
The economics of classification: error vs. complexity

Dick de Ridder, Elżbieta P ↪ekalska and Robert P.W. Duin
Pattern Recognition Group, Dept. of Applied Physics, Delft University of Technology

Lorentzweg 1, 2628 CJ Delft, The Netherlands

E-mail: dick@ph.tn.tudelft.nl

Abstract

Although usually classifier error is the main concern in
publications, in real applications classifier evaluation com-
plexity may play a large role as well. In this paper, a simple
economic model is proposed with which a trade-off between
classifier error and calculated evaluation complexity can be
formulated. This trade-off can then be used to judge the ne-
cessity of increasing sample size or number of features to
decrease classification error or, conversely, feature extrac-
tion or prototype selection to decrease evaluation complex-
ity. The model is applied to the benchmark problem of hand-
written digit recognition and is shown to lead to interesting
conclusions, given certain assumptions.

1. Introduction

Although in pattern recognition literature often a number
of classifiers are compared based on performance (in terms
of classification error on an independent test set), there are
hardly any reports on how classifiers compare in terms of
the amount of computation needed in the application phase
(see e.g. [3] for a discussion on computational complex-
ity of classifiers). Still, in practice many well-performing
classifiers cannot be used in real applications because their
computational complexity is too high. For example, apply-
ing the k-nearest neighbour method to a face recognition
problem might well give good results, but is not feasible in
electronic access situations in which a certain maximum re-
sponse time is a given. In other applications, there might
be a trade-off between error and computational complex-
ity instead of a hard limit, as computational complexity of
a large number of classifiers can be attacked using parallel
computation. An example is image database retrieval.

This paper tries to quantify computational complexity of
various statistical classifiers (i.e. trained using a set L of
examples �x) and to show how error-complexity curves can
be made for any classification problem. These curves can
be used in an economic model of classification. Based on
such curves, the effects of feature extraction and prototype
selection will be discussed.

2. Complexity

Statistical classifiers have different types of complexity.
The first is training complexity. This can vary widely, even
for identical classifiers on data sets with identical paramet-
ers; for example, the optimisation involved in training the
support vector classifier will depend on the amount of over-
lap present between the classes. However, in practice train-
ing time is often not an issue when designing a pattern re-
cognition system; even if training takes days, it will usually
only have to be performed once.

The second type of complexity is evaluation complexity.
This complexity is more of an issue when designing a pat-
tern recognition system, as the throughput and cost of such
a system critically depends on it. In general, it depends on
the type of classifier used, its parameters, and some num-
bers defined by the problem to be solved: n, the number of
samples �x ∈ L used for training; d, the number of features
(dimensions) in each sample; and c, the number of classes
to be distinguished.

2.1. Measures

In computer science, complexity of algorithms is often
measured in orders, denoted by the Landau symbol O [3],
e.g. O(n2). However, the order only specifies the true com-
plexity up to multiplication by and addition of arbitrary con-
stants. For practical applications, this is not precise enough.

Computational complexity can also be expressed in
FLOPs, or floating point operations. Although this is not
an ideal measure [5], it suffices for judging computational
cost of classifiers, as their evaluation usually consists of a
number of additions and multiplications. In modern com-
puter systems with floating point units (FPUs), addition and
multiplication are comparable in complexity. Experiments1

show that a typical modern CPU performs ≈ 107 additions

1Values were derived by programming a repeated addition of two non-
cacheable blocks of random double-precision floating point values, optim-
ised compiling with -O9 using egcs-2.91.66 and running on an Intel
Pentium III clocked at 733 Mhz, in single user mode under Linux 2.4.16.

1051-4651/02 $17.00 (c) 2002 IEEE

or multiplications a second. Division has a similar complex-
ity and function evaluations (e.g. exp(x),xp) have roughly
2.5 times the complexity of an addition.

2.2. Classifier complexity

A fact to consider when estimating evaluation complex-
ity is that many classifiers are only defined for the two-class
case. They are usually generalised for the multi-class case
by training c individual classifiers each separating a single
class from all others, thereby increasing evaluation com-
plexity c-fold. In complexity calculations, an additional c
FLOPs are included for the combination rule. For discuss-
ing the complexity of various classifiers, it is useful to dis-
tinguish between parametric and non-parametric classifiers.

Parametric classifiers are based on a (strong) model of
the data or discriminant and estimate parameters of a distri-
bution or discriminant function on the training set. There-
fore, they summarise the data; the number of samples in the
training set, n, has no influence on evaluation complexity.
The complexity of evaluating a new sample�z can be com-
puted in detail for these classifiers. In the equations below,
�w is a d × 1 weight vector and b is an offset term; �µ is a
d×1 mean vector and �G is a d×d covariance matrix. Note
that multiplication of two d-dimensional vectors will cost d
multiplications and d additions, and so has a complexity of
2d. Multiplying a 1×d vector by a d×m matrix has a com-
plexity of 2dm. The parametric classifiers S(�z) considered
here are2:

• ldc, the Bayes plug-in, linear classifier and
fisherc, Fisher’s linear discriminant. These have
the same computational complexity, since they can
both be expressed as S(�z) = �wT�z + b (for each class).
Their complexity thus is c(2d +1)+ c = 2c(d +1).

• qdc, the Bayes plug-in, quadratic classifier. This
classifier calculates, for each class, S(�z) = (�zT �G−1

1 �z−
�wT

1�z+b1)−(�zT �G−1
2 �z−�wT

2�z+b2) where �wT
i = 2�µT

i
�G−1

i

and bi =�µT
i
�G−1

i �µ1 can be pre-calculated. The com-
plexity of a single classifier is 4d2 + 8d + 2 and the
complexity of the c combined classifiers becomes
c(4d2 +8d +3).

• a feed-forward neural network (considered here to
be parametric as its complexity is independent of n).
Evaluating a neural network with h hidden units (in-
cluding output units) and q connections between units
(excluding unit biases) consists of q multiplications
and additions, followed by h additions of bias terms
and h evaluations of the unit transfer function, e.g. the
sigmoid; the total complexity therefore is 2q + 3.5h.
The neural network used in this paper is the LeCun
shared weight network [2] (q = 63,660; h = 1000).

2The abbreviations of the classifiers correspond to the function names
in the PRTOOLS pattern recognition toolbox for MATLAB [4].

Non-parametric classifiers base classification on the
training set itself, and therefore preserve the training set (at
least partly). Classifiers considered here are the k-nearest
neighbour classifier and an approximative version of it, k-
AESA [6], support vector classifiers, and representation set-
based classifiers [8]. The latter train a linear or quadratic
discriminant in the space spanned by the distances between
samples in the training set and will be discussed in section 4.

A number of these classifiers depend on distance or ker-
nel evaluations. The complexity of a Euclidian distance cal-
culation D(�z,�x), where�z and�x are d-dimensional vectors, is
3d. A polynomial kernel (the only kernel considered here)
KP(�z,�x) = ∑d

i=1(zixi + 1)p has complexity 5.5d. The non-
parametric classifiers used here are:

• knnc, the k-nearest neighbour classifier. Distances to
all prototypes have to be calculated (2nd) and the min-
imum will have to be stored in a sorted list of k nearest
prototypes (n log2 k). The total complexity therefore is
n(3d + log2 k). In experiments below, k was always 1
(which was optimal for this particular data set).

• kaesa speeds up evaluation of the k-nearest neigh-
bour classifier. However, evaluation complexity can-
not be predicted as it depends on the data set at hand.
In the experiments it was therefore measured.

• svc, the support vector classifier (trained using SVM-
Torch [1]). For each class, kernel functions between
the new sample�z and all support vectors for that clas-
sifier are calculated. However, as samples may be
support vectors for more than one classifier, only the
number of unique support vectors ns determines the
complexity. For the polynomial kernel, this amounts
to ns(5.5d). After calculating the kernels, the results
are weighted and summed for each of the c classifi-
ers, at a cost of (1 + 2n j), where n j is the number
of support vectors for the classifier describing class j.
Overall, the complexity is 2c + 2ns′ + 5.5dns, where
ns′ = ∑c

j=1 n j.

2.3. Error-complexity curves

The classifiers above can be trained on any problem. In
such experiments, it is good practice to vary the number
of samples in the training set to investigate the dependency
of performance on n. However, n also directly influences
computational cost. The data set we use here as an ex-
ample is a pre-processed subset of the NIST handwritten
digit database [9, 2], with c = 10, d = 256 (16×16 pixels)
and n ∈ c · {10,50,250,1000}. Error e (in %, measured on
an independent test set of 1,000 samples/class) vs. computa-
tional complexity f (in FLOPs) is shown in figure 1(a), for
various classifiers. There clearly is a wide range of com-
plexity, between 103 and 107 FLOPs. Furthermore, it is ob-
vious that in different complexity ranges different classifiers
dominate.

1051-4651/02 $17.00 (c) 2002 IEEE

Given figure 1(a), we can draw a curve indicating what
the best possible performance is given a certain complexity
over all training sample sizes used. All classifiers above this
curve are irrelevant, as a cheaper solution giving at most the
same error can be found to the left. Note that in practice
such a curve can easily be used to find the classifier (1) giv-
ing lowest error, at the point of contact of a line of constant
error e to the curve; or (2) having a maximum complexity:
for applications in which there is a fixed upper bound to the
computational complexity (i.e. when reaction time instead
of throughput is the issue), one can simply intersect a line
of constant f with the curve and find the classifier giving
lowest error e to the left of it.

For the handwritten digit recognition problem, the error-
complexity curve is shown in figure 1(b). Note how only
ldc, svc, kaesa and the neural network are relevant.

3. Economics

To compare classification error to computational com-
plexity for a given classifier, both will have to be specified
in a common unit. The easiest unit to work in for real ap-
plications is cost. Below, all cost is expressed in euro’s.

To calculate the cost of classification errors, we can mul-
tiply the cost of one error (e co) by the probability of mis-
classification (e): ce = e · co. The cost of complexity is
slightly more involved. Say a CPU is capable of v FLOPs
per second and costs e cc per year including secondary
devices, depreciation and maintenance (the “total cost of
ownership”). There are 3.15× 107 seconds in each year.
Furthermore, let f be the number of FLOPs needed to clas-
sify a single sample�z and s the percentage of CPU time alot-
ted to classification. Assuming classification can be spread
over multiple CPUs without overhead3, the cost per evalu-
ation can be expressed as: cp = cc· f

3.15×107·v·s .
This leaves several parameters which depend on cur-

rently available hardware. Experimentally (see section 2.1),
a reasonable value for v was found to be 107. For high-
availability platforms (e.g. servers made by IBM, Sun or
HP/Compaq), cc currently amounts to roughly e 104 per
year. Finally, s of course depends on the problem at hand.
However, in our experience in many projects where signal
processing (audio or video) necessarily preceeded classific-
ation, 25% seems reasonable.

These estimates allow us to equate cost of error and cost
of complexity:

ce = cp (1)

e · co =
cc · f

3.15×107 · v · s = 1.27×10−10 · f (2)

The constant on the right of the equation may seem very
small. However, consider the handwritten digit recognition

3Or, equivalently, that various samples can be evaluated in parallel.

problem discussed earlier, which classifies sub-sampled im-
ages directly: n = 10,000, d = 256 and c = 10. The er-
ror e is 0.0138 for the polynomial support vector classifier
trained on 1000 samples per class with p = 3, and 0.0132
with p = 4. The difference in error is 6× 10−4; the differ-
ence in complexity is 857,356 FLOPs. This indicates what
the cost of a single error, co, must be to justify the added
expense:

co =
1.27×10−10 ·8.57×105

6×10−4 = e 0.18 (3)

While not a large amount, it is not negligible. If the true
cost of a single error is smaller than this amount, it will
pay off to make a slightly larger error (in this case by us-
ing the support vector classifier with p = 3). In general,
situations such as these are likely to occur in, for example,
inspection of mass-produced simple objects such as screws
and nails, toys, foodstuffs or even medicine. Of course, the
number derived above depends linearly on the current cost
of CPU power and relative CPU usage for classification. In
each individual application at each time, the resulting num-
ber will be different. However, the model shows that simple
assumptions can lead to real trade-offs.

The model above can be used in a number of other ways.
For a solution costing e c per object, it should hold that
c = ce +cp. This equation can be used to draw iso-cost lines.
Given the parameters above and, say, a cost of co = e 0.01,
the iso-cost lines will be e = c−1.27×10−8 f . The point of
contact between the iso-cost line and the error-complexity
curves with minimum c then specifies the classifier to be
chosen. Alternatively, c can be fixed (to give a maximum
total cost per object); in this case, any classifier on the error-
complexity curve below the iso-cost line is sufficient.

4. Feature extraction and prototype selection

Computational complexity can, of course, be lowered by
performing feature extraction, for example using PCA. This
will lower d, the number of dimensions, to m; the added
complexity is only the mapping of an incoming vector to
the feature subspace, 2md FLOPs. In an experiment, PCA
was applied to lower the dimensionality of the digit data to
16, 32 and 64 dimensions. Figure 1(c) shows the results;
classifiers trained on PCA-projected data are denoted by a
preceding p-. Clearly, feature extraction helps to lower the
error-complexity curve over a broad range.

A classification method recently proposed [7] is to train
ordinary classifiers (ldc and qdc) in the space spanned by
the distances of samples in the training set to a set of pro-
totypes. These classifiers, r-ldc and r-qdc, work in the
same space as the k-nearest neighbour method, but impose
a stronger model and are therefore expected to exhibit bet-
ter performance for small sample sizes. Their complexities

1051-4651/02 $17.00 (c) 2002 IEEE

can be found simply by replacing d by m in the original
expressions. An additional step, calculating the distances to
the prototypes, takes 2md FLOPs, where m is the number of
prototypes. In experiments, we selected m ∈ c · {2,4,6,8}
random prototypes out of the n in the current training set,
calculated the m distances to these prototypes for each train-
ing sample and used these as its features. The results are
shown in figure 1(d). It shows that the application of pro-
totype selection in this problem is limited to a range of
medium complexity. However, in this region it performs
comparable to PCA. An open question, currently under re-
search, is whether performance can be improved using a
more principled method than random prototype selection.

5. Conclusions

This paper discussed how evaluation complexity of clas-
sifiers can be calculated and error-complexity curves can
be drawn. A simple economic model showed that even
with current technology, in real applications high evalu-
ation complexity can become too expensive. Finally, error-
complexity curves were shown to be useful in judging the
effect of feature extraction and prototype selection.

References

[1] R. Collobert and S. Bengio. SVMTorch: support vector ma-
chines for large-scale regression problems. Journal of Ma-
chine Learning Research, 1:143–160, 2001.

[2] D. de Ridder. Adaptive methods of image processing. PhD
thesis, Delft University of Technology, Delft, 2001.

[3] R. Duda, P. Hart, and D. Stork. Pattern classification. John
Wiley & Sons, New York, NY, 2nd edition, 2001.

[4] R. Duin. PRTOOLS, a MATLAB toolbox for pattern recogni-
tion, 2000. version 3.0.

[5] J. Hennessy and D. Patterson. Computer architecture: a
quantitative approach. Morgan Kaufmann, San Mateo, CA,
1990.

[6] A. Juan and E. Vidal. On the use of edit distances and an effi-
cient k-NN search technique (k-AESA) for fast and accurate
string classification. In Proc. ICPR 2000, volume 2, pages
680–683, Los Alamitos, CA, 2000. IAPR, IEEE Computer
Society Press.

[7] E. Pekalska and R. Duin. Automatic pattern recognition by
similarity representations. Electronics Letters, 37(3):159–
160, 2001.

[8] E. Pekalska and R. Duin. Dissimilarity representations al-
low for building good classifiers. Pattern Recognition Letters,
23(8):943–956, 2002.

[9] C. L. Wilson and M. D. Garris. Handprinted character data-
base 3, february 1992. National Institute of Standards and
Technology; Advanced Systems division.

This work was partly supported by the Dutch Foundation
for Applied Sciences (STW).

10
3

10
4

10
5

10
6

10
7

0

0.1

0.2

f

e

ldc
lecun
kaesa
p−qdc
p−kaesa
p−svc(p,3)
p−svc(p,4)

10
3

10
4

10
5

10
6

10
7

0

0.1

0.2

f

e

ldc
lecun
kaesa
svc(p,3)
svc(p,4)
r−ldc
r−qdc

10
3

10
4

10
5

10
6

10
7

0

0.1

0.2

f

e

fisherc
ldc
qdc
lecun
knnc
kaesa
svc(p,3)
svc(p,4)

10
3

10
4

10
5

10
6

10
7

0

0.1

0.2

f

e

ldc
qdc
lecun
kaesa
svc(p,3)
svc(p,4)

(b)

(a)

(c)

(d)

n

n = 10

n = 250

n = 50

n = 1000

n = 1000
n = 250

n = 10

n = 50

n = 1000

n = 50

n = 10

n = 250

e
e

f

f

f

e
e

f

Figure 1. (a) Classifier complexity f (in
FLOPs) vs. error e (in %), for n = 10, 50, 250
and 1000. (b) Error-complexity curves (only
relevant classifiers shown). (c) Same, with
PCA-trained classifiers. (d) Same, with rep-
resentation set-based classifiers.

1051-4651/02 $17.00 (c) 2002 IEEE

	ICPR 2002
	Return to Menu

