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Abstract

General dissimilarity-based learning approaches have
been proposed for dissimilarity data sets [11, 10]. They
arise in problems in which direct comparisons of objects
are made, e.g. by computing pairwise distances between im-
ages, spectra, graphs or strings.

In this paper, we study under which circumstances such
dissimilarity-based techniques can be used for deriving
classifiers in feature vector spaces. We will show that such
classifiers perform comparably or better than the near-
est neighbor rule based either on the entire or condensed
training set. Moreover, they can be beneficial for highly-
overlapping classes and for non-normally distributed data
sets, with categorical, mixed or otherwise difficult features.

1. Introduction
The nearest neighbor (NN) rule is a simple and widely

applied technique thanks to its good asymptotic behavior in
metric spaces [2]. It assigns an object to the class of its
nearest neighbor as judged by the corresponding smallest
distance. In practice, however, its performance may suffer
from finite training sizes and/or noisy training examples. As
a remedium, prototype optimization techniques are studied
in vector spaces. They aim to make the 1-NN rule robust
against noisy examples and to diminish its computational
and storage requirements. Various algorithms have been
proposed to determine small prototype sets, called also con-
densed sets, on which the 1-NN relies [1, 2, 3, 6, 12, 14].

Alternatively, a set of prototypes can be used to build a
representation space in which general classifiers are trained.
The main reason is to use such condensed sets efficiently
(not only for finding the nearest neighbor) and to construct
globally-aware classifiers. In this way, advantageous perfor-
mance can be achieved as local distance-based information
is combined with a more global classification technique.
The simplest approach is to define a vector space in which
each dimension represents a distance to a given prototype.
Classifiers become then (non-)linear functions over a set of
distances. This dissimilarity-based approach can be power-
ful, especially when prototypes are suitably optimized.

Support vector machines (SVMs) are mathematically
elegant methods that can be cast out in such a framework.

Numerous studies show that the Gaussian-SVM is often one
of the best techniques for continuous variables [7]. The dif-
ficulty, however, arises for data with categorical or mixed
variables as the Gaussian kernel becomes inappropriate and
its hyperparameter σ is difficult to optimize.

In this paper, we will show that simple dissimilarity-
based techniques, alternative to the 1-NN rule and the SVM,
can work well for feature-based representations, especially
if they consist of categorical or mixed types.

2. Prototype generation and selection
Dissimilarity spaces. Assume a training set T of N ob-

jects and a representation set R = {p1, p2, . . . ,pn} of n
prototypes. Given a dissimilarity measure d (not necessar-
ily metric), a new representation is based on the proxim-
ities to R. Every object x ∈ T is described by a vector
of distances computed between x and the prototypes from
R, i.e. as D(x, R) = [d(x,p1), d(x,p2), . . . , d(x, pn)]T .
Here, D(·, R) is interpreted as a data-dependent mapping
D(·, R) : X → R

n from a vector space X to a dissimilar-
ity space defined by R. This is a vector space, equipped
with the standard inner product and norm, in which each
dimension D(·,pi) describes the dissimilarity to a proto-
type. The training data set becomes an N × n distance
matrix D(T, R). Since it is a vectorial representation, any
traditional classifier built in vector spaces can be used. See
[11, 10, 9] for more details.

Linear and quadratic functions in a dissimilarity space
are weighted linear and quadratic combinations of the dis-
tances d(x,pi) between the object x and the prototypes pi.
The advantage is that the weights are optimized over the en-
tire training set T , which leads to globally-aware classifiers.
Such normal density based classifiers tend to perform well
in dissimilarity spaces [11, 10]. This holds for summation-
based distances computed over a number of component dif-
ferences with similar variances. Such distances tend to
be approximately normally distributed thanks to the central
limit theorem (if few variances are dominant, they will ap-
proximate the χ2 distribution) [9]. Examples are Euclidean
or city block distances computed over normalized features.

Prototype optimization. Condensed sets are deter-
mined to reduce the computational effort, while preserving
a good performance of the 1-NN rule. They are optimized
by adaptive [1, 8] and selective schemes [3, 6, 12, 14]. In
case of small condensed sets or non-representative training
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Table 1. Data used in experiments. ∗ denotes that non-informative (zero) features are removed.
Data # objects # features # classes Class sizes Variable type Scaling Distance

Australian 690 14 2 383/307 Mixed Domain City block
Biomed 194 5 2 127/67 Mixed Domain City block
Breast (Wisconsin) 683 9 2 444/239 Categorical Domain City block
Diabetes 768 8 2 500/268 Mixed Domain City block
Heart 297 13 2 160/137 Mixed Domain City block
Ecoli 272 5∗ 3 143/77/52 Continuous Standardized Euclidean
Glass 214 9 4 70/76/17/51 Continuous Standardized Euclidean
Ionosphere 351 32∗ 2 225/126 Continuous Standardized Euclidean
Liver 345 6 2 145/200 Cont. Integer-valued Standardized Euclidean
Musk 476 166 2 199/277 Cont. Integer-valued No scaling Euclidean
Sonar 208 60 2 97/111 Continuous No scaling Euclidean
Wine 178 13 3 59/71/48 Continuous Standardized Euclidean

data, a better generalization can be achieved by a classifier
built in a dissimilarity space than by the 1-NN rule, even if
the condensed set is optimized for the latter.

In this paper,condensed sets are the representation sets
R used to construct a dissimilarity space. Representation
sets can be found by numerous approaches [10]. Here, we
focus on five different ways. EMgen denotes a set of proto-
types generated in the original feature vector space. These
are cluster means (merged from the cluster members) of the
clusters determined by an EM algorithm [4]. Clusters are
modeled by Gaussian distributions with identical diagonal
covariance matrices. Some noise is added to the data to pre-
vent degenerated solutions for categorical variables.

Other methods are selective, i.e. they select prototypes
from the training set T by working on dissimilarity rep-
resentations D(T, T ). FSel describes a set of prototypes
chosen in a dissimilarity space by a forward feature selec-
tion with the criterion based on the Mahalanobis distance
(remember that ’features’ correspond to objects in a dissim-
ilarity space). EdCon stands for the traditional edited and
condensed set optimized for the performance of the 1-NN
rule [3]. LP refers to a prototype set optimized for the per-
formance of a sparse linear programming (LP) machine, µ-
LPM [5, 10], where µ is set to the value of the 10-fold cross-
validation 3-NN error. LPauc is a prototype set optimized
for the performance of a sparse linear programming ma-
chine, defined by maximizing the area under the ROC curve
as proposed in [13]. For the EMgen and FSel methods, the

cardinality of R is set a priori such that either ki = �√|ωi|�
prototypes are optimized per class ωi or

∑
i ki prototypes

are defined in total. In other cases, the cardinality of R is
automatically determined by the used methods.

3. Experiments and results
Our goal is to illustrate the potential of dissimilarity-

based linear and quadratic classifiers defined for vectorial
representations. A more detailed study can be found in [8],
in which two adaptive and two selective schemes (of which
three are different than the ones presented here) were empir-
ically analyzed for prototype optimization. The main con-
clusion was that a dissimilarity-based Fisher linear discrim-
inant combined with prototype generation schemes (run in

normalized feature spaces) offers the best trade-off between
the computational effort and classification performance.

Ten data sets are here considered from the UCI Repos-
itory, http://www.ics.uci.edu/ mlearn/MLRepository.html.
They describe problems with categorical, continuous and
mixed features. For the sake of simplicity we use either the
city block distance or the Euclidean distance. Note that the
distances are by no means restricted to such metrics, any
can be used in general. City block distances are employed
for data with categorical or mixed features. Euclidean dis-
tances are used otherwise. The details are shown in Table 1.

In our experiments, each data set is split into a training
set T and a test set S in the ratio of 75%:25%. If applicable,
the training and test sets are first scaled and then the Eu-
clidean or city block distance representations are defined.
Five different representation sets are used, as described in
Section 2. Classifiers are then trained in dissimilarity spaces
D(T, R) and tested on D(S, R). Additionally, the 1-NN
and k-NN rules are applied; k is optimized by a leave-one-
out (LOO) error. Three classifiers are used in dissimilarity
spaces. These are the NLC, a normal density based lin-
ear classifier, the NQC, a normal density based quadratic
classifier and the LOGC, logistic linear classifier [4]. The
NQC is regularized by a small parameter λ = 10−4 [10].
Additionally, also 1NNd - the 1-NN is directly applied to
D(S,R) and 1NN - the 1-NN is used in a dissimilarity space
(the Euclidean distances are computed in this space). Prior
probabilities are estimated by class frequencies. The entire
procedure is repeated 30 times and the classification results
are averaged out. As an indication, three classifiers are used
in the original vector spaces OrigFS: the NQC, NaiveBC
(naive Bayes classifier) and the Gaussian-SVM with the hy-
perparameter σ optimized in a 10-fold crossvalidation.

The results are presented in Fig. 1. Non-listed classifiers
perform outside the top plotted range. Our basic observa-
tion is that linear and quadratic classifiers in dissimilarity
spaces outperform the direct NN rule, 1NNd, when based
on the same representation sets. This also holds for the con-
densed EdCon-sets, which are optimized for the NN perfor-
mance. Secondly, either the NLC or the NQC trained in dis-
similarity spaces outperform the direct 1-NN rule and per-
form similarly or better than the direct k-NN rule, the for-
mer based on the complete training set. Thirdly, in case of
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discriminative continuous features, the EMgen-prototypes
lead to somewhat better results than the Fsel-prototypes.
Our rule of thumb of fixing the cardinality for these sets
works well when the number of features is not too large; it
is however insufficient for high-dimensional data, such as
Musk and Sonar. Next, the condensed sets chosen by the
EdCon, tend to work worse for the city block distances on
mixed data than in other situations. On the contrary, they are
good for the high-dimensional Musk and Sonar data. Next,
LP can lead to bad results for non-continuous and difficult
data, even to no-sparse solutions as for the Australian, Dia-
betes and Glass data. In contrast to the LPauc, it works well
for the high-dimensional Musk and Sonar data. Finally,
the LPauc is well suited for highly-overlapping classes as
present in the Diabetes, Heart, Glass or Liver data. The
number of prototypes determined by the LPauc is much
smaller than by the LP. Still, the prototype sets found auto-
matically by the EdCon, LP and LPauc methods have sizes
up to a few times our fixed size of the EMgen and the FSel.

In general, the dissimilarity-based NLC and NQC per-
form better than the LOGC, which supports our claim that
dissimilarity data are approximately normally distributed.
The LOGC gives also large standard deviations. When the
NaiveBC works the best for the original categorical/mixed
data (or clearly non-normal data), then the NLC performs
the best in dissimilarity spaces. The Gaussian-SVM built
in the original vector space often works the best for contin-
uous data (Ionosphere, Musk or Sonar), provided that the
class overlap is not too high. It may, however, need a very
large amount of support vectors. In more difficult cases of
multi-class problems, variables of mixed types or a high
class overlap, the dissimilarity-based NLC and NQC are to
be preferred.

4. Discussion and conclusions
Prototype sets are usually studied to maximize the accu-

racy of the 1-NN rule. Here, an alternative use of prototypes
is proposed for dissimilarity-based classifiers derived from
the original vectorial representations; see also [8]. Given
a small prototype set (even when optimized for the perfor-
mance of the NN method), an entire training set can be used
to increase the accuracy of a classifier in the dissimilarity
space. Such dissimilarity-based classifiers tend to be more
accurate than the 1-NN rule since they are globally-aware
and the parameter values are optimized in a better way. The
computational costs of applying both the NN rule and linear
dissimilarity-based classifiers are similar.

This paper explores several aspects concerning the pos-
sible advantage of dissimilarity spaces over the original fea-
ture spaces, with the focus on the nature of the feature mea-
surements (categorical/mixed vs continuous) and data with
high class overlap. Two main results are presented. First,
normal density based linear (NLC) and quadratic (NQC)
classifiers built in dissimilarity spaces are often more bene-
ficial than the 1-NN and k-NN rule directly applied. (Note
that all these classifiers are non-linear functions in the orig-
inal feature space. So, they should be applied when they are
indeed needed.) Moreover, they perform similarly or better

than the best NN rule over the entire training set. This is
in agreement with our earlier findings concerning general
dissimilarity data (not derived in vector spaces) [10, 9].

Secondly, the dissimilarity-based NLC and the NQC
can be recommended for data which consist of categorical
or mixed variables or with a potentially high class over-
lap. These are the cases in which the Gaussian-SVM and
other classifiers built in the original vector space tend to
loose. In general, the Gaussian-SVM is the largest margin
(hence optimal) classifier for non-overlapping classes in Eu-
clidean feature spaces. Its performance deteriorates, when
a high overlap occurs. In such cases, linear and quadratic
dissimilarity-based classifiers are advantageous. Depending
on the problem characteristics, a particular prototype opti-
mization technique can be suggested, as described in Sec-
tion 3. Adaptive techniques are especially of interest since
they generate new prototypes (e.g. by merging a number of
suitable training examples) and allow one to control their
size. A more thorough study is left for future research.
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Figure 1. Averaged (over 30 runs) classification errors (in %) with their standard deviations. Black
dots denote classifiers in dissimilarity spaces, circles denote classifiers in original features spaces
and ’x’ denotes the direct NN rule. The NNall refers to the performance of the 1-NN and k-NN rules
directly applied to the entire training set. Representation sets are optimized in five ways: EMgen, FSel,
EdCon, LP and LPauc; see text for details. The cardinalities of T (for NNall) and R (for other cases) are
printed on the horizontal axis above the methods. OrigFS refers to the original feature space. The
average number of support vectors is shown in the brackets behind the SVM. The LP and LPauc on
the error axis denote the errors of the optimized LP machines.
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