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Abstract

Traditionally, machine learning algorithms have been
evaluated in applications where assumptions can be reli-
ably made about class priors and/or misclassification costs.
In this paper, we consider the case of imprecise environ-
ments, where little may be known about these factors and
they may well vary significantly when the system is ap-
plied. Specifically, the use of precision-recall analysis is
investigated and compared to the more well known perfor-
mance measures such as error-rate and the receiver oper-
ating characteristic (ROC). We argue that while ROC anal-
ysis is invariant to variations in class priors, this invari-
ance in fact hides an important factor of the evaluation in
imprecise environments. Therefore, we develop a gener-
alised precision-recall analysis methodology in which vari-
ation due to prior class probabilities is incorporated into
a multi-way analysis of variance (ANOVA). The increased
sensitivity and reliability of this approach is demonstrated
in a remote sensing application.

1 Introduction
In pattern recognition, a common evaluation strategy is

to consider classification accuracy or its complement error-
rate. In many empirical evaluations it is common to as-
sume that the natural distribution (prior probabilities) of
each class are known and fixed [9]. A further assumption
often made is that the respective misclassification costs are
known, allowing for the optimal decision threshold to be
found [4]. Here, performance measures such as error-rate
may be applied to compare different models as appropri-
ate. However, in imprecise environments, misclassification
costs can not be specified exactly, and class priors may not
be reflected by the sampling, or even worse, the priors may
in fact vary. Consequently, optimal threshold selection is

ill-defined, and model selection based on a fixed threshold
is unsuitable. For example, in remote sensing [8], the prior
probability of various topography classes are not known a-
priori, and may vary geographically. In such a situation, a
performance measure should allow for an assessment that is
either independent of these imprecise/ill-defined conditions
or incorporates this variation.

Receiver Operator Characteristic (ROC) analysis [9],
[10], has become a useful, and well-studied tool for the eval-
uation of classifiers in this domain. Measures such as the
Area under the ROC (AUC) [10] allow for a performance
evaluation independent of costs and priors by integrating
performance over a range of decision thresholds. This can
then be viewed as a performance measure that is integrated
over a region of possible operating points.

In this paper we consider the evaluation of two-class
classification problems where positive classes are to be dis-
tinguished from negative classes. In an imbalanced setting,
where the prior probability of the positive class is signifi-
cantly less than the negative class (the ratio of these being
defined as the skew or λ), accuracy is inadequate as a per-
formance measure since it becomes biased towards the ma-
jority class [13]. That is, as the skew increases, accuracy

tends towards majority class performance, effectively ignor-
ing the recognition capability with respect to the minority
class. In these situations, other performance measures such
as precision (in conjunction with recall) may be more ap-
propriate as they remain sensitive to the performance on
each class. Figure 1 compares accuracy and precision as
a function of skew for an example (a linear discriminant
trained on the Highleyman distribution [5]), illustrating that
as the skew increases, accuracy tends towards TNr (major-
ity class performance), effectively ignoring the recognition
capability with respect to the minority class.

We apply a ROC analysis methodology to the case of
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Figure 1. Comparing accuracy and precision

for an example, as a function of skew (λ),
illustrating the tendency of accuracy to ap-
proach the majority class performance (TNr)
with increasing skew.

precision-recall curves. However, we show that because
precision is dependent upon the degree of skewing, an ad-
ditional dimension (the skew) must be introduced into the
analysis. This effectively results in a 3-dimensional ROC
surface. A similar approach was described in [3], where the
relationships between a number of performance evaluation
criteria were derived with respect to the ROC curve. In ad-
dition, we have previously presented an analysis specific to
imbalanced problems, involving precision operating char-
acteristics for a number of selected operating points and
priors [7]. Here however, we generalise this work so that
the evaluation considers the entire operating surface, and
integrated performance measures are then derived in a sim-
ilar way to conventional ROC analysis. The performance
of a number of models is statistically compared using a
hypothesis-testing framework involving a 3-way analysis of
variance (ANOVA) between classification thresholds, pri-
ors and models. We demonstrate the approach via a remote
sensing application.

2 Formalisation

Consider a two-class classification problem between a
positive and a negative class, ωp and ωn respectively, with
priors πp and πn. An evaluation of a trained model is based
on the outcomes following the application of a test set. In
the 2-class case this results in a confusion matrix where
test objects labelled by the trained classifier as positive fall
into two categories: true positives TP and false positives
FP . Correspondingly, true positive and false positive rates
TPr and FPr, are computed by normalising TP and FP

by the total number of positive (Np) and negative (Nn) ob-
jects respectively, where N objects are involved in the test
(N = Np + Nn). Data samples labelled by the classifier as

negative also fall in two categories, true negatives TN and
false negatives FN . Also note that TNr = 1 − FPr, and
FNr = 1 − TPr.

Although a confusion matrix shows all of the informa-
tion about a classifier’s performance, it is usual to extract
measures from this matrix to illustrate specific aspects of
the performance. For example:

1. Classification accuracy, or its complement error-rate
(error), defined as error = FN+FP

N
= πpFNr +

πnFPr. This estimates the overall probability of cor-
rectly labelling a test sample, but combines results for
both classes in proportion to the class priors;

2. Recall = TPr. This indicates the probability of cor-
rectly detecting a positive test sample and is indepen-
dent of class priors. TPr is often utilised in medical
applications where it is referred to as test sensitivity.
In medical applications the complement to sensitivity
is also used, namely Specificity (TNr). Specificity in-
dicates the probability of correctly detecting a negative
test sample and is also invariant of class priors;

3. Precision = TP
TP+FP

. This indicates the fraction of
the positives detected that are actually correct. Preci-
sion effectively estimates an overall posterior probabil-
ity and is therefore a meaningful performance measure
when detecting rare events. Precision combines results
from both positive and negative samples and so is class
prior dependent. It is also often referred to as purity,
or in medical applications as positive predictive value
(PPV). Note: the complement to PPV is negative pre-
dictive value (NPV);

4. Posfrac = TP+FP
N

. This measure is useful in appli-
cations requiring second-stage manual processing of
the positive outcomes of the classifier (such as medical
screening tests), and estimates the reduction in manual
effort provided by the classification model.

These measures highlight different aspects of a model’s
classification performance and so selecting the most appro-
priate performance measure is clearly application depen-
dent. In medical applications for example, sensitivity (TPr)
and specificity (TNr) are well understood, can be related to
the prior class probabilities, and so are well accepted by
the end-users. Therefore, these measures are used almost
exclusively in these applications. However, in applications
such as database image retrieval and oil-spill detection from
satellite radar images precision-recall analysis is more ap-
propriate [6]. In these applications recall (TPr) only really
makes sense when combined with precision, as the prior
class probabilities are unknown or highly variable. In these
situations, end-users relate to precision-recall curves as
they indicate how many true positives are likely to be found
in a typical search.
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It is also worth noting that in a similar way in which
error is used as a scalar performance measure in well-
defined pattern recognition problems, scalar measures such
as the F−measure [11] are used in the well-defined
precision-recall case (the geometric mean of precision

and recall, in which the two measures are weighted
equally), defined as 2TPr

TPr+FPr+1 .

3 ROC analysis

The performance measures described before all relate to
a single decision threshold, or operating point, for a classi-
fication model. In well defined environments, where class
priors and misclassification costs are known, evaluation at
a single (perhaps optimal) operating point is appropriate.
However, in imprecise environments or when comparing
models operating at different points, ROC analysis is more
appropriate.

Given a two class problem (ωp vs ωn), a trained density-
based classifier and a test set, the ROC curve is computed as
follows1: the trained classifier is applied to the test set, and
the aposteriori probability is estimated for each data sam-
ple. Then, a set of m thresholds (Θ = θ1, θ2, . . . , θm)
are applied to this probability estimate and corresponding
data labellings are generated. This can be conceptualised as
shifting the position of the decision boundary of a classifier
across all possibilities. The confusion matrix is computed
between each estimated set of labels and the true test-set la-
belling. The ROC curve now plots the TPr as a function of
the FPr. This effectively results in a representation of all
possible classification accuracy values for a given classi-
fier, and provided the train and test data are representative,
the same ROC results irrespective of priors/costs.

It is well known that evaluation measures such as
accuracy vary with prior/cost [10]. Thus a classifier trained
to, for example, the Bayes operating point, would report a
different accuracy as the priors vary. In order to maintain
the Bayes error-rate, the decision threshold would have to
be adjusted according to the variation in prior/cost. In cases
where costs/priors are not defined well, there is a need to in-
spect performance for a range of different operating points
and/or priors. If all operating points are used in the evalu-
ation, the overall ROC curve will be invariant to priors [9].
Integrating performance over the whole ROC curve results
in the Area Under the ROC curve (AUC) [1] [10], which
is a scalar performance measure ranging from 0.5 (random
classification) to 1.0 (ideal). It is also often more practical
to compute the AUC over a limited range to suit the given
problem.

AUC(Θ) =
∫

TPr(Θ)dFPr(Θ) (1)

1The true class-conditional distributions are typically not known, so the
method we use to derive the ROC is an estimate of the true ROC.

This can be approximated non-parametrically via trape-
zoidal integration:

AUC(Θ) ≈
∑m

i=2 ∆FPrTPr(θi) + 1
2∆TPr∆FPr

∆TPr = TPr(θi) − TPr(θi−1)
∆FPr = FPr(θi) − FPr(θi−1)

(2)
The point to note here is that while the ROC curve,

and therefore AUC, is invariant to priors/costs, in impre-
cise environments we are actually interested in the variabil-
ity in performance as the priors vary (we want to select the
best performing model across an expected range of priors).
Therefore, the traditional ROC analysis tools are not appro-
priate and require extension to imprecise environments.

4 Precision-recall analysis
Whereas ROC analysis represents TPr(Θ) against

FPr(Θ), the precision-recall operating characteristics
represent TPr(Θ) against precision(Θ). As discussed in
[7], we showed that precision is in fact dependent on
the priors, i.e., a new operating characteristic is obtained
if the priors vary, as opposed to the ROC where thresh-
olds/operating points and priors are synonymous. The con-
sequence is that the operating characteristic constitutes a
surface of operating points, with each prior resulting in a
slice of this surface. The precision definition can be writ-
ten as:

precision(Θ) =
TPr(Θ)

TPr(Θ) + λFPr(Θ)
(3)

This allows the performances to be obtained analytically,
given an ROC (derived as in Equation 2). In Figure 2,
an example of receiver (TPr vs FPr), and precision-
recall (TPr vs precision) operating characteristic curves
are shown for an example classifier and dataset. The
precision characteristics are shown for three different prior
settings (πp = 0.5, 0.1, and 0.01) to demonstrate the prior
dependence from a balanced to an imbalanced situation. It
is clear that the precision characteristic varies significantly
with λ.

The AUC is computed by integrating across all clas-
sification thresholds Θ. Similarly, the precision-recall

characteristic can be integrated across both classification
thresholds Θ and priors λ, thus obtaining an integrated per-
formance measure, called AUPREC. This can again be
derived using the trapezoidal approximation, resulting in
Equation 4. With this formulation, the original ROC can be
used, together with the given skew, to analytically compute
the new performance measures.

AUPREC(λ) =
∫

TPr(Θ)dprecision(Θ, λ)

≈ 1
2

∑m

i=2 ∆TPr[
TPr(θi)

TPr(θi)+λFPr(θi)
+ TPr(θi−1)

TPr(θi−1)+λ(FPrθi−1)
]

(4)
The AUPREC results in a performance score for a single
skew setting. However, we wish to estimate performance
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Figure 2. Demonstrating an ROC curve (top),
and precision-recall characteristics (bottom).

in problems in which the skew/costs are unknown, or only
a range can be specified. In this case we wish to evaluate
precision across a range of priors. We therefore define an
integrated precision measure called IAUPREC. For a
range of skew values (or priors) λ = {λlo, λhi}, we obtain
the IAUPREC as shown in Equation 5.

IAUPREC(λlo, λhi) =

∫ λhi

λlo

AUPREC(λ)dλ (5)

5 Hypothesis testing by 3-way ANOVA
In this paper, we use analysis of variance (ANOVA) to

test the null hypothesis that a number of models have, on
the average, the same performance. If there is evidence to
reject this hypothesis then we can look at the alternative hy-
pothesis that one classifier has better performance than the
others. ANOVA is simply an extension of Hypothesis tests
of means (such as the t and F tests) to the case of multiple
groups (in our case, > 2 classifiers) [12]. This avoids the
necessity of performing multiple hypothesis tests for each
pair of classifiers as we effectively test all hypotheses si-
multaneously.

ANOVA provides a method for splitting the variation in
the data between multiple components (e.g., experimental
error, classifier model, cross validation fold and prior prob-
ability). If the null hypothesis is true, then all components
provide an independent estimate of the experimental error

(that is, no components have a significant effect on perfor-
mance). Clearly we expect that some of these components
will affect performance and although we may not interested
in them specifically, we use them as blocking factors to
improve test sensitivity. Conventionally in ANOVA an F-
test is used, however other non-parametric tests can also be
used (e.g., rank statistics are used in the Friedman test). In
this paper, we use a conventional F-test, and we specifically
compare the efficacy of a 2-way ANOVA, with IAUPREC
as the performance measure, to a 3-way ANOVA, with
AUPREC as the performance measure, and πp as a block-
ing factor. All tests are performed at the p = 0.005 level of
significance, which gives a 1 in 200 probability of rejecting
the null hypothesis by chance.

6 Experiments
In this section a number of experiments are undertaken

in a real problem domain to demonstrate the efficacy of the
proposed precision-recall analysis. A remote sensing ap-
plication is targeted, which we call Satellite2. As discussed
in [8], this problem is appropriate because the prior proba-
bilities of the various classes vary geographically. The data
consists of 6435 multi-spectral values of a satellite image,
with 36 dimensions (4 spectral bands in a 9 pixel neighbour-
hood). Six classes have been identified to characterise the
topography, of which the second and fourth classes (cotton
crop and damp grey soil) are considered ωp (1329 exam-
ples), and the remaining ones ωn (5106 examples). The
goal of the experiments is to select a classifier that remains
relatively robust to variations in the priors, measured in this
case by precision.

Three classification models are compared, referred to as
A, B, and C respectively, where the first uses a principal-
component analysis representation (3 components), fol-
lowed by a mixture of Gaussians classifier (3 mixtures per
class), and the second two use the dissimilarity approach
[2], using 15 and 50 randomly selected prototypes respec-
tively, and a minimum-distance classifier. A 20-fold ran-
domised hold-out method is used, in which 80% of the data
is used in training, and the remainder for testing (cross-
validation is not recommended for this dataset (image data),
but we use it only for illustration of the principles).In com-
paring the models, we consider 3 measures:

• AUPREC for πp = 0.5, 0.1, 0.01, indicating the in-
tegrated precision for various skew values.

• IAUPREC([0.05, 0.20]), indicating the integrated
precision for a range of priors 0.05 ≤ πp ≤ 0.20.
This score is normalised by the area over the range.

• AUC, for reference purposes.

Results (with standard deviation) for the various measures
are shown in Table 1. Initially, a general observation can

2Obtain from ftp://ftp.ics.uci.edu/pub/machine-learning-databases
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Table 1. Summary of experimental results.
Model (A) (B) (C)
AUP REC(0.5) 0.554(0.014) 0.775(0.108) 0.803(0.084)
AUP REC(0.1) 0.554(0.013) 0.629(0.186) 0.781(0.082)
AUP REC(0.01) 0.552(0.013) 0.487(0.245) 0.734(0.075)
IAUP REC 0.554(0.013) 0.642(0.177) 0.783(0.082)
AUC 0.943(0.005) 0.825(0.046) 0.905(0.019)

be made that the absolute measures indicate that the per-
formance of C is superior to both A and B, and that B is
superior to A. We note, however, that there is a large vari-
ance in these results, especially of B and C, which makes a
firm conclusion hard to draw.

Considering the IAUPREC results, a 2-way ANOVA in-
dicates that only algorithm C is statistically better than A
and B (with an F -value of 21.04), and that there is no sig-
nificant difference between A and B. However, the 3-way
ANOVA shows a significance between all 3 models (F -
value of 483.85), with C being superior to B, and B being
superior to A. This result indicates that the 3-way ANOVA
is more sensitive to model differences since it directly in-
corporates the variance due to the priors.

Performing a 3-way ANOVA on the AUPREC mea-
sures for the 3 different prior values shows that model
C is indeed the best, significantly better than both B and
A. Similarly, B is significantly better than A over all 3
the priors. Another observation that can be made for the
three AUPREC measures is that models A and C re-
main very stable with respect to a change in the skew,
whereas model B is sensitive to skew. This is a very
important result, since for a balanced case, models B
and C result in similar performance (AUPREC scores
of 0.775(0.108) and 0.803(0.084) respectively). For the
case in which πp = 0.01, the AUPREC performance
for B diminishes to 0.487(0.245), whereas C remains rel-
atively stable at 0.734(0.075). The IAUPREC score in-
dicates a lower score over 0.05 ≤ πp ≤ 0.20, corrob-
orating the fact that B is sensitive to skew. Model A
is extremely insensitive to skew over the range, but be-
cause of the high bias, it would probably not be con-
sidered. These observations point out the importance of
the precision analysis proposed here for evaluating im-
balanced, imprecise problems. The ANOVA analysis also
indicated that there is a significant difference between
the AUPREC(0.5) and AUPREC(0.01) measures, but
not between the AUPREC(0.5) and AUPREC(0.1),
and the AUPREC(0.1) and AUPREC(0.01) measures.
These experiments demonstrate practical application of the
precision-recall analysis, and and also the importance of
incorporating the priors as an additional source of variance
in hypothesis testing.

7 Conclusions

In this paper we have presented an extension of the tra-
ditional ROC analysis methodology in which we form a

3-dimensional precision-recall ROC surface. Here the
class priors represent the third dimension as the precision

measure is dependent on the class priors. This evaluation
methodology was demonstrated on a remote sensing appli-
cation where priors are known to vary over a fixed range.
Models were compared using a 3-way ANOVA test in order
to incorporate the priors as an additional source of varia-
tion. Experiments showed that the incorporation of the pri-
ors results in a more sensitive hypothesis test than the 2-
way ANOVA test. This demonstrated the efficacy of this
approach in highlighting classifiers that are stable over vari-
ations in the priors, and so are suitable for application in
imprecise environments.
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