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Abstract

We propose an alternative to probability density clas-
sifiers based on normal distributions LDA and QDA. In-
stead of estimating covariance matrices using the standard
maximum likelihood estimator we estimate class domains
by the minimum volume enclosing ellipsoid (ν-MVEE). The
ν-MVEE is a robust statistic rejecting a specified fraction ν
of the data. The performance of the domain and density ap-
proaches are compared in small sample size problems and
in situations where sampling of a training and test sets is
not i.i.d..

1. Introduction

The most common statistical model is the normal density
[1]. According to the Central Limit Theorem, this model is
correct when we assume that objects from a class originate
from a single prototype and are disturbed by a large number
of small independent variations. For this density model the
class conditional probability p(x|ω) of an object x given a
class ω is expressed as:

p(x|ω) =
1p

(2π)N det(Σ)
exp

„
−1

2
(x − µ)T Σ−1(x − µ)

«

However, to estimate a mean µ and a covariance matrix Σ
accurately one must have large amount of data, especially
for high dimensional problems. Moreover, the data has to
be sampled i.i.d. to class distributions. As has been shown,
e.g. in active learning [6], such sampling do not necessary
gives the optimal performance for a fixed training set size.

Alternatively we can describe classes by their domains,
which is less sensitive to the type of sampling. First, we
assume that objects from a class are close in the representa-
tion space R

N . This standard assumption is called the com-
pactness hypothesis [2] and it characterises well behaved

1This work was done while Piotr Juszczak was at Delft University of
Technology.

representations. Therefore, this suggests that we can en-
close objects from a class in some kind of hull, possibly
an N-sphere. This can be a tight description if a class is
unimodal. However, we also want our model to be scale in-
variant. Therefore, instead of an N-sphere we use the affine
deformations of an N-sphere, which is an N-ellipsoid.

When only class domains are estimated instead of class
densities the classifiers based on class domains do not suf-
fer from unbalanced problems and sampling of classes other
than i.i.d.. However, domain based algorithm, as well as
the standard estimators for the mean and covariance matrix,
might heavily depend on outlier objects that are present in
data. Several alternative covariance matrix estimators have
been proposed in the literature, for instance the Minimum
Covariance Determinant (MCD) method in [8]. This proce-
dure is very robust and even a high fraction of outliers does
not deteriorate the solution, however since based on a den-
sity it requires large amount of data sampled according to
class distributions. To compute a robust class domain de-
scriptor, which is less dependent on the type of sampling an
algorithm is proposed to estimate MVEE on a fraction 1−ν
of data rejecting objects remote from the bulk of the data.

By replacing the standard covariance matrix with the
MVEE, classifiers using the Gaussian density assumption
can be redefined to new robust variations where only the
Mahalanobis distance is considered.

In the next section we propose an algorithm to deter-
mine the ν-MVEE. Section 2 compares classifiers based on
normal assumptions with the ones based on ν-MVEE and
MCD. The performances of the classifiers in small sample
size problems and problems sampled no i.i.d. are compared
in section 4. The paper is concluded in section 5.

2. Robust estimation of MVEE

The minimum-volume enclosing ellipsoid problem has
been studied for over 50 years. As early as 1948 (possi-
ble even earlier), [5] discussed this problem for on optimal-
ity conditions. [12] and [11] also consider the minimum
volume N-ellipsoid problem as a special case of the more
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general maximum determinant problem. Recently MVEE
has also been used in pattern recognition problems such as
clustering [10]. We base the proposed ν-MVEE algorithm
as the maximum determinant problem with a possibility of
rejecting a specified fraction of objects.

Our concern is to cover n given points
Xt := {xi,xi ∈ R

N , i = 1, . . . , n} with an ellipsoid
of the minimum volume for a specified fraction ν of
training objects outside description. To avoid trivialities,
we make the following assumption, which guarantees that
a full dimensional ellipsoid can be computed in R

N :

Assumption 1 There is a subset of objects
{x1, . . . ,xN+1} ⊂ Xt which is affinely independent.

The computation of a not fully dimensional ellipsoid is not
trivial, here we focus on a full dimensional ellipsoid. The
ellipsoid can be defined as:

Definition 1 An ellipsoid E ⊆ R
N is a set described by a

centre c ∈ R
N and an N × N symmetric positive definite

matrix E such that

EE,c := {x ∈ R
N |(x − c)T E(x − c) ≤ 1} (1)

In particular, the axes of E
are eigenvectors of E and the
length of each axis is given
by

√
λi, i = 1, . . . , N , where

λi is the corresponding eigen-
value of the matrix E. We de-
note the positive definiteness
of E by E � 0, this is equiva-
lent to xT Ex > 0, ∀x ∈ R

N .
When E is not positive definite
the equation (1) describes any
quadratic set.
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Figure 1. ν-MVEE

The volume of EE,c is given by the following formula [3]:

VEE,c =
π

N
2

Γ(π
2 + 1)

1√
det(E)

=
π

N
2

Γ(π
2 + 1)

N∏
i=1

1√
λi

(2)

where the first ratio is the volume of the unit N-sphere. By
taking the logarithm of equation (2):

ln VEE,c = ln
(

π
N
2

Γ(π
2 + 1)

)
− ln

√
det(E) (3)

We see that minimising the volume of E , for fixed N is
equivalent to maximising the square root of the determinant
of the matrix E. To get a simpler problem we change the
variables:

M =
√

E z =
√

Ec (4)

Under the assumption 1 and using (4), a natural formulation
of a robust estimation of a minimum volume ellipsoid is:

min
M

− ln det(M) + C

n∑
i=1

ξi, (5a)

s.t. (Mxi − z)T (Mxi − z) ≤ 1 + ξi, ∀i=1,...,n, (5b)

M � 0, ξi ≥ 0. (5c)

To determine the bulk of the data and the set of potential
outliers in the training set we assign a slack variable ξi to
each objects from the training set. Additionally, a param-
eter C is introduced, indicating the trade-off between the
volume of E and the sum of slacks. The value of C is cru-
cial, it indicates whether we focus more on the minimisa-
tion of the volume of an ellipsoid E or on enclosing a large
fraction of data. Formulation (5) can be solved using conic
programming [7].

However, the optimisation (5) can be simplified further
by mapping data from R

N to R
N+1. The simplification is

done by adding one additional feature, equal one, to each
object xi ∈ Xt and computing the ν-MVEE, centred at the
origin. To show that these two optimisations are equivalent
we denote the new set of parameters: R

N → R
N+1, xi →

x̃i, M → M̃, z → 0 The volume of the new ellipsoid
EM̃,0 centred at the origin is optimised. To show that pa-
rameters of the ellipsoid EE,c can be computed from pa-
rameters of the ellipsoid EM̃,0 we decompose objects and

the shape matrix M̃ as follows:

x̃i =
[

1
xi

]
, M̃ =

(
s vT

v H

)
(6)

To decide whether any object xi is inside or outside ellip-
soid EM̃,0, it is first mapped to R

N+1 and then multiplied

by the shape matrix M̃ :

[
1
xi

]T (
s vT

v H

) [
1
xi

]
= s + 2xT

i v + xT
i Hxi ≤ 1 (7)

this is description of an ellipsoid in R
N . We can rewrite (7)

as:
(xi − z̃)T δ−1H(xi − z̃) ≤ 1 (8)

where δ = 1 + z̃T H z̃− s and z̃ = −H−1v. By comparing
inequality (8) with inequality (5) we can see that:

z = z̃ = −H−1v, M = δ−1H
Therefore, the minimisation (5) can be written as:

min
M̃,ξi

− ln det(M̃) + C
n∑

i=1

ξi, (9a)

s.t. x̃T
i M̃ x̃i ≤ 1 + ξi, ∀i=1,...,n, (9b)

M̃ � 0, ξi ≥ 0. (9c)

Setting the parameter C is not straightforward, there is no
natural indication for its value. However, the optimisation
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(9) resembles the optimisation of SVM and as in ν-SVM
[9] we can modified the optimisation (9) by replacing C
with the easier to set parameter ν. By using a similar trick
as in [9] we modify the optimisation (9) into:

min
M̃,ξi

− ln det(M̃) +
1
n

n∑
i=1

ξi + νρ, (10a)

s.t. x̃T
i M̃ x̃i ≤ ρ + ξi, ∀i=1,...,n, (10b)

M̃ � 0, ξi ≥ 0, ρ ≥ 0, ν ≥ 0. (10c)

where ν is now a user specified parameter that equals the
fraction of objects outside the optimised ellipsoid EE,c. By
replacing M̃ = UUT , which guarantees the positiveness of
M̃ and by assigning the derivative of the Lagrangian of (10)
to zero we get (UUT )−1 =

∑n
i=1 αix̃ix̃T

i . Therefore, the
dual of the minimisation (10) is:

max
αi

ln det
n∑

i=1

αix̃ix̃T
i , (11a)

s.t.
n∑

i=1

αi = ν, αi ≥ 0, ∀i. (11b)

Objects outside the description are determined by the op-
timised weights αi. Training objects inside an ellipsoid
EE,c have αi = 0, objects on the surface of the ellipsoid
0 < αi < 1

n , and objects outside the ellipsoid αi = 1
n ; see

figure 1. The shape matrix E and the centre c of ellipsoid
EE,c is computed from this sparse solution:

M̃ =
(

s vT

v H

)
=

n∑
i=1

αixixT
i

E = (δ−1H)T (δ−1H) and c = −H−1v(E)−1/2

Comparing the presented estimator to the existing robust so-
lutions e.g. the minimum covariance determinant [8] the
presented approach is posed as a conic problem therefore it
does not need several recomputations and it gives the opti-
mal solution for specified ν.

3 Domain based LDA and QDA

In this section we redefine normal based classifiers, LDA
and QDA, using the ν-MVEE instead of a mean and a co-
variance matrix.

The discriminant functions gj(x) are computed by the
linear discriminant analysis as follows [1]:

gj(x) = (Σ−1µj)T x − 1
2
µT

j Σ−1µj + ln P (ωj) (12)

where P (ωj) is the prior probability. The discriminate
functions gj(x) are computed by the quadratic discriminant

analysis as follows [1]:

gj(x) = − 1
2
xT Σ−1

j x + (Σ−1
j µj)T x − 1

2
µT

j Σ−1
j µj

− 1
2

ln det(Σj) + ln P (ωj)
(13)

Removing all densities conditions and considering only the
Mahalanobis distance, discriminant functions for the do-
main based QDA, which we denote ν-QDA, can be written
as:

gj(x) ≡ xT Ejx − 2(Ejcj)T x + cT
j Ejcj ,

ω ≡ arg min
j

gj(x) (14)

where Ej and cj are computed per class. x is assigned to
the class ω with the minimum Mahalanobis distance. The
ν-LDA is defined in similar way but the shape matrix E is
the same for all classes and it is estimated as an element
wise average of matrices Ej

4. Experiments

In this section we compare the performance of domain
based classifiers ν-LDA and ν-QDA with statistically based
LDA and QDA and with LDA and QDA with covariance
matrices computed by the minimum covariance determinant
MCD algorithm [8]. Below figures show LDA, QDA and ν-
LDA, ν-QDA computed on data with a single outlier object
per class. It can be seen that covariances of LDA and QDA
are mainly determined by outlier objects.
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In tables 1, 2 and 3 the mean error and standard devi-
ations for domain and density based classifiers trained on
several UCI repository datasets [4] are shown. In all exper-
iments ν = 0.1. In table 1, the mean error for the classifiers
trained on training set with half the sizes of datasets. This
represent well sampled set of problems.

In table 2, the classifiers are trained on 25% of the total
size of the data. In addition we add 5% of artificial outlier
objects to a training set. The outlier objects are created by
moving randomly selected objects along one feature by a
value of five standard deviations of that feature.

In table 3, we divide the datasets again half-half on a
training and test set. However, now we enlarge the training
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Table 1. Well sampled problems.
diabetes breast heart biomed ecoli imox liver satellite waveform letter

LDC 24.0(2.0) 4.0(0.9) 17.1(2.1) 12.4(2.0) 4.7(1.3) 10.9(2.8) 33.0(2.8) 15.0(1.8) 14.5(1.8) 30.5(1.8)
QDC 26.2(2.1) 4.5(0.6) 21.4(3.1) 10.5(2.7) 13.6(1.3) 6.0(2.0) 40.4(3.9) 14.4(2.9) 13.4(2.9) 12.4(2.9)

MCD-LDC 26.5(1.6) 3.8(1.0) 17.4(2.8) 12.7(2.9) 7.4(1.2) 10.5(1.9) 32.6(3.4) 15.6(3.4) 14.6(3.4) 32.6(3.4)
MCD-QDC 25.4(2.7) 5.1(0.9) 23.6(6.3) 18.7(4.9) 17.4(1.5) 7.0(2.0) 35.3(5.3) 14.3(5.3) 13.3(5.3) 15.3(5.3)

ν-LDC 24.4(1.9) 4.7(1.0) 17.6(2.5) 13.0(2.7) 4.4(1.7) 11.2(2.8) 32.3(3.6) 16.3(3.6) 14.3(3.6) 30.3(3.6)
ν-QDC 26.1(1.6) 4.2(1.2) 21.2(3.2) 10.9(3.2) 13.2(1.2) 6.5(3.0) 39.7(5.3) 14.7(5.3) 13.7(5.3) 12.7(5.3)

Table 2. Small sample size problems with outliers.
diabetes breast heart biomed ecoli imox liver satellite waveform letter

LDC 35.0(2.1) 12.0(1.4) 33.1(5.8) 22.1(2.7) 17.1(3.3) 24.9(7.3) 36.1(3.1) 34.1(2.5) 19.(2.1) 54.5(2.8)
QDC 39.2(3.1) 16.5(2.6) 35.4(4.0) 32.5(4.3) 55.3(9.3) 22.3(3.5) 43.1(2.8) 44.1(3.5) 23.1(4.1) 49.2(3.9)

MCD-LDC 29.5(2.3) 7.7(2.3) 20.2(2.7) 15.7(3.1) 15.1(2.9) 19.3(3.5) 34.2(3.5) 33.6(3.9) 17.5(3.7) 48.5(4.1)
MCD-QDC 28.4(3.1) 9.1(1.8) 28.4(5.1) 19.7(3.6) 30.4(4.5) 29.7(2.9) 38.2(5.1) 40.1(4.1) 21.4(5.4) 46.2(5.7)

ν-LDC 29.4(1.4) 7.6(1.5) 19.6(2.3) 15.0(3.3) 15.4(1.9) 13.5(3.9) 33.3(3.2) 32.4(5.1) 17.3(2.3) 46.1(3.1)
ν-QDC 28.1(2.7) 9.2(2.2) 19.2(3.8) 19.9(4.2) 21.2(2.3) 15.3(2.1) 40.7(4.3) 37.7(5.7) 20.7(5.4) 45.3(6.2)

Table 3. Problems not sampled i.i.d..
diabetes breast heart biomed ecoli imox liver satellite waveform letter

LDC 28.1(2.3) 7.3(1.4) 23.1(2.5) 13.4(1.1) 11.4(0.7) 15.3(1.9) 34.0(3.8) 20.1(2.9) 15.1(2.1) 32.6(7.1)
QDC 29.6(2.7) 8.3(1.3) 26.3(2.2) 14.1(3.1) 14.1(1.3) 17.1(3.1) 44.7(2.5) 16.1(1.4) 14.9(1.3) 13.4(4.1)

MCD-LDC 28.5(2.9) 7.1(1.1) 22.4(3.2) 13.6(2.2) 12.1(0.9) 15.5(2.9) 33.5(2.4) 21.4(2.9) 15.6(4.1) 31.9(4.1)
MCD-QDC 35.4(4.8) 8.1(0.5) 25.9(6.3) 14.0(2.9) 13.8(1.1) 16.0(2.2) 43.0(2.6) 15.3(2.1) 14.2(2.9) 14.1(2.1)

ν-LDC 24.9(2.1) 4.6(1.2) 17.4(2.2) 13.4(2.1) 4.9(1.8) 11.2(2.8) 32.2(1.9) 16.4(2.1) 14.3(2.4) 30.2(2.2)
ν-QDC 27.1(1.7) 4.2(1.2) 22.1(2.5) 10.8(2.7) 12.9(1.6) 9.5(3.0) 39.6(4.3) 14.6(4.1) 13.6(4.3) 12.8(3.9)

set by an additional 10% of objects from the training set i.e.
10% is doubled in the training set. The objects are selected
randomly. Therefore, the density of training and test sets
differ.

From table 1 it can be seen that for well sampled clas-
sification problems the performances of the classifiers were
comparable. However, from results in tables 2 and 3 we
can conclude that in presence of outliers, in small sample
size problems and where sampling is not i.i.d. in train and
test sets, the proposed domain based classifiers outperform
classifiers based on density estimates.

5. Conclusions

In this paper some domain based classifiers have been
proposed. The class domains are described by a minimum
volume enclosing ellipsoid. As such descriptor requires es-
timation of only the class domain it solves much simpler
problem to find a class boundary. We introduce the al-
gorithm to compute the minimum volume ellipsoid with a
specified fraction of objects outside description which al-
lows robust statistic. It has been shown that the performance
of the proposed discriminant analysis algorithm based on
class domains is comparable to density approaches for well
sampled problems. However, it outperforms them in situa-
tions where data is not sampled i.i.d. and in the presence of
outliers.
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