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Abstract

In this paper, a new selective sampling method for the

active learning framework is presented. Initially, a small
training set T and a large unlabeled set Q) are given. The
goal is to select, one by one, the most informative objects
from Q) such that, after labeling by an expert, they will guar-
antee the best improvement in the classifier performance.
Our sampling strategy relies on measuring the variation in
label assignments (of the unlabeled set) between the clas-
sifier trained on T and the classifiers trained on T with a
single unlabeled object added with all possible labels.
We compare the performance of our algorithm with two tra-
ditional procedures random sampling and uncertainty sam-
pling. We show empirically across a range of datasets that
the proposed selective sampling method decreases the num-
ber of labeled instances needed to achieve the desired er-
ror for the fixed size of T. Experimental results on toy prob-
lems and the UCI datasets are presented.

1. Introduction

In many problems, a small labeled training set 7" and a large
unlabeled dataset {2 are available. For instance, the clas-
sification of webpages, mp3-s or images. Semi-supervised
learning methods use both labeled and unlabeled data e.g. to
maximize the class posterior probabilities [3]. On the con-
trary, active learning offers a possibility to select which data
points are added to the training set. This is useful if labeling
of data points is expensive; see Fig. 1 for a general frame-
work. The desired behavior of the performance of an ac-
tive learner during the sampling process is shown in Fig. 2.
The abscissas represents the information needed for learn-
ing, i.e. the number of labeled examples used for training,
and the ordinate represents the error rate of a current classi-
fier on an independent test set. Ideally, in every phase of the
selective sampling process only the most informative pat-
terns from the unlabeled set 2 should be chosen. These are
the objects, which after adding them with the true labels,

1. Assume that a small number of objects with the true

labels is given, constituting the initial training set 7.

Train a specified classifier w on the training set 7.

Select a number of objects from the unlabeled data (2

according to the chosen criterion E.

4. Ask an expert for the labels of these objects and add
them to the training set 7.

5. Repeat the steps 2-4 until the stopping criterion, e.g.
specified by the final size of T'.

W

Figure 1. Active learning.

to the training set 7' and retraining the classifier, they will
lower the true error the most.

In the field of machine learning several selective sampling
techniques were introduced, such as sampling from regions
in the instance space, where no data are present [12] or
which yield low confidence [11]: uncertainty sampling [6]
and query-by-committee [10], sampling from regions where
the classifier performs poorly [7], or where the previously
found data was used in learning [9].

Most of these methods sample in the vicinity of the current
decision boundary. This is just appropriate for a classifier
which is well established in the instance space. For a poor
classifier the mentioned methods will allow only for small
improvement steps in the classifier performance for grow-
ing number of samples added to T. Consequently, to reach
a desired test error, longer queries are required than in case
when the most informative patterns are added. To solve this
problem, Cohn [2] proposed an active learning approach to
the statistical learning models by focusing on these exam-
ples in Q that change the most the second order statistics
e.g. means and variances. This was developed for classi-
fiers like the Mixture of Gaussians. Based on the ideas of
Cohn, Roy and McCallum [8] introduced another selective
sampling criterion for classifiers which are not based on the
second order statistics. They suggested to use an additional
test set in the selection process. In their strategy, the exam-
ples from (2 with all possible labels are considered and the
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Figure 2. Learning curves for the selective
sampling and random sampling.

ones are chosen which yield the lowest error on the test set.
In this paper, we argue that the use of a separate labeled
test set is in fact in conflict with an assumption of the selec-
tive sampling problem, namely that the labeling is expen-
sive and the training should be based on a minimal set of
objects. Based on the methods of Cohn and Roy, we pro-
pose a selection criterion which makes use of the variation
in label assignments by a single classifier w. On the con-
trary, the variation is measured as a difference of classifi-
cation labels of the unlabeled dataset [Q2/{x;}] between the
classifier w trained on the labeled data T' and w; trained on
[T U {z;}] where for all z; all possible labels j are consid-
ered that exist in the learning problem.

In comparison to the methods of Roy and McCallum, our
technique has the advantage of not using a test set. Instead
of making the selection criterion being based on the error
measured on the test set, we rather measure the expected
change in the architecture of the classifier itself as measured
on 2. Our selection criterion is designed to be advantageous
for a weak classifier.

In the following sections we address the problem of the se-
lection of learning queries knowing that the initial classifier
is weak. We compare our method to the traditional ones: un-
certainty sampling and random sampling. Uncertainty sam-
pling relies on the distance to a classifier estimated from the
posterior probabilities. It selects samples that yield the mini-
mum distance. Random sampling samples unlabeled dataset
according to the data distribution.

2. Selective sampling based on label variation

Assume that for a C'-class problem, an initial training set
T and an unlabeled set 2 are given. Our selective sampling
technique relies on the variation in label assignments for the
unlabeled dataset. The true error of the classifier (hence on
a test set) is expected to be reduced by selecting those ob-
jects which cause the largest change of the classifier. For
a particular object z; € (2, this is measured by the statis-

1. Train the classifier w on the labeled set T'.

2. Train the classifier w! on T; = [T'U {z;}] with the la-
bel j for z;.

3. Let Q_; = [Q/{x;}]. Label Q_; by w; LY, «
w(f-s). . i .

4. Label Q_; by wl; L% < w! (Q;).

5. Repeat the steps 2-4 for all labels j € C. Compute
E(z;) or E'(z;).

6. Repeat 2-5 for all z; € (.

7. Select x}, to be labeled by the expert such that z; =
arg max[E(z;)].

Figure 3. The variation algorithm

tic E: C
E(z;) =Y Pj(z:)®;, (1)
j=1

where P;(z;) is the posterior probability that object z; be-
longs to the j-th class (j = 1...C), estimated from the
classifier w, trained on the labeled set T'. w] is a classi-
fier trained on T; = [T'U {x;}], where z; has been assigned
to the j-th class. Classifiers w and the set of w] are ap-
plied to Q_; = [Q/{z;}] yielding the label sets L, and

Lu_)’qi, respectively. ®; in the equation (1) measures the num-
ber of objects in 2_; which have different class member-
ships for the two classifiers. Hence,

Q; = cq, L(LY(z) # L“_sz(x)) where Z(a) takes the

value 1 if the condition a is true and 0, otherwise. L ,(x)

and L“i]l(:v) stand for the labels of a single object .
Instead of using hard’ 0/1 for ®; in the equation (1), we
can replaced it by probabilities. If the object  changes its
class membership to the class ¢, the posterior probability
P.(x) that z belongs to that class is included. These proba-
bilities are estimated by the classifier w. Then, we have:

# = Y P(2) I(L%(2) # L% ()

zeQ_;

C
E'(x;) = Pj(x;)®) 3)
j=1

Equations (1) and (3) are used inside the active learning
framework, phase 3 in Fig.1, to calculate the expected
change in the classifier w over the example space 2. The
algorithm is presented in Fig. 3.

3. Experiments

In this section we compare the performance of the pro-
posed selective sampling method (variation in labels) to
uncertainty sampling and random sampling, using equa-
tion(3) as the selective sampling criterion. In all the
experiments, the Parzen classifier was used with the
smoothing parameter optimized by the leave-one-out ap-
proach as introduced by Duin [4]. For simplicity, we
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Figure 4. Learning curves for the chess board datasets with different levels of multi-modality.

consider two-class problems only. Two-class toy prob- From the results shown in Fig.4 it can be seen that the
lems of different multi-modality (see Fig.4) and some number of queries up to which our method outperforms
datasets from the UCI repository [1] were used to ver- the uncertainty sampling and depends on the complexity
ify the performance of the selective sampling methods. In of a problem. For the first problem in Fig. 4, it is about 75
Tab. 1 the first three datasets are simple two-class prob- queries, for more complex problems, it is larger than 200.
lems, while the following five datasets are converted to The same pattern can be seen in Tab. 1. For single-mode
the two-class problems by assigning the first half of the datasets uncertainty sampling outperforms our method for
classes to one class and the rest to the other class. This in- the first 10% queries. However, if the problem is complex
troduces multi-modality in data. Due to space limits, for the e.g. by introducing multi-modality, the sampling method
real-world data (see Tab. 1), instead of presenting the learn- based on variation in labels tends to outperform the un-
ing curves we compute three statistics (see Fig.2) on them : certainty sampling. The decision which selective sampling

should be used can be based e.g. on the number of queries
that was correctly labeled by the current classifier so far [5].
If the unlabeled dataset is very large, many researchers use
a subset of randomly sampled examples as a substitute for
error reduction = ﬁ Zi\; [fr(zi) = fo(2:)] the complete set 2. This will reduce the computational bur-
den, but it will not ensure that the chosen subset consists
of potentially informative patterns, even more, the most in-
formative patterns might be disregarded from the analysis.
In such a case, we propose to cluster the unlabeled data be-
fore computing any active learning statistic. The compact-
ness hypothesis states that similar objects are close in their
representation space. Therefore, the computation of the ac-
tive learning statistic for queries consisting of more than one
object will cause the selection of objects containing similar
information. Therefore, the selection of the cluster centers
as potential queries can be beneficial. It will reduce the
unlabeled set to a subset of potentially the most informa-
tive patterns and, moreover, it will penalize the selection of
objects that contain similar information.

below random = & SN Z[fy(z;) < fr(2:)]

samples saved = m Yoerrealfy Herr) — £ err)]

Where f, and f are the values of the learning curves for
random and selective samplings respectively. /V is the size
of the complete query {z;,z>...zx}and A = {0:0.01:
0.5}. The results are based on the size of the query, set
to 10% of the original cardinality of 2. Additionally, the
percentage of the points on the learning curves for the se-
lective sampling methods below the relevant points on the
learning curve for the random method is computed (below
random). The experiments were designed as follows: the
datasets were split into three subsets: a small initial train-
ing set (two objects per class), an unlabeled set €2 and a test
set, equally split from the remaining objects. In each sam-
pling phase, a single object from the unlabeled set (2 was
selected according to the specified selection criteria and in-
cluded with the correct label in the training set. The perfor-
mance of the Parzen classifier w was measured on an in-

4. Conclusions

dependent test set. The results were averaged over 10 ran- Many selective sampling methods are designed to improve
domly chosen initial training sets, unlabeled sets and test classifiers that are well established in the instance space. We
sets. showed that in such cases the methods like uncertainty sam-
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dataset size/dim | sampling method | below random [%] | samples saved [%] | error reduction [%]
variation 7 -40(10) -15(28)
"q‘; HEART 29713 uncertainty 30 -14(32) -2(25)
g variation 49 -1(58) 0.9(26)
3 DIABETES | 768/8 uncertainty 76 14(58) 7(25)
= variation 72 9(53) 2(10)
BREAST 699710 uncertainty 67 16(71) 2(10)
variation 83 17(47) 2(5)
g MFEAT-FOU | 2000/76 unc'e?ainty 3 (1) 1_ 26 (( 32 2)) 3 2(( ;?
2 variation
g MFEAT-ZER | 2000/53 uncertainty 86 10(26) -3(4)
—_ variation 96 20040 6(9
"c‘é CBANDS 2000730 uncertainty 97 1 4236; 4§6;
oo s |y T e
=
= variation 100 37(74) 6(48)
SATELLITE | 2000/36 uncertainty 100 35(78) 5(41)

Table 1. Results for the UCI datasets averaged over 10 trials. The maximum (in brackets) and the av-
erage value on 10% of () of some of statistics (see text and Fig. 2) on learning curves are presented.

pling which samples in the neighborhood of the the current
decision boundary performs the best. However, when the
dataset is multi-modal or when only a small initial training
set is provided, our proposed method, based on the varia-
tions in label assignments, (measured by the number of ob-
jects that change their labels in the unlabeled dataset), out-
performs the uncertainty and random samplings.

To chose a selective sampling method for a given problem
without using an independent test set, the following proce-
dure has been proposed. First, it is observed how many la-
bels of the subsequent queries are guessed by the current
classifier w. If the initial classifier is far from the optimal
one and it makes many errors on the incoming data, the se-
lective sampling technique to be used, should ’swap’ the in-
stance space (e.g. by using our selective sampling method)
instead of trying to sample in the vicinity of a classifier.
Next, after subsequent correct guesses of the labels of the
selected queries, the selective sampling method can be re-
placed e.g. by the uncertainty sampling for the final tuning
of the classifier.

To reduce the computational cost, it has been proposed to
cluster the unlabeled dataset 2. The random reduction of 2,
usually applied for this purpose, can remove the most in-
formative patterns from the considered set. On the contrary,
clustering focuses on the natural structure being present in
data. In addition, by taking the cluster centers as potential
queries the selection of queries containing the same infor-
mation are disregard when a single query consists more than
a single object.
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