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Abstract

The nearest neighbor (NN) rule is a simple and intuitive
method for solving classification problems. Originally, it
uses distances to the complete training set. It performs well,
however, it is sensitive to noisy objects, due to its opera-
tion on local neighborhoods only. A more global approach
is possible by mapping the distance data onto a pseudo-
Euclidean space, such that the distances are preserved as
well as possible. Then, a classifier built in such a space can
outperform the NN rule. However, again all objects from
the training set are used for a projection of new data.

This paper addresses the issue of reducing the training
set while possibly preserving the original structure of the
mapped data. Some criteria are introduced and evaluated
against two problems, polygon recognition and digit recog-
nition. Our experiments show that the representation mis-
match criterion is beneficial for the applications consid-
ered. Moreover, the linear classifier built in the pseudo-
Euclidean space, determined by 20%−25% of the training
objects, outperforms the NN rule based on all of them.

1. Introduction

In the pattern recognition area, objects are convention-
ally represented by features. Such a representation may be
inefficient for learning purposes or offer a little discrimi-
nation power. Also, features might be hard to define. An
alternative representation can be built by using the concept
of dissimilarity. An object is then characterized in a relative
way, i.e. by its dissimilarities to a set of prototypes. Some
particular characteristics of objects or measurements, like
curves or shapes [8, 7, 4], may naturally lead to distance
representations as they make recognition tasks more feasi-
ble. The use of dissimilarities, built directly on measure-
ments, e.g. based on template matching [3], is of interest.

The nearest neighbor rule (NN) is traditionally applied
to such representations. It performs well, but it suffers from
high computational complexity, a potentially worse perfor-
mance for a small set of prototypes and sensitivity to noise.
To overcome such limitations and improve the recognition

accuracy, a linear mapping of the dissimilarity data can be
performed such that the distances are preserved. In such a
space, a linear classifier (i.e. a more global decision rule
than the NN method) can be considered. To project new ob-
jects, however, the distances to all training examples have
to be computed. The goal of our work here is to investigate
some criteria for the selection of a reduced representation
set R, on which the mapping will be based only. The ad-
vantage of a small R is that only a small number of dissim-
ilarities is needed for an evaluation of a new object, while
the classifier may profit from the complete training set.

Our experiments on polygon and handwritten digit
recognition problems will demonstrate that the tradeoff be-
tween the recognition accuracy and the computational ef-
fort is significantly improved by building a linear classifier
in the projected space, based on a small R, instead of using
the NN rule on the complete training set.

2. Linear projection of the dissimilarity data

For an Euclidean (metric) distance matrix, an isometric
mapping onto an Euclidean space can be found [1]. How-
ever, non-metric distances often seem to arise when shapes
or objects in images are compared by template matching
or for other types of distances built in e.g. computer vision
[3, 7]. For projection purposes, however, the symmetry
condition is necessary. But, in general, for any symmetric
distance matrix, an Euclidean space is not ’large enough’
for an isometric mapping. It is, however, always possible
[5] when a pseudo-Euclidean space is considered.

The pseudo-Euclidean space
A pseudo-Euclidean space R(p,q) of the signature (p, q)

[6, 5] is a real linear vector space of dimension p+q, com-
posed of two Euclidean subspaces, Rp and Rq , such that
R(p,q) = Rp ⊕Rq and the inner product 〈·, ·〉 is positive
definite on Rp and negative definite on Rq . The inner
product w.r.t. the orthonormal basis is defined as 〈x, y〉 =∑p

i=1 xiyi −∑p+q
j=p+1 xjyj =xTMy, M =

[
Ip×p 0

0 −Iq×q

]
, (I

is the identity matrix). d2(x,y)= ||x−y||2 = 〈x−y, x−y〉=
(x−y)TM(x−y), which can be positive, negative or zero.
Note also that Rp =R(p,0).
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Linear embedding and adding new objects
Let T be the training set of n objects. Given a symmetric
distance matrix D(T, T )∈Rn×n, a configuration X ∈Rn×k

(k < n) in a pseudo-Euclidean space can be found, up to
rotation and translation, such that the (square) distances are
preserved. Without loss of generality, a linear embedding
(isometric mapping) is constructed such that the origin coin-
cides with the vector representation of the first object x1. X
is then determined, based on the relation between distances
and inner products [5, 10]. The matrix of inner productsB=

{bij}, for the vector representation {x1, ..,xn}, can be ex-
pressed only by using the pseudo-Euclidean distances (note
that by our assumption ||xj ||2 =d2(xj ,x1)=d2(xj ,0)):

bij = 〈xi,xj〉=−1

2

[
d2(xi,xj) − d2(xi,x1) − d2(xj ,x1)

]
.

(1)
By the eigendecomposition of B = XMXT , one obtains:

B = QΛQT = Q|Λ| 12
[
M

0

]
|Λ| 12QT , (2)

where |Λ| is a diagonal matrix of decreasing p positive
eigenvalues followed by decreasing absolute values of q
negative eigenvalues and then zeros. Q is the matrix of cor-
responding eigenvectors and M ∈Rk×k, k=p+q, is defined
as before (or it is equal to Ik×k, if Rk is Euclidean). Based
on (2), X is represented in the space Rk [5] as:

X = Qk |Λk| 12 . (3)

New objects can be orthogonally projected onto the
space R(p,q). A configuration Xn is then sought, given the
distance matrix D(2)

n ∈ Rs×n, relating s new objects to the
set T . Based on the matrix of inner products Bn = {bnij}∈
Rs×n, consisting of:

bnij =−1

2

[
d2(xn

i ,xj) − d2(xi,x1) − d2(xn
j ,x1)

]
, (4)

Xn, the solution to Bn = XnMXT , is given by [5, 10]:

Xn = BnX|Λk|−1M or Xn = BnB−1X. (5)

Reduction of dimensionality
In practice, since dissimilarities are noisy measurements, k,
determined by the number of non-zero eigenvalues of B, is
often close to n, but the intrinsic dimensionality of the data
can be much smaller. A way to proceed is to express X w.r.t.
the principle components (PCs), and then select the signifi-
cant directions only. This means that the full representation
should be first constructed so that the PCA projection can
be applied. However, such a representation can be directly
determined if the matrix of inner products Bpc is properly
chosen. This is achieved when Bpc is defined as [5, 10]:

Bpc = −1

2
JD(2)J, J = I − 1

n
11T ∈Rn×n (6)

and D(2) is the matrix of square distances. J is the cen-
tering matrix, taking care that the final configuration has a
zero mean. By the eigendecomposition (2) ofBpc, X can be
found by (3). Since X is now an uncorrelated vector repre-
sentation, the reduction of dimensionality is performed by

neglecting directions corresponding to eigenvalues small in
magnitude. The reduced representation, preserving the dis-
tances approximately, is then determined by p′ positive and
q′ negative eigenvalues. Therefore, Xred ∈Rn×m, m<k, is
found as Xred = Qm|Λm| 12 , where m=p′+q′.

new objects Xn w.r.t. the principal axes is found by (5),
where Λm is used and the matrix of inner products, Bn

pc

relating new objects to the set T objects, is given as [5, 10]:

Bn
pc = −1

2
(D(2)

n J − UD(2)J), U =
1

s
11T ∈Rs×n. (7)

Classifiers
For a pseudo-Euclidean configuration X , a linear classi-
fier f(x) = 〈v,x〉 + v0 = vTMx + v0 can be constructed
by addressing it as in the Euclidean case, i.e. f(x) =

〈w,x〉Eucl + v0 =wT x + v0, where w =Mv (see [5, 10]).

3. Selection of the representation set

Reduction of dimensionality is useful for data represen-
tation, since both noise and non-significant information are
neglected. Still, the reduced Xred is determined by all n
training objects. For an m-dimensional pseudo-Euclidean
space, only m+1 objects can define it: one object will serve
as the origin and m objects will correspond to the basis vec-
tors. The task is now as follows: given Xred w.r.t. to the
principal axes, choose the representation set R of m+1 ob-
jects such that the projection defined by R, gives a configu-
ration which is close to Xred (according to a criterion).

A set R, spanning the reduced space Rm =R(p′,q′) such
that Rm is defined by m leading principal axes, might not,
however, exist. To avoid an intractable search over all possi-
ble subsets, an error measure between the approximated and
reduced/original configurations can be defined to be mini-
mized, e.g. in a greedy approach (see [11]). The origin will
always be fixed to the vector representation of the object
r0 which is the closest to the mean (i.e. the origin). Such
an object is easily detected as the one whose average dis-
tance to T is the smallest [5, 10]. Having determined r0,
the whole configuration Xred is then shifted to the new ori-
gin. The basis objects, are then successively added, in each
step minimizing a criterion, until m objects are found.

To assure that the chosen objects are linearly indepen-
dent and to make our selection a feasible process, in the
step j, only K objects Zj = {zj

1, ..., z
j
K} with the largest (in

magnitude) projections on the j-th principal axis are pre-
selected to be tested against the specified criterion. K is
assigned to the 10% of the training size. This holds for all
criteria introduced below.

Basis reconstruction error (BRE)
Let Rj−1 be a subspace of the reduced space R(p′,q′) de-
fined by the basis objects Rj−1 = {r1, ..., rj−1}. In the step
j, a potential basis set {Rj−1, z}, where z ∈ Zj , is consid-
ered. An object z is chosen to be rj as the one for which
the smallest average reconstruction error of the basis vector
representations is achieved.
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Projection error (PE)
Let V be a j-dimensional subspace of the space Rk =R(p,q).
Then, based on the properties of inner products and the em-
bedding [5] (see section 2), the distance between a vector
xi∈Rk and its projection xV

i onto V can be expressed as:

||xi −xV
i ||2 = ||xi||2 −||xV

i ||2 = d2(xi,x1)−bn
i B

−1 (bn
i )T ,

(8)
where bn

i is the i-th row of Bn and both B and Bn refer
now to the representation in Rj defined by pairwise dissim-
ilarities between j+1 objects (i.e. origin and the basis).

Having chosen the basis Rj−1 ={r1, ..., rj−1}, in the step
j, an object z∈Zj is selected to be rj such that the average
projection error (8) of all training objects onto the space
Rj , defined by the objects {r0, Rj−1, z} is the smallest.

Representation mismatch error (RME)
In the step j, for each object z ∈ Zj , all training data is
projected w.r.t. the potential basis set {Rj−1, z}, resulting in
Xj

pot and compared to the j significant axes of the shifted
representation Xred by computing the average square
pseudo-Euclidean distance between corresponding vectors
of the two configurations. The object z, providing the
smallest mismatch, is then selected as rj .

The results obtained by the above criteria, selecting R=

{r0, Rm}, are judged by three measures. The first one is the
mean square error ED

mse on the square distances:

ED
mse =

1
n(n − 1)

∑
i<j

(
d2

ij − (dapr
ij )2

)2
,

where dij are the original distances (i.e. of the full repre-
sentation X) and dapr

ij are the pseudo-Euclidean distances
of either the reduced representation or of the approximated
representation obtained by the projection based on the ob-
jects from R only. This measure indicates how much dis-
tortion was introduced to the distances by using the set R.

The second measure, S, is the ratio of the average
between-class square distance B to the average within-class
square distance W . It gives an indication on the class sepa-
rability. Given N classes, S is defined as [11]:

S =
1

(N−1)(N−2)

N∑
i=1

N∑
j=i+1

√|B(Ci, Cj)|√|W (Ci)| +
√|W (Cj)|

The third measure is the classification error on the indepen-
dent test set. Since, in the end, our purpose is the classi-
fication task, it is not so crucial that the distances are well
preserved when the classification results are good.

4. Experiments

Two datasets are used in our study. The first data consists
of randomly generated polygons (see Fig.1): 4-edge convex
polygons and 7-edge (non-)convex polygons. The polygons
are first scaled and then the modified Hausdorff distance
[3] is computed. The second data describes images of the

Figure 1. Examples of the polygon data.

NIST digits [12], with the symmetric dissimilarity (made
by averaging suitable values) between two images based on
deformable template matching, as defined in [8]. For such
data considered, no input feature space is given.

The experiments are performed 100/10 times for poly-
gon/digit data and the results are averaged. In each run,
both datasets are randomly split into equally sized the train-
ing and testing sets with 50/100 objects per class for the
polygon/digit data. In each experiment, first the reduced m-
dimensional representation Xred is found and then the set R
of m+1 objects is chosen according to a specified criterion.
Next, the approximated space, defined by objects from R
is determined (i.e. the mapping is based on D(R,R) only).
The Fisher linear classifier (FLC) is then trained both in the
reduced and approximated spaces, where the new data is
also projected and the generalization error is computed.

Figures 2 and 3 present the results (note differences in
scale). The ED

mse measure shows how much the distances
of the reduced or approximated spaces differ from the orig-
inal ones. The S measure gives an indication on the average
separability between all pairs of classes (the original separa-
bility is the averaged S measure for the original distances).
The classification error is given for the FLC. All the eval-
uation measures are shown in dependence of the reduced
dimensionality m. On average, for m up to 10 (polygons)
and for m up to 7 (digits), the reduced space is Euclidean.
For larger m, it becomes strictly pseudo-Euclidean.

5. Discussion and conclusions

Analyzing the evaluation measures for reduced spaces
determined by all n objects (solid lines in Fig. 2 and 3),
we can see that the intrinsic dimensionality is about 12−15
for the polygon data and 80−100 for the digit data, since
the measures stabilize their values. In such cases, efficient
approximated spaces defined by m+1 objects can be built.

For a classification task, all the criteria selecting R, intro-
duced here, allow the FLC for reaching about the same ac-
curacy in the approximated spaces (see the rightmost plots
of Fig. 2-3). They weaken their performance w.r.t. the
reduced spaces defined by all objects, but their achieve-
ments are based on less then 25% of the data! It is im-
portant to emphasize that for m=13/80 (polygons/digits),
the FLC, built in a space defined by m +1 objects, per-
forms as well as the 1-NN based on all of them. For
m=24/180 (polygons/digits), the FLC significantly outper-
forms both the 1-NN (an error of 0.13/0.089 for the poly-
gon/digit data) and the best k-NN, for k=1−15, (an error
of 0.11/0.081 for the polygon/digit data). The condensed
NN has also been considered [2], which, on average, uses
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Figure 2. Polygon data; the MSE on distances, separability measure and classification error.
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Figure 3. Digit data; the MSE on distances, separability measure and classification error.

29/233 (polygons/digits) prototypes and gives an error of
0.19/0.13 (polygons/digits), while the FLC, constructed in
the approximated space defined by the same number of pro-
totypes, reaches an error of 0.038/0.062.

Concerning two other evaluation measures, the BRE cri-
terion is rather poor. It simply does not preserve the dissim-
ilarity structure. The remaining two criteria behave about
the same, however, the RME might be slightly preferable.

Important conclusions can be drawn from our study on
dissimilarity data embedded in pseudo-Euclidean spaces.
First of all, the FLC, built in the reduced space defined by
all objects, can significantly outperform the NN rule.

Secondly, a set R of, in our case, at most 25% of the
training objects can be selected, on which the approximated
space is defined. In such a space, the FLC can reach much
higher accuracy than the NN method based on all objects.
The condensed NN, using 23−29% of all the training ob-
jects, deteriorates much w.r.t. the 1-NN, by which our re-
sults become even more appealing.

Thirdly, the PE and RME criteria for the selection of R,
define approximated spaces, where not only the FLC per-
forms well, but the dissimilarity structure is mostly pre-
served. In the selection process, those criteria are judged
w.r.t. all training objects, while the BRE criterion - w.r.t. the
basis objects only. As observed (Fig. 2-3), this is not suffi-
cient for preserving the structure, although the classification
performance can still be good.

Next, it is possible to use more than m+1 objects in
order to define an approximated space better; see [9]. Fi-
nally, no label information was used for the selection pro-
cess. We expect that for classification purposes, even better
accuracy can be reached, when such information is incor-
porated. This remains an issue for further research.
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