Linear model combining by optimizing the Area under the ROC curve

David M.J. Tax and Robert P.W. Duin
Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands
e-mail: D.M.J. Tax @ewi.tudelft.nl

Yulia Arzhaeva
Image Sciences Institute, University Medical Center Utrecht,
Heidelberglaan 100, 3584 CX Utrecht, The Netherlands

Abstract

In some classification problems, like the detection of ill-
nesses in patients, classes are very unbalanced and the mis-
classification costs for different classes vary significantly.
Then it is better not to minimize the classification error, but
to optimize the ordering of the data, or to optimize the Area
under the ROC curve (AUC). In this paper we propose to
optimize a linear combination of features (or base model
outputs) by optimizing AUC. The advantages are that a rel-
atively small training set is required for the optimization
and that the training set can have a large class imbalance.
Furthermore, the classifier does not make distributional as-
sumptions, making it very suitable to combine the outputs
of base classifiers. In the application of the detection of in-
terstitial lung diseases it is shown to be very advantageous
and to outperform standard classification rules.

Keywords: chest radiography, pattern recognition, combining
classifiers, class imbalance, area under the ROC curve

1 Introduction

In medical detection problems or other screening appli-
cations one often has to deal with imbalanced class priors or
misclassification costs. For these problems, the Area under
the ROC curve (AUC) is often a more suitable error measure
than the classification error [3]. Not only is it insensitive to
class priors and costs, it also appears to be more stable for
small sample sizes. There are some proposals for optimiz-
ing the AUC, for instance the support vector classifier[8] or
decision trees[S5]. In [9] a linear classifier is proposed that is
a simplified version of [8], that is sparse in the features and
is simpler to optimize.

In this paper we propose to use this linear weighting of

models for the detection of interstitial lung diseases (ILD)
in radiographs. These illnesses often reveal themselves by
a changed textural appearance of the lungs with respect to
healthy lungs. Although healthy lungs are relatively sim-
ple and more reliably to be found, examples of ill lungs
are often unreliable. This problem has therefore skewed
class priors and clearly also very different misclassification
costs per class. Furthermore, the interpretation is very chal-
lenging because the image contains several superimposed
anatomical structures. Not only do the different structures
occlude each other, the tissue textures interfere and create
artifacts. Therefore, classifying these diseases is one of the
most difficult tasks for a chest radiologist. Constructing a
classifier that aids the radiologists and that can be trained
using a small set of ill patients is therefore a big challenge.

The proposed approach to classify patients, is to make
density models for both healthy and ill patients, and com-
bine these densities using a linear classifier that optimizes
the AUC. In 2 we explain the AUC optimization. Then in
section 3 we discuss the ILD data, and the different ap-
proaches to solve the classification problem. Finally, we
show some experiments and results in section 4.

2 AUC optimization

Assume we have data {x;,y;},i = 1..N, where y; €
{—1, 41}, and we would like to fit a model h(x) to this data
that optimizes the the Area under the ROC curve (AUC)
[7, 10]. This measure counts how often an object of class
+1 (x4) is ranked higher than an object of class —1 (x_):

AUC = Pr(h(x4) > h(x_)). (1)

Clearly, a perfect separation of the two classes is obtained
when AUC = 1. The AUC performance can be simply
estimated on a finite dataset X'". Assume that counter k™

0-7695-2521-0/06/$20.00 (c) 2006 IEEE

runs over all objects with y; = +1, and £~ runs over all
objects with y; = —1. Then, the AUC can be computed as
follows:

1—aue(h, X) =

2
Note that for the optimization of this performance, no ref-
erence is being made to a classification threshold 6. For the
practical application of the classifier, an operating point has
still to be defined by choosing a specific threshold 6.

To define a practical classifier, we assume a linear clas-
sifier, h(x) = w7 x. For the linear classifier we can cast the
optimization problem in a linear programming form similar
to the I;-SVM, [2]:

min [w; +C> > & 3)
-
st VRN ET Wl (e = Xp-) 2 1 = Epriy Epri- 2 0.

This can easily be rewritten in a linear programming formu-
lation:

minZ(ui—Fvi) +CZZ€;€+;€7 4)

K+ k-
st VAT ET : (uh = vT) (o —xp) 21— G
(5)
v >0, Vi:u; >0, v;>0.

A threshold 6 is not defined, but can be derived when mis-
classification costs and class priors have been supplied. We
will refer to this as the optimized AUC Linear Programming
classifier, or AUC-LPC.

Another similar classifier that directly optimizes the
AUC is the support vector machine as defined in [8]. It
minimizes the /5 norm of w with constraints on the order-
ing of the objects. The optimization problem is defined as
follows:

min|lw|® +CY) &ex (6)

kt k-
sto VETET s h(xpr) = h(xp-) 2 1= g G- > 0.
(N

By introducing a kernel, thanks to the self-duality of the
l>-norm, the above formulation remains valid for nonlinear
SVM as well [8].

Notice that the constraints (5) and (7) express the pair-
wise differences between objects from different classes
X+ — Xp—. The slack variables £;.+— in these constraints
approximate the indicator function 1 that is part of (2). This

'We use the same notation for the counters k+ and k£~ as in the previ-
ous section.

approximation has the serious drawback that the number of
constraints is quadratic in the number of objects, so it be-
comes very large. To cope with this, different strategies can
be constructed. The first strategy is to start by randomly
drawing objects from both classes, and iteratively update
this set by considering the objects that are violating many
constraints[1]. In this case only the very hard objects are
considered. To avoid that the classifier flips its labels (be-
cause only the bad constraints are considered), this set is
extended to include also well-ordered object pairs.

In [8] a second sub-sampling strategy is suggested. Here
only the objects and their nearest neighbors from the other
class are considered. The user has to define a number m
indicating how many neighbors are assumed to be informa-
tive. Only the constraints between each object x and m
of its nearest neighbors are imposed. This sub-sampling
heuristic can fail, in particular when there is a large over-
lap and the number of neighbors is not sufficiently large.
Furthermore, extra problems may occur when the features
are poorly scaled and the distance between the objects does
not reflect the classification problem well. In that case the
nearest neighbors are not distributed in directions that are
required for a high AUC performance.

In this paper we use a third constraint sub-sampling ap-
proach. By utilizing the linear programming formulation, it
is very simple to randomly subsample the constraints in (5)
instead of sampling the objects. This random sampling with
M constraints avoids the focus on the local structure in the
data (as given by the m nearest neighbors), but character-
izes the structure on a larger scale. Therefore, it will give a
less biased estimation of the optimal solution based on all
constraints.

3 Interstitial lung disease detection

The task is to classify patients as being healthy or being
ill, based on the classification of the individual pixels in the
radiographs. First a pixel classifier has to be trained. Due
to the high number of pixels, it is hard to construct a single
classifier. Therefore the pixel classifier will actually be a
combination of models, where each of the models is trained
on one patient. To obtain one outcome per patient, the indi-
vidual pixel classifications have to be combined. In table 1
the notation of the mathematical symbols is given.

Table 1. Notation used in combining models.
X 158-dimensional pixel feature vector

X; = {x(;} the set of pixel vectors from patient

f(x) pixel classifier

fi(x) pixel classifier trained on X;

h(x) pixel classifier that combines several f;(x)
9(X) classifier that combines h(x) for all pixels in X;

0-7695-2521-0/06/$20.00 (c) 2006 IEEE

The experiments were performed on a database obtained
at the University of Chicago hospitals. It contains 100 nor-
mal PA chest radiographs and 100 abnormal radiographs
with interstitial disease. The normal cases were selected
based on consensus of independent review on each radio-
graph by four experienced radiologist. The abnormal cases
were selected based on radiologic findings, CT, clinical data
and/or follow-up radiographs, by consensus of the same ra-
diologists. Some images contain artifacts due to clothing or
catheters. The radiographs were digitized to 2000 by 2000
pixels with 0.175 mm pixel size and 10 bits intensity. A
chest radiologist classified each upper, middle and lower
lung field of the abnormal cases as normal, possibly ab-
normal and definitely abnormal. When an image contains
possibly abnormal or definately abnormal areas it will be
labeled diseased.

From the radiographs, 30 features per pixel are com-
puted, including intensity and Gaussian derivative features
on different scales. Furthermore, for each pixel also some
local statistics (the mean, standard deviation, skew and kur-
tosis) in a circular region around the pixel was computed.
Together with the own pixel features, two positional fea-
tures and a binary feature indicating if a pixel is inside a
rib or not (found by applying a rib segmentation [6]), this
results in 158 features.

First we are going to model the lungs of the training pa-
tients. This will result in V; trained models. These mod-
els are used to characterize new pixels by N; new features
(model outputs). To make a model of each of the patients,
the distribution of the pixels from the healthy or ill patient
are estimated using a mixture of Gaussians model, contain-
ing K Gaussian distributions:

K
fi(x) = ZP(i),k/\/(X; (i) ks 233 k) ®)

k=1

where NV (x; i, X) is the Gaussian distribution with mean
w1 and covariance ¥, and index 7 runs over all patients:
1 =1,..., Ny. The model parameters p(;y r, f(i), ks 2 (i),k A€
optimized on the data from patient ¢, X;, using Expectation-
Minimization [4]. Because we are operating in a relatively
high dimensional feature space (p = 158), the covariance
matrices have to be regularized, in order to be able to invert
these covariance matrices: ii =3; +0.01 - Xiorar-

When N, models f are available, a pixel is characterized
by the set of model outputs. A combined pixel classifier has
to be defined to provide one output per pixel:

h(x) = h(f1(x), f2(x), ..., [, (%)) €))

We can use fixed combining rules, like the mean or prod-
uct combination rule, but the fact that we can make numer-
ous models which may become redundant, and the fact that

we have a large sample size, suggest that a trained com-
biner may be more suitable. Unfortunately, in this setup we
assume that outlier examples are not very reliably labeled.
Therefore we will use a more advanced AUC optimization.

In order to classify a patient, the classification outputs
h(x) for all the pixels have to be integrated to one output
g(X;). Due to the varying size of the lungs, a simple com-
bination rule is used that is independent on the number of
pixel classifications. This rule first sorts the outputs h(x)
for all the pixels X; of patient i. Then the 95% or the 99%
percentile output is used as the final output g(X;) for patient
i. This means that when at least 5% or 1% of the pixels is
classified as being ill with high confidence, the output for
this patient will be label "ill’.

4 Results

To compare the classification performances, we first train
simple standard classifiers and one-class classifiers on the
same data, but without making separate models per lung.
The supervised classifiers are the Linear discriminant anal-
ysis (LDA) and the quadratic discriminant (QD), the one-
class classifiers are the single Gaussian and finally Mixture
of Gaussian models using 5 clusters per class (MoG5+5).
All the data (from all the patients, containing both healthy
and ill examples) will be pooled into one dataset. On this
data a classifier f(x) is trained. To make the training feasi-
ble (in terms of memory usage), only 1000 pixels per patient
are used. The pixels from one patient are again combined
using a combination rule A (X;).

Table 2. The AUC performances (x100) ob-
tained from training a single classifier f(x) on
a dataset containing pixels from all training
patients. Results are averaged over 10 runs,
standard deviations are around 15.0.

0.5 095 0.99

LDA 684 738 62.0
QC 644 703 57.8
Gaussian OC 66.1 74.6 755
MoG 5+5 56.7 488 489

AUC-LPC 81.6 73.1 6738

Table 2 shows the AUC performances for the six classi-
fiers and for three different percentile values (see section 3).
90 healthy and 90 ill patients are used for training the clas-
sifier. The different classifier have similar performance, but
the absolute performance is not satisfactory with all AUC’s
below 0.80, and it appears not to improve significantly when
more training patients are used. Performance improves with

0-7695-2521-0/06/$20.00 (c) 2006 IEEE

increasing complexity of the model, at the expense of much
larger variances in performance.

Now we can compare these results with classifiers that
combine the base pixel classifiers (given by (8)). The den-
sities were estimated by using a Mixture of Gaussians using
three clusters. In table 3 the AUC results for six classifier
combiners are shown. The first two combiners are trained
classifiers, the LDA and QD again, the second two are the
mean and the product combination rules. Finally the L;
support vector machine (L1-SVM) and the AUC linear clas-
sifier (AUC-LPC) are used to combine the base classifiers.
The L1-SVM is closely related to the AUC-LPC, but it min-
imizes the error instead of maximizing the AUC. The pixel
classifications are integrated into a final score by utilizing
the 50%, 95% and 99% percentile pixel output value.

Table 3 shows the results using a varying number of
training patients. In general, the supervised classifiers like
LDA and QD show very poor performance. Only when a
few ill patients are used for training, and the 50 percentile
pixel-output is used, results become a bit better than ran-
dom. Using more ill patients actually confuses the classi-
fiers and deteriorates the results a bit more (although not
very significant, the variance is very high). The same can
be observed for the L1-SVM The fixed combining rules are
not suitable for this problem, and give in some cases worse
than random results. The AUC-LPC performs well in par-
ticular when more ill patients are used for training. Further-
more, the variance of the outcomes from the AUC-LPC is
also lower than that of the other classifiers.

5 Conclusions

In this paper we discussed a linear classifier that opti-
mizes the AUC. It can be trained on data with a large class
imbalance and small sample sizes. Although the linear clas-
sifier in itself is not very complex, when the features are a
complex function of the data, it can solve very complicated
classification problems. In the application of the detection
of interstitial lung diseases it is shown to be very advanta-
geous and to outperform standard classification rules. An
open issue in this research is the way in which the individ-
ual pixel classifications for one patient should be combined.

Acknowledgments This research is supported by the
Technology Foundation STW, applied science division of
NWO and the technology programme of the Dutch Ministry
of Economic Affairs.

References

[1] K. Ataman and W. Street. Optimizing area under the ROC
curve using ranking svms. In KDD’05, 2005. Under review.

Table 3. AUC performances (x100) of 6 dif-
ferent classifiers, using a varying number of
healthy and ill training patients. Results are
averaged over 10 runs.

training patients 10% ill 50% ill 90% ill
pixel combining using 50 percentile (median)

LDA 77.1(16.5) 72.3(19.1) 71.0(19.1)
QC 77.1(16.5) 68.8(19.7) 67.8(19.8)
average 76.5(17.6) 70.1 (20.0) 68.9 (19.9)
product 71.8 (18.4) 67.8(20.7) 64.7 (20.8)
L1-SVM 77.1(16.5) 68.6(19.6) 67.8(19.8)
AUC-LPC 86.4 (10.0) 95.6(4.1) 95.5(4.5)
pixel combining using 95 percentile
LDA 70.2(17.6) 61.0(18.2) 59.4(15.4)
QC 68.6 (18.6) 61.4(17.1) 59.0(14.8)
average 52.6(16.4) 524(17.3) 523(17.3)
product 53.8(16.8) 52.2(16.7) 51.8(17.1)
L1-SVM 68.1(18.8) 61.3(17.7) 58.9(15.6)
AUC-LPC 90.4(6.7) 93.9(5.6) 94.1(6.2)
pixel combining using 99 percentile

LDA 68.3(20.1) 59.7(21.9) 58.6(21.5)
QC 68.4(20.0) 59.7 (22.1) 58.7(19.8)
average 59.1(18.1) 53.6(20.2) 48.8(19.2)
product 58.8(18.3) 51.5(21.4) 48.8(19.6)
L1-SVM 68.2(20.1) 59.5(22.0) 59.5(20.5)
AUC-LPC 87.7(7.5) 93.8(52) 92.0(7.8)

[2] K. Bennett and O. Mangasarian. Robust linear programming
discrimination of two linearly inseparable sets. Optimization

Methods and Software, 1:23-24, 1992.
[3] A. Bradley. The use of the area under the ROC curve in the

evaluation of machine learning algorithms. Pattern Recogni-
tion, 30(7):1145-1159, 1997.

[4] A. Dempster, N. Laird, and D. Rubin. Maximum
likelihood from incomplete data via the em algorithm.

J. Roy. Stat. Soc. B, 39:1-38, 1977.
[5] C. Ferri, P. Flach, and J. Hernandez-Orallo. Learning deci-

sion trees using the area under the ROC curve. In Proceed-

ings of the ICML, 2002.
[6] B.v. Ginniken and B. Romeny. Automatic segmentation of

lung fields in chest radiographs. Med.Phys., 27(10):2445—

2455, 2000.
[7] C. Metz. Basic principles of ROC analysis. Seminars in

Nuclear Medicine, VIII(4), October 1978.
[8] A. Rakotomamonjy. Optimizing AUC with support vector

machine. In European Conference on Artificial Intelligence

Workshop on ROC Curve and Al, 2004.
[9] D. Tax and C. Veenman. Tuning the hyperparameter of an

auc-optimized classifier. In 17th Belgium-Netherlands con-

ference on artificial intelligence, pages 224-231, 2005.
[10] L. Yan, R. Dodier, M. C. Mozer, and R. Wolniewicz. Op-

timizing classifier performance via the Wilcoxon-Mann-
Whitney statistic. In The Proceedings of the ICML, pages
848-855, 2003.

0-7695-2521-0/06/$20.00 (c) 2006 IEEE

