in almost empty spaces: for small datasets in very high-
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Fig. 1. Peaking of the generalization error of FLD as a

function of the feature size for various sample sizes.
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dimensional spaces, or even in Hilbert space. In this paper
we will try to give some understanding on how this is
achieved and present some examples. We will argue that the
curse of dimensionality still exists, but that there are now
ways to avoid it. Moreover, it will be pointed out how it can
be distinguished from the related effects: the peaking phe-
nomenon and overtraining.

For many traditional classifiers, trained by m objects, the
generalization error €(k) shows, for increasing feature sizes
k, a minimum at about k£ = m/c. (the peaking phenomenon,
see Jain et al. [3]). The generalization error is usually esti-
mated by an independent test set. In fig. 1 an example is
shown based on Fisher’s Linear Discriminant (FLD). The
data set used here consists of 2000 samples for each of the
characters ‘3’ and ‘8’ in one of the NIST databases. They
are, after a normalizing preprocessing stage, represented in
16x16 grey value images, see also [16]. A random subset of
the data is used for training (equally sized parts for both
classes) and the remaining set is used for testing. Results
averaged over 50 experiments are shown. Unless mentioned
otherwise, all other figures, shown below, are based on the
same dataset, using a similar procedure.

Usually, optimal values for o are found between 2 and
10. In a feature space with k£ = m all m training objects lie in
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Fig. 2. Learning curves of the FLD for various
feature sizes.



a m-1-dimensional linear hyperplane. A linear classifier can
be found that correctly classifies all training objects, even if
they are randomly labeled, see Cover [2]. As a consequence,
it was believed that no guarantee can be found that classifi-
ers optimized by m < k samples have any generalization
capability. Therefore the “small sample size problem”
(m 4 k) should be treated very carefully, Raudys and Jain
[4]. In fig. 2 some learning curves for the FLD are given.
This classifier is not defined for m < k, as the sample scatter
matrix becomes singular and cannot be inverted. Conse-
quently, for low sample sizes low feature sizes are needed
and for large sample sizes larger feature sizes are possible
and asymptotically yield better performances.

This state of affairs, a deteriorating performance by an
increasing feature size, is as a rule counterintuitive. It does
not allow the use of image objects represented by all, e.g.
2567 pixels as features, as there is no way to collect a dataset
of sufficient size. Still, there are applications for which this
representation works, e.g. a simple classifier like the nearest
mean method for recognizing character with a fixed font.

Applied on images, this method is also called template’

matching.

In this paper classifier modifications are discussed that
generalize in high-dimensional feature spaces, even if they
are almost empty, i.e. filled with a training set that is (much)
smaller than the dimensionality of the space. These classifi-
ers may be described as, possibly nonlinear, functions of
(dis)similarities, correlations or distances between the tem-
plates and the object to be classified. This might be an
attractive solution if the number of templates necessary for
a good performance is small. Our main theme is to give
some understanding how this works in a feature space rep-
resentation.

In the next section we will present the use of training
sets, representation sets and kernel mappings for handling
large feature sizes and for constructing nonlinear classifiers.
First we will show how the FLD can be used to that purpose.
Next we will discuss the support vector classifier, the sub-
space classifier and dissimilarity based classifiers.

2. Representation sets and kernel mapping

Throughout the paper we will use the fact that any k-dimen-
sional feature space R; can be mapped on an n-dimensional
space using a representation set S and a kernel function
K(S,x). The set S= {xs1 ,x; ) eees xls1 } contains n vectors
which represents in one way or another the dataset of inter-
est. The kernel function computes a similarity or dissimilar-
ity between an arbitrary feature vector x € R, and each of
the n vectors in the representation set. The output vector u
then contains n components. So by kernel mapping u =
K(S,x) an arbitrary object x € R, is mapped on an object
ue R, in the kernel space, i.e. the output space of the

kernel function for a given representation set. Typical
choices for the kernel function K(y, x) are:

polynomials: K(y, x) = (x ® y + 1)” M

2
Gaussians: K(y, x) = exp("lx’é”ll ] @)
20

Note that the polynomial kernel is linear for p = 1.
Although y always has & components, it may be embedded
in a linear subspace of dimensionality &’ < & if the intrinsic
dimensionality of S is k’. The polynomial kernel increases
the dimensionality of a subspace to at most g‘ +l+ p‘g . The
dimensionality of the kernel space for the ausbian ernel,
however, is unbounded for increasing #. One may thereby
state that such a kernel maps the vectors into Hilbert space.
For introduction to the use of kernel mapping techniques,
see [5], [12] and [13].

The interesting application of kernel mapping is that it
facilitates the computation of nonlinear classifiers in the
feature space by constructing a linear classifier in the kernel
space. We will restrict ourselves here to two-class problems
with class labels A = +1:

C(x) =weut+tw, = weK(S,x)+w,

C(x)<0 ->A =—lelseh=1. 3)

This classifier always has, independent of the nonlinear-
ity, n+] free parameters, stored in [w,wy]. A training set
L={x/,x5, .., x,;} with given labels A={A;, A,, ...
JAm}, in which A;= %1, can be used for estimating w after it
is mapped in the kernel space. The representation set S may
or may not be a subset of the training set L. In some proce-
dures they coincide. In other procedures a subset of the orig-
inal training set is used for representation and the remaining
part, or all, is used for training.
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Fig. 3. Learning curves of the PFLD for various
feature sizes.



If the linear kernel is used (polynome with p = 1) and
S =L, so n = m, effectively a linear classifier in R}, is com-
puted even if n < k using thereby a training set with m < k
objects. A straightforward (but not optimal) way to do that
is the Pseudo-Fisher Linear Discriminant. It is discussed in
section 3 to gain a better understanding of the feature-size /
sample-size problem.

3. The Pseudo-Fisher Linear Discriminant

If m =n (e.g. if § = L), an exact solution is found for w in
(3), provided that no objects are dependent. It is defined by

}\.iC(xi) = 1, ‘v’xie S (4)

For a linear kemnel this is a classifier C(x) perpendicular to
the hyperplane defined by the training set. The weight
vector w is located in this hyperplane. All objects have the
same distance to the decision boundary, since C(x) = %1
VxeS. Elsewhere ([14], [18]) we named this the Pseudo-
Fisher Linear Discriminant (PFLD), as it is equivalent to the
use of pseudo-inverse for the singular scatter matrix. In fig.
3 the surprising learning curves for this classifier are shown,
theoretically explained in [18]. As predicted, generalization
is bad when the sample size equals the feature size. For
smaller sample sizes, however, a better generalization
appears to be possible. The best results, however, are always
found for an asymptotically increasing samples size. The
overall results for the (P)FLD are shown in a sample-size-
feature-size diagram, see fig. 5.

The PFLD is of theoretical interest as it is identical to the
FLD for sample size larger than the dimensionality and as it
clearly shows the generalization result of a complete adap-
tation of the classifier to the data below that point. It has the
same behavior as the regularized FLD with an asymptoti-
cally small regularization term [22]. v

The interesting area for this paper is the bottom-right part
of fig. 5, for which the sample size is smaller than the fea-
ture size (the dimensionality), so m < k. It appears that per-
formances can be found for low sample sizes and high

Fig. 4. The Pseudo-Fisher Linear Discriminant as it is
constructed in the subspace defined by the training data.
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Fig. 5. The generalization error of the PFLD as a

function of feature size and sample size.

feature sizes (deep in the region doomed by the curse of
dimensionality) that are much better than -obtained for
‘sound’ feature sizes. For larger feature sizes, much higher
sample sizes are necessary. This is illustrated by the feature
curves in fig. 6. These show that after the peaking phenom-
enon, the deterioration for increasing feature size, the error
rates shows a maximum, followed by another area of good
performances, with even lower error rates than the initial
ones.

The above shows that generalizing classifiers may be
found in almost empty spaces. The learning curves of the
PFLD follow the trend as presented in fig. 3. First perfor-
mance increases when the sample size grows. Then the
space becomes more and more filled, in the sense that the
set of objects shows an increasing dependency (i.e. objects
can with an increasing accuracy be described as linear com-
binations of other objects), either caused by the finite fea-
ture set, or by the intrinsic dimensionality of the data. In this
region it is still possible, however, to construct a classifier
that perfectly separates all training objects. When the
sample size approaches the dimensionality the classifier
becomes overtrained as it still absorbs all noise, but hardly
gains any new separating possibilities. After the sample size
passes the dimensionality perfect solutions on the training
set are not possible anymore. It is not possible anymore to
absorb all noise, instead, it is gradually ‘averaged out’ using
the least square criterion used for finding the coefficients.

It can be concluded that the generalization is determined
by two clearly separated processes. As a function of the
sample size, first an increasing structural adaptation is
made, perfectly fitting the classifier to the training set. This
is followed by a statistical adaptation in which a set of
parameters of constant size is asymptotically better esti-
mated. In between there is a ‘dimensionality resonance’, a
region in which the structure is too complex (contains too
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Fig. 6. The generalization error of the PFLD as a function
of the feature size k for sample sizes of m= 10, 30 and 100.
It appears that error (m=30, k=256) < error(m=30, k<30).

many parameters) and the statistical adaptation is too small
(too less noise averaging) for a good performance. The
maximum is where the sample size equals the dimensional-
ity is in fact determined by the number of free parameters in
the classifier. Note that in the feature curve plots (for con-
stant sample size), see fig. 6, the same phenomenon but in
reversed order is visible as in the learning curves, see fig. 3.
First there is a statistical generalization, until the feature
size equals the sample size, then, right of the maximum
error, better results may be found, due to the structural adap-
tation. In [23] it is shown that this can even be reached by
the addition of redundant (random) features!

The first maximum in the feature curve, where the fea-
ture size equals the sample size, is caused by the curse of
dimensionality. Here the increasing dimensionality causes a
problem as it is monotonically related to the number of free
parameters. After this peak, the number of free parameters
is fixed at the sample size. Where for very high feature sizes
the error increases again, e.g. for m = 10 in fig. 6, this is
caused by the increasing noise and has nothing to do which
the dimensionality as such.

For sample sizes in the order of the dimensionality, the
paradoxical situation exists that the expected performance
can be improved by deleting a random subset of the sam-
ples. This points to the possibility that better classifiers may
be found by first reducing the complexity of the structural
adaptation. Next, some heuristic combination of the two cri-
teria (complexity constraining and error minimization) may
improve the generalization further.

The next sections describe examples of such classifiers.
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Fig. 7. The generalization errors of the PFLD and the SVC as
a function of the feature size for a sample size of 30. In the
SVC polynomial kernels are used of the orders 1,2 and 4.

4. Support Vector Classifiers

The Support Vector Classifier (SVC) offers a clear and sys-
tematic procedure for reducing the number of objects in the
training set that are used for defining the classifier (3). This
is done by optimizing the criterion:

min, (w e w) while ,;C(x) 2 1, Vx;e S )

resulting in a quadratic optimization procedure (see [5], [6],
[7]) that, as a side effect, maximizes the number of compo-
nents w; = 0 in w. Consequently the number of objects x; that
participate in (3) is minimized. These objects are called sup-
port objects, as they are the only ones that take part in the
definition of the classifier. Objects that are not needed, in
the sense that they will be classified correctly anyhow, are
ignored. This reduces the noise and thereby improves the
generalization capability. The set of support objects can
now be treated, in our terms, as the representation set S. As
we are interested in classification problems in almost empty
spaces, we restrict the treatment of the SVC to the situation
of separable classes. The SVC has a number of very inter-
esting properties:

e If the SVC fully correctly classifies all m samples in the
training set and thereby needs n support objects, its esti-
mated performance is bounded by 22 . This directly fol-
lows from a leave-one-out observation: non-support
objects are correctly classified if they are removed from
the training set, while the support objects have at most a
probability of 50% of being correctly classified after re-
moval. So, the less support objects that are needed, the
better the classifier (in expectation).



Fig. 8. Nonlinear example of a SVC based on a Gaussian
kernel, separating two 2D classes. Support vectors are
encircled.

e The SVC has no direct dimensionality problems, as it is
entirely defined by the kernel values. If additional fea-
tures add noise and no information, however, a deteriorat-
ing performance remains possible. In fig. 7 some feature
curves are shown, illustrating this point as the perfor-
mance of higher order polynomial kernels deteriorates.
The number of support vectors needed in these experi-
ments with in total 30 objects in the training set ranges
from about 10 for the linear kernel to 30 for many of the
classifiers based on the 4-th order polynomial kernel.

e Other, nonlinear kernels as discussed in section 2, may be
used as well (provided that they fulfill Mercer’s theorem
[S]). If they need less support vectors, the expected per-
formance is lower. Consequently, nonlinear classifiers,
constructed in this way are not necessarily more com-
plex, and do not need large training sets. A 2D-example
is shown in fig. 8.

5. Subspace Methods

In the SVC the number of support vectors, and thereby the
classifier complexity, is a result of complexity constraining
and cannot be preset. Subspace methods constitute a way to
control the complexity directly. Each class is approximated
by subspace of the feature space using an eigenvector anal-
ysis. Either the number of eigenvalues, or the desired accu-
racy (explained variance) can be set. New objects are
assigned to the class of the nearest subspace. See Oja [10],
{8], [9]. Originally, subspaces are defined in the feature
space. Here they will be defined more generally on the
kernel space. The representation set S is split into ¢ subsets
§={S;, /=1, ..., c} according to the ¢ classes. Each of these
subsets constitutes a subspace in the kernel space according
to:
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Fig. 9. The generalization errors of the PFLD and the
subspace classifier (SUBSC) as a function of the feature
size k for a sample size of m = 30. For SUBSC three
subspace dimensionalities per class are used: 1, 2 and £

Rj(x) = K(S}, %) ©)

in which x is an arbitrary object to be mapped. The dimen-
sionality of R; is equal to the number of vectors of class .
A classifier can now be defined by selecting the subspace
that contains the largest projection of a new object:

class(x) = argmax;{R(x) Rj(x) } @)

A better generalization may be obtained be reducing the
dimensionalities of the subspaces, e.g. by an eigenvector
analysis based on a principal component analysis. In rela-
tion with the use of kernels, this is sometimes called kernel-
PCA [12]. One may choose for either, a fixed dimensional-
ity (a preset number of eigenvectors) or for a fixed accuracy
(selection of the minimum number of eigenvectors that
explains more than a fraction @, e.g. 95%, of the variance).
Some feature curves are presented in fig. 9 . They show that
for low feature sizes the subspace method is not very useful,
as it is difficult to characterize classes by subspaces. For
high feature sizes, however, the method may have a perfor-
mance that approaches the SVC, but has the possibility of a
user defined complexity. Classification by 5-dimensional
subspaces in a two-class problem needs the same amount of
computations as a SVC based on 10 support objects.

6. Dissimilarity Based Object Representations

The previous sections show that the kernel representation is
a powerful tool for building classifiers in high-dimensional
spaces. It reduces the problem of m points in a k-dimen-
sional space (m < k) to m points in an m-dimensional space.
The SVC further reduces the set of m training objects to a
smaller representation set by optimizing the set of support



objects. The subspace method reduces the dimensionality
below m, keeping the training set size at m.

Instead of constructing kernels in a feature space,
describing object relations, such relations may be given
externally and used as a starting point. In this way a distance
matrix K(¥, X) between two sets of objects X and ¥ may play
a similar role as the kernel functions. E.g.:

K(y, ) = lx- ) ®

In general, K(S.x) is now the set of dissimilarities between

an object x and the objects in the representation set S. The

symbol x, however, may not refer anymore to just a point in

a feature space but it may also point to the original object.

Relational discriminant analysis based on dissimilarities

now works as follows [19], [20], [21]:

1. Select some representation set.

2. Define some dissimilarity measure. This may be based,
either on a feature representation, either on the raw data
(e.g. images or contours).

3. Train a classifier on a training set represented by the dis-
similarities to the representation set.

4. Use this classifier for new objects represented by their
dissimilarities to the representation set.

A direct use of the SVC for reducing a training set to the

representations set S, treating (dis)similarities as kernel out-

comes, may often not be possible. Arbitrary similarity mea-
sures often do not fulfill Mercer’s conditions [5], while for
dissimilarity measures this is theoretically impossible.

Therefore other techniques have to be used to reduce the

size of the representation set [20]. In a given kernel space,

however, arbitrary classifiers may be applied. In [21] it is
argued that many distance measures are constructed by
summations over differences in feature values or pixel val-
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Fig. 10. The generalization errors of the PFLD and the
linear relational classifier (RELC) as a function of the
feature size k for a sample size of m= 30. For RELC three
sizes of the representation set are used: 2, 4 and 10.

ues. As a consequence they are often approximately nor-
maily distributed by which Bayes normal classifiers
perform well.

This approach may be useful for applications in which
(dis)similarities between objects can be directly measured,
but also in case no natural feature set can be found and
instead a distance measure between the raw measurements
is defined. Some initial studies on this featureless, relational
representation have been presented by us [15], [17], [19],
[20] and [21], showing that there are various ways to build
classifiers for a dissimilarity based object representation.
The example presented in fig. 10 is based on squared
Euclidean distances (8). For the selection of the representa-
tion sets, having sizes of 2, 4 and 10 objects, some type of
vector quantization [24] has been used. The remaining
objects in the training set of size m = 30, were used for train-
ing the classifier, here the FLD. In studying fig. 10 in com-
parison with fig. 7 it can be noted that RELC-2 defined on
30 features (computational complexity of 0(2x30)) per-
forms almost as good as FLD for 256 features (0O(1x256))
and just slightly worse than the linear SVC which needs on
the average about 10 support vectors (O(10x256)). This
illustrates the computational advantage of the relational
classifier.

7. Discussion

The training of classifiers in almost empty feature spaces
yields a problem if the classifiers are directly represented on
the features. The number of free parameters will then
increase by an increasing dimensionality. This results in a
deteriorating performance, the ‘curse of dimensionality’,
which is due to the mismatch of the training size and the
number of free parameters. This can be solved by represent-
ing the objects on themselves, using kemnels or dissimilari-
ties. In a next step the dimensionality of this representation
can be reduced further. The SVC finds a minimum support
set that classifies the data correctly. By the subspace method
linear subspaces in the kernel space are determined. The
relational classifier uses all training objects for finding a
classifier based on a small representation set. In all cases
new objects are classified using a function of kernels or dis-
similarities with the representation set. These three meth-
ods, although closely related, show large computational
differences.

The SVC needs a computational extensive training pro-
cedure in optimizing the support set. Especially for training
sets larger than about 1000 objects specific adapted proce-
dures may be necessary to make the handling of 1000x1000
matrices feasible. As the size of the support set cannot be
preset by the user the computational burden of the resulting
classifier cannot be controlled.

The subspace method and the relational classifier are,
both, fast and simple to use. Moreover, the complexity can



be set by choosing the dimensionality of the representation.
The drawback of this is that the complexity is not optimized
automatically. In case of linear subspaces the resulting
eigenvectors are weighted versions of all the original
objects and may be stored as a new object. For kernel PCA
(nonlinear subspaces) this is not possible. Consequently all
objects in the representation set should be stored and are
needed in each classification.

The additional advantages of these approaches are that
nonlinear classifiers can be constructed by using nonlinear
kernels or dissimilarity measures. As the number of param-
eters is defined by the size of the representation set, this
increased discrimination potency is not affected by an
increased noise sensitivity.

All methods described in this paper, can be used in many
versions. Several choices can be made for object normaliza-
tion, selection of representation sets, dimensionality reduc-
tion, etcetera. They constitute a large family that, by the
nature of the object representation, is able to construct good
performing classifiers in almost empty spaces.
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